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Double-stranded (ds) RNA-dependent protein kinase (PKR) is a ubiquitously

expressed serine/threonine protein kinase. It was initially identified as an innate

immune antiviral protein induced by interferon (IFN) and activated by dsRNA. PKR

is recognized as a key executor of antiviral host defense. Moreover, it contributes

to inflammation and immune regulation through several signaling pathways. In addi-

tion to IFN and dsRNA, PKR is activated by multiple stimuli and regulates various

signaling pathways including the mitogen-activated protein kinase (MAPK) and

nuclear factor kappa-light-chain-enhancer of activated B cells pathways. PKR was

initially thought to be a tumor suppressor as a result of its ability to suppress cell

growth and interact with major tumor suppressor genes. However, in several types

of malignant disease, such as colon and breast cancers, its role remains controver-

sial. In hepatocellular carcinoma, hepatitis C virus (HCV) is the main cause of liver

cancer, and PKR inhibits HCV replication, indicating its role as a tumor suppressor.

However, PKR is overexpressed in cirrhotic patients, and acts as a tumor promoter

through enhancement of cancer cell growth by mediating MAPK or signal trans-

ducer and activator of transcription pathways. Moreover, PKR is reportedly required

for the activation of inflammasomes and influences metabolic disorders. In the pre-

sent review, we introduce the multifaceted roles of PKR such as antiviral function,

tumor cell growth, regulation of inflammatory immune responses, and maintaining

metabolic homeostasis; and discuss future perspectives on PKR biology including its

potential as a therapeutic target for liver cancer.
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1 | INTRODUCTION

Double-stranded PKR is a ubiquitously expressed serine/threonine

protein kinase that was initially identified as an innate immune

antiviral protein induced by IFN.1 It is also recognized as a host IFN-

stimulated gene.2 PKR was discovered after it was observed that cell

extracts prepared from IFN-treated vaccinia virus-infected cells were

sensitive to a translational block after the addition of exogenous
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mRNA3 and pIC, a synthetic analog of dsRNA.4 These studies led to

the identification of a protein with dsRNA-dependent kinase

activity,5,6 now known as PKR.7

PKR binds to dsRNA, resulting in a number of conformational

changes, in which homodimerization appears to be most important

according to biochemical and genetic analyses.8 PKR homodimeriza-

tion leads to rapid autophosphorylation of a stretch of amino acids,

namely Ser242, Thr255, Thr258, Ser83, Thr88, Thr89, Thr90,

Thr446, and Thr451, termed the activation segment.9 Among others,

residues Thr446 and Thr451 are consistently phosphorylated during

activation,8,10,11 which further stabilizes the PKR dimer and increases

its catalytic activity. Then, phosphorylated PKR phosphorylates

Ser51 on the alpha subunit of eIF2a,12 and phosphorylated eIF2a

inhibits the initiation of translation and decreases the rate of protein

synthesis (Figure 1).

In addition to its established role in antiviral activities, PKR con-

tributes to the regulation of inflammation and immune responses

through several signaling pathways. In addition to IFN and dsRNA,

PKR is activated by multiple stimuli, including cytokines such as

tumor necrosis factor alpha (TNF), interleukin 1 (IL-1),13,14 LPS,

through the Toll-interleukin 1 receptor domain-containing adaptor

protein (TIRAP) and Toll-like receptor 4 (TLR4) signaling pathways,15

PDGF through STAT3 and ERK 1/2 phosphorylation,16 heat shock

protein 90,17 and some cellular stressors including arsenite, thapsi-

gargin, and hydrogen peroxide.18,19

PKR regulates various signal transduction pathways such as the

MAPK, STAT,20,21 and NF-jB pathways,22 IRF123 or IRF3,24 and

activating transcription factors.25 PKR has also been implicated as a

general transducer of apoptosis,26,27 and was shown to trigger

autophagy through eIF2a-mediated activation of microtubule-asso-

ciated protein light chain 3 (LC3).28 Thus, it is clear that PKR has

multi-functional roles in the regulation of inflammatory and immune

signaling.

PKR has been implicated as an ER stress-regulated kinase, as

well as a PERK. Both PKR and PERK are activated by autophospho-

rylation, after which they phosphorylate eIF2a.29 Several studies

have reported the probable role of PKR in ER stress-induced neural

cell death in Alzheimer’s disease and Huntington’s disease.30,31

Moreover, Lee et al32 found that PKR plays a significant role in ER

stress-induced apoptosis mediated by protein activator of interferon-

induced protein kinase (PACT).

