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ABSTRACT
Recently, a number of protocols extending RNA-sequencing to the single-cell regime
have been published. However, we were concerned that the additional steps to deal
with such minute quantities of input sample would introduce serious biases that
would make analysis of the data using existing approaches invalid. In this study, we
performed a critical evaluation of several of these low-volume RNA-seq protocols,
and found that they performed slightly less well in per-gene linearity of response, but
with at least two orders of magnitude less sample required. We also explored a simple
modification to one of these protocols that, for many samples, reduced the cost of
library preparation to approximately $20/sample.
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INTRODUCTION
Second-generation sequencing of RNA (RNA-seq) has proven to be a sensitive and

increasingly inexpensive approach for a number of different experiments, including

annotating genes in genomes, quantifying gene expression levels in a broad range of

sample types, and determining differential expression between samples. As technology

improves, transcriptome profiling has been able to be applied to smaller and smaller

samples, allowing for more powerful assays to determine transcriptional output. For

instance, our lab has used RNA-seq on single Drosophila embryos to measure zygotic gene

activation (Lott et al., 2011) and medium-resolution spatial patterning (Combs & Eisen,

2013). Further improvements will allow an even broader array of potential experiments on

samples that were previously too small.

For instance, over the past few years, a number of groups have published descriptions

of protocols to perform RNA-seq on single cells (typically mammalian cells) (Tang et al.,

2009; Ramsköld et al., 2012; Sasagawa et al., 2013; Hashimshony et al., 2012; Islam et al.,

2011). A number of studies, both from the original authors of the single-cell RNA-seq

protocols and from others, have assessed various aspects of these protocols (such as the

lower limit of detection, strand specificity, and uniformity of coverage), both individually

and competitively (Levin et al., 2010; Bhargava et al., 2014; Wu et al., 2014; Marinov et al.,

2013). One particularly powerful use of these approaches is to sequence individual cells
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in bulk tissues, revealing different states and cellular identities (Buganim et al., 2012;

Treutlein et al., 2014).

However, we felt that published descriptions of single-cell and other low-volume

protocols did not adequately address whether a change in concentration of a given

transcript between two samples would result in a proportional change in the FPKM (or

any other measure of transcriptional activity) between those samples. While there are

biases inherent to any protocol, we were concerned that direct amplification of the mRNA

would select for PCR compatible genes in difficult to predict, and potentially non-linear

ways. For many of the published applications of single cell RNA-seq, this is not likely a

critical flaw, since the clustering approaches used are moderately robust to quantitative

changes. However, to measure spatial and temporal activation of genes across an embryo,

it is important that the output is monotonic with respect to concentration, and ideally

linear. A linear response allows for more easily interpretable experimental results, without

necessarily relying on complicated transformations of the data.

While it is possible to estimate absolute numbers of cellular RNAs from an RNA-seq

experiment, doing so requires spike-ins of known concentration and estimates of total cel-

lular RNA content (Mortazavi et al., 2008; Lin et al., 2012). However, many RNA-seq exper-

iments do not do these controls, nor are such controls strictly necessary under reasonable,

though often untested, assumptions of approximately constant RNA content. While ulti-

mately absolute concentrations will be necessary to fully predict properties such as noise

tolerance of the regulatory circuits (Gregor et al., 2007; Gregor et al., 2005), many current

modeling efforts rely only on scaled concentration measurements, often derived from

in situ-hybridization experiments (Garcia et al., 2013; Ilsley et al., 2013; He et al., 2010).

Given that, we felt it was not important that different protocols should necessarily agree on

any particular expression value for a given gene, nor are we fully convinced that absolute

expression of any particular gene can truly reliably be predicted in a particular experiment.

In order to convince ourselves that data generated from limiting samples would be

suitable for evaluating the spatial distribution of gene expression or other experiments

where a linear response is necessary for proper interpretation of the data, we evaluated

several protocols for performing RNA-seq on extremely small samples. We also investi-

gated a simple modification to one of the protocols that reduced sample preparation cost

per library by more than 2-fold. This study provides a single, consistent comparison of

these diverse approaches, and shows that in fact all data from the low-volume protocols we

examined are usable in similar contexts to the earlier bulk approach.

METHODS
RNA extraction, library preparation, and sequencing
We performed RNA extraction in TRIzol (Life Technologies, Grand Island, New York,

USA) according to manufacturer instructions, except with a higher concentration of

glycogen as carrier (20 ng) and a higher relative volume of TRIzol to the expected

material (1 mL, as in Lott et al. (2011) and Combs & Eisen (2013)). We quantified RNA
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concentrations using a fluorometric Qubit RNA HS assay (Life Technologies, Grand Island,

New York, USA).

TruSeq libraries were prepared with the “TruSeq RNA Sample Preparation Kit v2”

(Illumina Cat.#RS-122-2001) according to manufacturer instructions, except for the

following modifications. All reactions were performed in half the volume of reagents.

We find that this increases the effective concentration of RNA and cDNA. We performed all

reactions and cleanups in 8-tube PCR strip tubes, which allowed us to reduce the volume of

Resuspension Buffer to minimize volume left behind after each cleanup.

Clontech libraries were prepared with the “Low Input Library Prep Kit” (Clontech

Cat.#634947). We generated cDNA by using TruSeq reagents until the cDNA synthesis

step. Then, we used the Low Input Library Prep Kit to modify the cDNA into sequencing-

competent libraries. We assume that a similar cDNA synthesis could be performed using

oligo dT Dynabeads, RNA fragmentation reagents, and Superscript II (Life Technologies,

Grand Island, New York, USA), for an approximate cost per sample of $15, but have not

directly tested this with the Clontech reagents.

TotalScript libraries were prepared with the “TotalScript RNA-Seq Kit” and “TotalScript

Index Kit” (Epicentre Cat.#TSRNA1296 and TSIDX12910). We followed the manufac-

turer’s instructions, and used the oligo dT priming option. We performed the mixed

priming option in parallel, which yielded approximately 4-fold more library, but did not

sequence them due to concerns of ribosomal contamination.

SMARTseq2 libraries were prepared according to the protocol in Picelli et al. (2014).

Because we had already extracted and mixed the RNA, we began at step 5 with 3.7 µL of

dNTPs and 1 µL of 37 µM oligo dT primer, yielding the same concentration of primer and

oligo as originally reported. We used 18 cycles for the preamplification PCR in step 14,

added 1 ng of cDNA to the Nextera XT reactions in step 28, and used 6 and 8 cycles for the

final enrichment in step 33 (experiments 2 and 3, respectively).

Libraries were quantified using a combination of Qubit High Sensitivity DNA (Life

Technologies, Grand Island, New York, USA) and Bioanalyzer (Agilent Technologies,

Sunnyvale, California, USA) readings. Total yield Y in femtomoles was estimated using

Qubit concentration C measured in (ng/µL), total volume V in µL, average size S in bp,

Y[fmole] = C[ng/µL] · 10−9[g/ng] · V[µL] · 1015
[fmole/mole] ÷ 608.9[g/mole] ÷ S[bp]. (1)

We then pooled libraries to equalize index concentration before sequencing.

Due to a pooling error in experiment 2 where non-concentration normalized tubes

were mistakenly used instead of the normalized samples, the TruSeq libraries were in-

cluded at much higher abundance. Pooled libraries were then submitted to the Vincent

Coates Genome Sequencing Laboratory for 50bp single-end sequencing according to

standard protocols for the Illumina HiSeq 2500. Bases were called using HiSeq Control

Software v1.8 and Real Time Analysis v2.8.
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Mapping and quantification
Reads were mapped using STAR (Dobin et al., 2012) to a combination of the FlyBase

reference genome version 5.54 for D. melanogaster and D. virilis (McQuilton, St. Pierre

& Thurmond, 2012). We randomly sampled the mapped reads to use an equal number

in each sample compared. We used HTSeq (command line options htseq-count

--idattr='gene name' --stranded=no --sorted=pos) to count absolute read

abundance per gene (Anders, Pyl & Huber, 2014). All custom analysis software is available

at https://github.com/eisenlab/SliceSeq, and is primarily written in Python (Cock et al.,

2009; Hunter, 2007; Jones et al., 2001; Perez & Granger, 2007). Commit c6b3d3e was used

to perform all analyses in this paper.