2 | PKR AND HUMAN HEPATITIS C VIRUS

Hepatitis C virus infection is a major public health concern. About

150 million individuals are infected worldwide, and each year, 3-4

million individuals become infected with the virus.33,34 HCV is the

leading cause of chronic liver disease and the most common indica-

tion for liver transplantation. HCV establishes persistent infection

and induces chronic hepatitis, which leads to LC and frequently to

HCC. However, the detailed mechanisms underlying the progression

of LC to HCC remain unknown. Both dsRNA produced by HCV

replication and the HCV core protein can activate PKR.35 It is likely

that PKR activation by the core protein is associated with the similar

ability of the latter to bind dsRNA, thereby providing the PKR activa-

tor substrate and possible mechanism of PKR activation during HCV

infection.36 In the liver tissue of patients with chronic HCV, PKR

mRNA is significantly increased compared with that in patients with

other etiologies.37,38 In contrast, consistent with the important role

of PKR in the control of HCV infection, HCV has several PKR-inacti-

vation strategies (Figure 2). For example, the IFN sensitivity-deter-

mining region in the HCV-1b NS5A region within the PKR-binding

domain inhibits IFN-induced PKR, thereby influencing responses to

IFN-based therapies.39,40 In addition, the PKR-eIF2a phosphorylation

homology domain of the HCV E2 gene also inhibits IFN-induced

PKR.41 However, it remains unclear whether these proteins con-

tribute to persistent HCV or are resistant to the antiviral activities of

PKR.9,42 Tokumoto et al43 showed that HCV protein expression is

directly dependent on PKR expression. In this report, HCV core pro-

tein levels significantly increased upon knockdown of PKR; con-

versely, overexpression of PKR significantly suppressed HCV core

levels in cell lines transfected with full-length HCV constructs. More-

over, PKR expression was responsible for the antiviral effects of IFN

against HCV. Hence, in contrasting actions, PKR suppressed HCV

replication, and HCV suppressed PKR function. In chronic HCV

infection, the functions of HCV and PKR are balanced. In patients

with chronic HCV infection, we speculate that HCV function against

PKR is greater than the anti-HCV function of PKR, so active inflam-

mation is maintained. However, in liver cancer, PKR is overexpressed

and its functions dominate, resulting in cancer progression (Figure 3).

F IGURE 1 Antiviral effects of double-stranded RNA-dependent
protein kinase (PKR). Double stranded-RNA produced by RNA viral
replication and interferon are potent activators of PKR. Activated
PKR induces PKR dimerization and PKR phosphorylation. Then, PKR
phosphorylates eukaryotic initiation factor-2 alpha (eIF2a), which
inhibits protein synthesis, including that of virally encoded proteins.
HCV, hepatitis C virus
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3 | PKR AND MALIGNANT DISEASES

Initially, PKR was thought to be a tumor suppressor as its overexpres-

sion in mammalian, insect, and yeast cells led to the suppression of cell

growth,44,45 indicating its role in inhibiting cell proliferation. In addi-

tion, the expression of several PKR dominant-negative mutants led to

the malignant transformation of NIH 3T3 cells, causing tumorigenesis

in nude mice.46,47 These results suggested that PKR was able to acti-

vate some apoptotic signals, thereby supporting the notion that it may

be a tumor suppressor.27,48 Moreover, PKR interacts with major tumor

suppressor genes such as p53 and phosphatase and tensin homolog,

and plays essential roles in their tumor suppressor functions.49,50

However, the role of PKR in cancer biology remains a subject of

debate. In Jurkat T cells, the reduced expression of PKR also corre-

sponded with reduced PKR activity,51 and the resultant effects were

characterized in the promonocytic leukemia cell line U937.52 Further-

more in 21 of 28 chronic lymphoid leukemia cells, PKR was expressed

but not active.53 However, several reports have indicated that PKR is

overexpressed and activated in several hematopoietic malignancies.