Simulation of Experiment 2
We wrote a Python script that simulated Experiment 2 assuming only uncorrelated

counting noise in the number of reads per gene. The read counts from the sample with

20% D. virilis and the TruSeq protocol was used to generate the base probabilities.

D. virilis gene probabilities were adjusted downwards, and the remaining probability was

assigned evenly to the D. melanogaster genes. The SciPy function stats.multinomial

was used to simulate read counts, assuming an equal number of reads as in the original

experiment. Gene expression levels were normalized using Eq. (2), as in the actual

experiment.

RESULTS
Experiment 1: evaluation of Illumina TruSeq
In our hands, the Illumina TruSeq protocol has performed extremely reliably with

samples on the scale of 100 ng of total RNA, the manufacturer recommended lower

limit of the protocol. However, attempts to create libraries from much smaller samples

yielded low complexity libraries, corresponding to as much as 30-fold PCR duplication

of fragments (Text S1). Anecdotally, less than 5% of libraries made with at least 90 ng

of total RNA yielded abnormally low concentrations, which we observed correlated

with low complexity (Data not shown). To determine the lower limit of input needed to

reliably produce libraries, we attempted to make libraries from 40, 50, 60, 70, and 80 ng

of Drosophila total RNA, each in triplicate. Yields are shown in Table 1.

We considered the two libraries with lower than usual concentration to be failures. Al-

though there is detectable material post-amplification, the size distributions as measured

by Bioanalyzer of these libraries is significantly different than known good libraries and

manufacturer provided documentation (Fig. S1). In our experience, sequencing libraries

with much lower than usual yield and abnormal size distributions has yielded libraries

with low complexity and poor correlation to replicates.

While a failure rate of approximately 1 in 3 might be acceptable for some purposes,

we ultimately wanted to perform RNA sequencing on precious samples, where a failure

in any one of a dozen or more libraries would necessitate regenerating all of the libraries.

Furthermore, due to the low sample volumes involved (less than approximately 500 pg
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Table 1 Total TruSeq cDNA library yields made with a given amount of input total RNA. Yields
measured by Nanodrop of cDNA libraries resuspended in 25 µL of EB. The italicized samples were near
the lower limit of detection, and when analyzed with a Bioanalyzer, showed abnormal size distribution
of cDNA fragments.

Amount input RNA Replicate A Replicate B Replicate C

40 ng 57 ng 425 ng 672 ng

50 ng 435 ng 768 ng 755 ng

60 ng 115 ng 663 ng 668 ng

70 ng 300 ng 593 ng 653 ng

80 ng 468 ng 550 ng 840 ng

Table 2 Summary of protocols used in experiments 2 and 3. Cost is estimated per library assuming a
enough libraries to consume all reagents at US catalog prices as of May 2014, and includes $2 for TRIzol
RNA extraction, but not experimenter labor, sample QC, labware, or sequencing. Difference in prices in
the Smart-seq2 protocols entirely due to scaling in cost of Nextera reagents.

Protocol Shorthand Cost/library

TruSeq TruS $45

Clontech CT $105

Epicentre TotalScript TotS $115

Smart-seq2, standard protocol SS $55

Smart-seq2, 2.5 fold dilution SS—2.5× $28

Smart-seq2, 5 fold dilution SS—5× $20

of poly-adenylated mRNA), common laboratory equipment is not able to determine the

particular point in the protocol where the failures occurred.