For example, PKR is generally overexpressed in AML and ALL.54 In

addition, the status of PKR activity was recently examined in AML and

ALL cell lines, and patient samples and both cell types had significantly

higher levels of phosphorylated PKR/PKR activation compared with

normal controls.55 In thyroid carcinoma, there was a reverse correla-

tion between PKR expression and Ki-67 labeling, suggesting that

tumor cells with low PKR expression had much higher proliferative

activity than those with high PKR expression in thyroid carcinoma.56

The reverse correlation between PKR expression and tumor cell prolif-

eration has been reported in head and neck squamous cell carci-

noma.57 Furthermore, He et al58 reported that in patients with non-

small-cell lung carcinoma, those with high levels of phosphorylated

PKR or phosphorylated eIF2a had significantly longer median survival

than those with little or no expression. By contrast, Kim et al59

showed by immunohistochemical analysis that primary melanomas

had minimal PKR immunoreactivity, but lymph node metastases

expressed high levels of PKR protein. In the same report, analyses of

colon cancer specimens showed that malignant transformation from

normal mucosa to adenoma and adenocarcinoma was coincident with

an increase in PKR expression. Kim et al60 also reported that PKR

autophosphorylation and phosphorylation were much higher in human

breast cancer cell lines than in non-transformed mammary epithelial

cell lines. Moreover, Roh et al61 demonstrated that patients with

small-sized peripheral lung cancer and high-grade PKR expression had

significantly shorter survival than those with low-grade expression.

These conflicting data suggest that the precise role of PKR in cancer

may differ depending upon the pathological type of tumor, stage of

tumor development, and tumor microenvironment.

F IGURE 2 Anti-double-stranded RNA-
dependent protein kinase (PKR) effects as
a result of hepatitis C virus (HCV). HCV
has developed PKR inhibitory strategies for
their persistence. The NS5A of HCV-1b
with a wild-type interferon sensitivity
determining region (ISDR) sequence within
the PKR-binding domain has the potential
to block the interferon (IFN)-induced PKR
that mediates various aspects of the
antiviral effects. The E2 gene of HCV
interacts with the PKR-eukaryotic initiation
factor-2 alpha phosphorylation homology
domain and inhibits PKR activation by IFN

F IGURE 3 Relationship between double-stranded RNA-
dependent protein kinase (PKR) and hepatitis C virus (HCV). In
patients with chronic HCV infection, HCV function against PKR is
greater than the anti-HCV function of PKR, so active inflammation is
maintained. However, in liver cancer, PKR is overexpressed, and its
functions dominate, resulting in cancer progression
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4 | PKR AND LIVER CANCER

Chronic HCV infection is specific to liver cancer (not to other types

of cancer); hence, among the many PKR upstream triggers previously

described, HCV infection and IFN signaling might be liver cancer-

specific triggers. Moreover, in HCC related to NASH, nutrition or

energy excess might contribute to liver cancer. The first report on

the relationship between PKR and HCC was by Shimada et al62 in

1998. In that report, the authors showed that PKR expression in

HCV-related HCC was higher in moderate- to well-differentiated

carcinomas compared with poorly differentiated HCC or LC. Because

this study was not carried out using HCC/non-HCC tissues pairs, it

was not determined whether PKR levels in the surrounding tissue

were also variable. To clarify the role of PKR in HCV-related hepato-

carcinogenesis, expression of PKR protein in paired malignant and

surrounding non-malignant tissues was examined from patients with

HCV-related HCC.63 The results showed that PKR protein levels

were consistently increased in HCC-related HCC tissues compared

with surrounding non-HCC tissue, and a similar increase was seen in

eIF2a expression. In addition, HCV copy number was reduced in

HCC compared with LC tissue, indicating that overexpressed PKR in

HCC tissues retained its antiviral function against HCV. Importantly,

sequence data indicated that increased PKR expression was not only

functional but was also wild type, showing that mutant PKR had not

accumulated. We studied the molecular mechanisms of PKR in HCV-

related HCC using two permissive cell lines for HCV replication

(JFH1 and H77s), as well as human HCC specimens with HCV infec-

tion.64 In HCV-related HCC cell lines, PKR upregulated c-Fos and c-

Jun activities through activation of ERK1/2 and JNK, respectively,

subsequently increasing HCC cell proliferation. Moreover, coordi-

nated upregulation of c-Fos and c-Jun signaling was confirmed in

human HCC specimens. c-Fos and c-Jun transcription factors have

been implicated in carcinogenesis, and they regulate genes including

important regulators of invasion and metastasis, proliferation, differ-

entiation, and survival in several types of cancer.65,66 However c-Fos

and c-Jun activation through PKR signaling has been reported in

HCV-related liver cancer only.63,64 c-Fos and c-Jun activation by

PKR signal may be as a result of HCV chronic infection, so this sig-

naling in liver cancer associated with other etiologies is not yet clear.

Recently, Wang et al67 reported that PKR plays a key role in

increasing the proliferation and migration of HepG2 human HCC

cells, and mouse xenograft models also confirmed the tumorigenic

role of PKR in HepG2 cells. In that report, the tumor-promoting

function of PKR was mediated by the STAT3 transcription factor.