It is clearly possible to use less than the manufacturer suggested amount of input

RNA. Thus, we consider 70 ng of total RNA to be the conservative lower limit to the

protocol. While this is about 30% smaller than the manufacturer suggests, it is still several

orders of magnitude larger than we needed it to be. We therefore considered using other

small-volume and “single-cell” RNA-seq kits, which often use a pre-amplification step

that is known to influence estimation of absolute levels (Picelli et al., 2013).

Experiment 2: competitive comparison of low-volume RNAseq
protocols
We first sought to determine whether the low-volume RNAseq protocols available faith-

fully recapitulate linear changes in abundance of known inputs, even if absolute levels

are not directly comparable to other protocols. We generated synthetic spike-ins by

combining D. melanogaster and D. virilis total RNA in known, predefined proportions

of 0, 5, 10, and 20% D. virilis RNA. For each of the low-volume protocols, we used 1 ng of

total RNA as input, whereas for the TruSeq protocol we used 100 ng.

Although pre-defined mixes of spike-in controls have been developed and are com-

mercially available (Jiang et al., 2011), we felt it was important to ensure that a given

Combs and Eisen (2015), PeerJ, DOI 10.7717/peerj.869 5/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.869


protocol would function reproducibly with natural RNA, which almost certainly has a

different distribution of 6-mers, which could conceivably affect random cDNA priming

and other amplification effects. Furthermore, our spike-in sample more densely covers

the approximately 105 fold coverage typical of RNA abundances. It should be noted,

however, that our sample is not directly comparable to any other standards, nor is the

material of known strandedness. We assumed that the majority of each sample is from

the standard annotated transcripts, but did not verify this prior to library construction

and sequencing.

We then estimated yield by measuring concentration in ng/µL with a Qubit High

Sensitivity DNA assay and average fragment size with a Bioanalyzer High Sensitivity

chip. The different protocols had a variation in yield of libraries from between 6 fmole

(approximately 3.6 trillion molecules) and 2,400 femtomoles, with the TruSeq a clear

outlier at the high end of the range, and the other protocols all below 200 fmole (Table 3).

While the number of PCR cycles in the final enrichment steps can be adjusted, all of these

quantities are sufficient to generate hundreds of millions of reads—far more than is typi-

cally required for an RNA-seq experiment. We pooled the samples, attempting equimolar

fractions in the final pool; however, due to a pooling error, we generated significantly

more reads than intended for the TruSeq protocol, and correspondingly fewer in the

other protocols. Unless otherwise noted, we therefore sub-sampled the mapped reads to

the lowest number of mapped reads in any library in order to provide a fair comparison

between protocols.

We were interested in the fold-change of each D. virilis gene across the four libraries,

rather than the absolute abundance of any particular gene. Therefore, after mapping

and gene quantification, we normalized the abundance Aij of every gene i across the

j = 4 libraries by a weighted average of the quantity Qj of D. virilis in library j, as show in

Eq. (2). Thus, within a given gene, a linear fit of Âij vs. Qj should have a slope of one and

an intercept of zero. As expected, this normalized abundance increased with increasing D.

virilis concentration (Fig. S2).

Âij = Aij ÷


j QjAij
j(Qj)2

. (2)

We then filtered the D. virilis genes for those with at least 20 mapped fragments in

the library with 20% D. virilis, then calculated an independent linear regression and the

Pearson correlation coefficient between the expected and measured concentration of

D. virilis for each of those genes. As shown in Fig. 1A and Fig. S3, this can be thought of

as plotting the measured and known values, then fitting a line for each gene. As expected,

for every protocol, the mean slope was 1 (t-test, p < 5 × 10−7 for all protocols). Similarly,

the average intercepts for all protocols was 0 (t-test, p < 5 × 10−7 for all protocols). Also

unsurprisingly, the TruSeq protocol had a noticeably higher mean correlation coefficient

(0.98±0.02) than any of the other protocols (0.95±0.06, 0.92±0.09, and 0.95±0.06 for

Clontech, TotalScript, and SMART-seq2, respectively). The mean correlation coefficient

was statistically and practically indistinguishable between the Clontech libraries and
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Table 3 Sequencing summary statistics for libraries. Protocols are the shorthands used in Table 2.
Reads indicates the total number of reads, and Mapped the total number of reads that mapped at least
once to either genome. Experiments 2 and 3 were run in a single HiSeq lane each. Yield estimates were
generated by adjusting Qubit High Sensitivity DNA readings by the average fragment size as measured
by Bioanalyzer.