F IGURE 4 Cancer suppression and
progression effects of double-stranded (ds)
RNA-dependent protein kinase (PKR). PKR
influences liver cancer through
mechanisms that function either against
viral infection or through the growth of
cancer cells. PKR during viral infection in
hepatocytes or apoptotic effect shows its
function of tumor suppression. In contrast,
PKR acts as a tumor promoter through
enhancement of cancer cell growth. Thus,
PKR works as a molecular Jekyll and Hyde
in liver cancer. eIF2a, eukaryotic initiation
factor 2 alpha; HCV, hepatitis C virus;
HSP, heat shock protein; IL, interleukin;
IRF, interferon regulatory factor; MAPK,
mitogen-activated protein kinase; NF-jB,
nuclear factor kappa-light-chain-enhancer
of activated B cells; PACT, protein
activator of interferon-induced protein
kinase; PDGF, platelet-derived growth
factor; STAT, signal transducer and
activator of transcription; TLR4, Toll-like
receptor 4; TNFa, tumor necrosis factor
alpha
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The authors used human primary tumor samples and the surrounding

tissue to show that the expression of total and phosphorylated PKR

was upregulated in tumor tissues compared with the surrounding tis-

sues. Importantly, patients did not have HBV or HCV infection, indi-

cating that PKR is also activated in non-HCV-related liver cancer.

These data do not support the role of PKR as a classic tumor sup-

pressor, but suggest that PKR may have a positive regulatory role in

controlling tumor growth and progression in liver cancer (Figure 4).

5 | POSSIBILITY OF PKR AS A
THERAPEUTIC TARGET AGAINST LIVER
CANCER

Lu et al68 reported that PKR is required for the activation of inflam-

masomes and the subsequent release of HMGB1 protein, a pro-

inflammatory cytokine. The functions of inflammasomes were

recently reported in various inflammation-induced cancers.69 With

the prevalence of HCV expected to decline, the proportion of HCC

related to NASH is anticipated to significantly increase as a result of

the growing epidemic of obesity and diabetes.70 Nakamura et al71

reported that PKR can respond to nutrient signals, as well as to ER

stress, and coordinates the activity of other critical inflammatory

kinases, such as JNK, to regulate insulin signaling and metabolism.

Dietary and genetic obesity features indicated the activation of PKR

in liver tissue, and deletion of PKR led to decrease metabolic disor-

der as a result of nutrition or energy excess in mice. This report sug-

gests that PKR may be the key molecule in HCC associated with

NASH or metabolic disorders. Taken together with the aforemen-

tioned reports on the relationship between PKR and liver cancer, it

appears that PKR has multifaceted roles in liver cancer, such as

antiviral function, promotion of tumor cell growth, regulation of the

inflammatory immune response, and maintenance of metabolic

homeostasis. Thus, PKR might be an effective therapeutic target in

human liver cancer (Figure 5). We consider that inhibition of HCV

replication by PKR could indirectly affect tumor suppression. How-

ever, once liver cancer has developed, the effects of PKR on

decreasing HCV are not sufficient for tumor suppression, whereas

overexpressed PKR contributes to tumor progression. It has been

proposed that PKR might activate some apoptotic signals or interact

with several tumor suppressor genes.26,72,73 However, in liver can-

cer, these tumor suppressor effects have not yet been confirmed.

Considering other functions underlying cancer progression in liver

cancer, we believe that a strategy for inhibiting PKR might be effec-

tive against liver cancer caused by several etiologies. The negative

effects against liver cancer by inhibiting PKR, for example, by

increasing HCV replication, need to be verified in future studies.

6 | CONCLUSIONS AND PERSPECTIVES

Recent progress on the roles of PKR in liver cancer has shown that

PKR influences liver cancer through mechanisms via its antiviral

properties or by negatively regulating the growth of cancer cells.

Studies on PKR during the virus infection of hepatocytes showed its

tumor suppression function. However, it can also act as a tumor pro-

moter through enhancement of cancer cell growth. Thus, PKR func-

tions as a molecular Jekyll and Hyde against liver cancer. The

complex nature of the relationship between PKR and virus infection

in liver cells and liver cell growth presents a unique challenge and

opportunity to develop therapeutic intervention strategies for target-

ing liver cancer. Further studies examining the role of additional

molecules in regulating PKR signaling in liver cancer will provide

additional insights into the development of small-molecule or pep-

tide-based inhibitors for future therapeutic treatments.
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