Expt Protocol % D. virilis Yield Total reads Mapped reads

2 CT 0% 6.5 fmole 3,803,843 3,374,520 (89%)

2 ” 5% 15.7 fmole 4,372,738 4,164,781 (95%)

2 ” 10% 47.4 fmole 10,013,087 9,527,023 (95%)

2 ” 20% 17.8 fmole 4,781,463 4,317,101 (90%)

2 TotS 0% 176.8 fmole 3,281,134 2,930,058 (89%)

2 ” 5% 170.2 fmole 2,498,134 2,237,330 (90%)

2 ” 10% 102.5 fmole 5,777,523 5,424,366 (94%)

2 ” 20% 119.9 fmole 6,068,996 5,740,496 (95%)

2 TruS 0% 2,401.0 fmole 67,560,511 64,024,881 (95%)

2 ” 5% 2,001.1 fmole 23,370,854 22,589,083 (97%)

2 ” 10% 2,174.2 fmole 39,454,390 38,093,763 (97%)

2 ” 20% 2,379.2 fmole 35,265,536 34,304,792 (97%)

2 SS 0% 34.3 fmole 2,439,518 2,297,087 (94%)

2 ” 5% 59.6 fmole 2,550,023 2,419,889 (95%)

2 ” 10% 67.9 fmole 2,534,628 2,444,568 (96%)

2 ” 20% 39.8 fmole 2,504,340 2,389,850 (95%)

3 SS—2.5× 0% 104.4 fmole 15,769,915 14,393,959 (91%)

3 ” 1% 124.7 fmole 21,349,748 20,084,131 (94%)

3 ” 5% 113.0 fmole 17,047,120 16,329,641 (96%)

3 ” 10% 103.5 fmole 23,762,232 22,372,562 (94%)

3 ” 20% 123.8 fmole 20,809,781 20,041,548 (96%)

3 SS—5× 0% 59.4 fmole 19,214,155 17,324,598 (90%)

3 ” 1% 58.6 fmole 23,832,274 22,364,220 (94%)

3 ” 5% 65.4 fmole 18,149,452 17,157,450 (95%)

3 ” 10% 28.8 fmole 15,821,419 14,869,864 (94%)

3 ” 20% 57.2 fmole 22,466,345 21,620,603 (96%)

the SMART-seq2 libraries (t-test p = .11, Fig. 1). Taken together, all of these measures

indicate that the TruSeq protocol is better able to capture the linear trend in increasing

transcript number.

While the TruSeq protocol clearly performed better than the low-volume kits (Fig. 1),

we wondered how well an ideal RNA-seq protocol could perform. We simulated an ex-

periment with known levels of D. virilis spike in and assuming a multinomial distribution

of read counts, and repeated the simulation 1,000 times to estimate the distribution of

relevant quality metrics (Fig. S4). Surprisingly, the mean correlation coefficient for the

TruSeq protocol was higher than the mean correlation coefficient of every repetition of

the simulation, though indistinguishable for practical purposes (0.984 vs. 0.982). The

slopes were equally well clustered around 1, with an interquartile range of 0.0864 for the

TruSeq protocol compared to 0.0843, the mean of all simulations; 13% of simulations
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Figure 1 Comparison of linearity between different RNA-seq protocols. (A) Normalized levels of gene
expression Â across libraries using the TruSeq protocol, where each line is for a different gene. (B–E)
Distributions of slopes, intercepts, and correlation coefficient for linear regressions of the abundance of
each gene, as in (A).
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had a higher IQR. We thus conclude that the major limiting factor for the TruSeq pro-

tocol to generate a linear response in the data is likely the sequencing depth, whereas the

other protocols all contain additional biases.

Although there is some variation in the precise shape of the distributions of fit pa-

rameters, these were relatively small compared to the difference between any of these

and the conventional TruSeq protocol. Indeed, the major differentiator we found among

the low-volume protocols we compared was cost. For only a handful of libraries, the

kit-based all inclusive model of the Clontech and TotalScript kits could be a significant

benefit, allowing the purchase of only as much of the reagents as required. By contrast,

the Smart-seq2 protocol requires the a la carte purchase of a number of reagents, some of

which are not available or more expensive per unit for smaller quantities. Furthermore,

there could potentially be a “hot dogs and buns” problem, where reagents are sold in

non-integer multiples of each other, leading to leftovers. Many of these reagents are

not single-purpose, however, so leftovers could in principle be repurposed in other

experiments.

Experiment 3: further modifications to the SMART-seq2 protocol
Although the SMART-seq2 was the cheapest of the protocols when amortized over a large

number of libraries, we wondered whether it could be performed even more cheaply

without compromising data quality. This would enable us to include more biological

replicates in the future experiments for which we are evaluating these protocols. In the

original protocol, we noticed that roughly 60% of the cost came from the Nextera XT

reagents. Thus, reducing the cost of tagmentation was the obvious goal to target.

We made additional libraries, again starting with 1ng of total RNA. We amplified a

single set of spike-in libraries with 0, 5, 10, and 20% D. virilis total RNA as in experiment

2, and made a single an additional sample with 1% D. virilis RNA. Starting at the point

in the SMART-seq2 protocol where tagmentation was started, we performed reactions

in volumes 2.5× and 5× smaller, using proportionally less cDNA as well. Due to the low

total yield, we increased the number of enrichment cycles from 6 to 8 (see ‘Methods’).

When normalized to the same number of reads as in experiment 2, the protocols

with diluted Nextera reagents performed effectively identically: for instance, the mean

correlation coefficients were in both cases 0.96 ± 0.05 (Fig. 2 and Table 4). This is despite

the additional cycles of enrichment, which improved yield.

Because we used a common set of pre-amplified cDNA samples that was performed in

a distinct pre-amplification from experiment 2, we can estimate the contribution of that

pre-amplification to the overall variation. If, in fact, the pre-amplification is a major con-

tributor to the variation, then we would expect to find that the correlation between, for

instance, the slopes of two runs of the same experiment with different pre-amplifications

would be significantly lower than the correlation between the slopes of two runs using the

same pre-amplified cDNA pools.

Unsurprisingly, the sets of samples that used the same preamplification were more cor-

related with each other than with the set of samples that used a separate pre-amplification
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Table 4 Distribution of fit parameters. A simple linear fit, Âij = mi · Qj + bi, was computed for each
gene i and a correlation coefficient r was calculated. For brevity, x̄ is the mean of some variable x, and σx
is its standard deviation.

Protocol m̄ ± σm b̄ ± σb r̄ ± σr

TruSeq 1.01 ± 0.0698 −0.108 ± 1.05 0.98 ± 0.019

Clontech 1.01 ± 0.12 −0.217 ± 1.79 0.95 ± 0.061

Epicentre TotalScript 0.952 ± 0.129 0.715 ± 1.93 0.93 ± 0.094

Smart-seq2 1.03 ± 0.121 −0.506 ± 1.82 0.95 ± 0.057

Smart-seq2, 2.5 fold dilution 0.996 ± 0.111 0.0623 ± 1.67 0.96 ± 0.053

Smart-seq2, 5 fold dilution 1.01 ± 0.111 −0.173 ± 1.66 0.96 ± 0.049

Figure 2 Distributions of slopes, intercepts, and correlation coefficients for experiment 3. Nextera XT
reactions were reduced in volume by the indicated amount.

(Fig. 3). By analogy to dual-reporter expression studies such as Elowitz et al. (2002), we

term variation along the diagonal “extrinsic noise” (ηext = std(m1 + m2)), and variation

perpendicular to the diagonal “intrinsic noise” (ηint = std(m1 − m2)), being intrinsic to

the pre-amplification step. Using that metric, the intrinsic noise is lower for the samples

with the same pre-amplification (ηint = 0.09) than for the samples with different pre-

amplifications (ηint = 0.16). Somewhat surprisingly, the extrinsic noise is higher for the

samples with the same pre-amplification (ηext = 0.20 vs. ηext = 0.16), perhaps due to the

2 additional cycles of PCR enrichment.

DISCUSSION
When sample size is not the limiting factor, it is clear that using well-established protocols

that involve minimal sequence-specific manipulation of the sample yields the best results,

both in terms of reproducibility and linearity of response. However, if it is not practical

to collect such relatively large samples, experiment 2 shows that any of the “single-cell”
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Figure 3 Estimating the source of preamplification noise. Plotted are the estimated slopes for each gene
between experiments. The blue, “Different pre-amplification” compares the 2.5× diluted and full sized
reactions, whereas the green “same pre-amplification” points compare the 2.5× and 5× dilution samples,
which used the same pre-amplified cDNA but different tagmentation reactions.

protocols we have tested should perform similarly to each other, and can be used as

a drop-in replacement. While preamplification steps do introduce some detectable

variance, it is not vastly detrimental to the data quality, and does not introduce obvious

sequence-specific biases.

Such methods should be strongly preferred if it is feasible to collect a suitably homoge-

nous sample. While bulk tissues may be a mixture of multiple distinct cell types, this may

or may not affect the particular research question an RNAseq experiment is designed to

answer. In our hands, the lower limit of reliable library construction using the Illumina

TruSeq kit is approximately 70 ng of total RNA and we have used this amount of RNA

in as-yet unpublished experiments on dissected slices of embryos. With non precious

samples, the practical limit is likely to be even lower. The manufacturer suggested 100

ng is almost certainly safe, and we can think of relatively few experiments where it is

not practical to collect more RNA than this. Although we have anecdotally observed

significant user-to-user variation within our lab, it seems unreasonable to expect order-

of-magnitude improvements are possible in techniques for precious samples. We suggest

that this limit may be related to cDNA binding to tubes or purification beads, but since
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the quantities are lower than the detection threshold of many standard quality control

approaches, we cannot directly verify this.

Compared to the regimes these protocols were designed for, we used a relatively large

amount of input RNA—1 ng of total RNA—corresponding to approximately 50 nuclei

of a mid-blastula transition Drosophila embryo. Previous studies have shown that this

amount of RNA is well above the level where stochastic variation in the number of

mRNAs per cell will strongly affect the measured expression of a vast majority of genes

(Marinov et al., 2013). It is nevertheless a small enough quantity to be experimentally

relevant. For instance, we have previously dissected single embryos into approximately 12

sections, yielding approximately 10 ng per section (Combs & Eisen, 2013), and one could

conceivably perform similar experiments on imaginal discs or antennal structures, which

contain a similar amount of cells (Klebes et al., 2002; Hansson & Anton, 2000).

One of the more striking results is that costs can be significantly reduced by simply

performing smaller reactions, without noticeably degrading data quality. We do not

suspect this will be true for arbitrarily small samples, such as from single cells. Instead,

it is likely only true for samples near the high end of the effective range of the protocol.

We have not explored where this result breaks down, and strongly caution others to verify

this independently using small pilot experiments before scaling up.

CONCLUSIONS
The selection of protocols for performing RNAseq depends on the amount of material

available to be profiled. We found that high quality libraries can be generated with

slightly less than the manufacturer’s recommended minimum using the standard Illu-

mina TruSeq protocol. When sufficient material is available to use the TruSeq protocol,

we find that this produces data with a better linear response to the increasing concen-

tration of any given gene than a number of different “single cell” protocols, which have

roughly comparable performance in this metric. Finally, we found that at least one of

these protocols, SMARTseq2 could be easily modified to significantly reduce the cost of

library preparation, without compromising data quality.
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