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Abstract: Attention Deficit Hyperactivity Disorder (ADHD) is a brain disorder with characteristics
such as lack of concentration, excessive fidgeting, outbursts of emotions, lack of patience, difficulty in
organizing tasks, increased forgetfulness, and interrupting conversation, and it is affecting millions
of people worldwide. There is, until now, not a gold standard test using which an ADHD expert can
differentiate between an individual with ADHD and a healthy subject, making accurate diagnosis
of ADHD a challenging task. We are proposing a Knowledge Distillation-based approach to search
for discriminating features between the ADHD and healthy subjects. Learned embeddings from a
large neural network, trained on the functional connectivity features, were fed to one hidden layer
Autoencoder for reproduction of the embeddings using the same connectivity features. Finally, a
forward feature selection algorithm was used to select a combination of most discriminating features
between the ADHD and the Healthy Controls. We achieved promising classification results for each
of the five individual sites. A combined accuracy of 81% in KKI, 60% Peking, 56% in NYU, 64%
NI, and 56% OHSU and individual site wise accuracy of 72% in KKI, 60% Peking, 73% in NYU,
70% NI, and 71% OHSU were obtained using our extracted features. Our results also outperformed
state-of-the-art methods in literature which validates the efficacy of our proposed approach.

Keywords: ADHD; autoencoder; classification; connectivity; features selection; neural networks;
fMRI; rs-fMRI

1. Introduction

Brain is considered the most intricate and mysterious organ in the human body with
complexity in networks in the spatial as well the temporal domain. Brain’s functional and
physical levels consists of five major regions: Frontal, Occipital, Parietal, Subcortical, and
Temporal regions [1]. The complexity of the human brain is related to both the increasing
age and difficulty level of the computational task. Increasing age of the person and the
complicated nature of the task make it difficult for the brain to make decisions [2,3]. The
volume of data generated by the human brain is huge and this amount of data in just half
a minute is equivalent to the data generated by the Hubble telescope in its entire life [4],
which makes analysis based on human brain data a challenging task.

Attention Deficit Hyperactivity Disorder (ADHD) is a brain disorder that is character-
ized with persistent lack of attention, high impulsiveness, restlessness, and hyperactivity
with numerous environmental, neurological, and genetic factors [5–7]. The rate of ADHD
diagnosis is increasing in children and it affects 8% to 12% of the world’s child population
as indicated in the studies in [8,9]. A benchmark for the prevalence of ADHD among
children using meta-analysis based on 179 estimates of the prevalence in 175 studies is
proposed in [10]. There are both genetic- [11] and neurological-related [12] interpretations
of the cause of ADHD, specifically, genes LPHN3 and CDH13 and damage to the frontal
lobe, respectively.
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ADHD on the subjects is measured using a variety of modalities with each modality
has peculiar characteristics. These modalities include DTI (Diffusion Tensor Imaging), EEG
(Electroencephalography), fMRI (Functional Magnetic Resonance Imaging), PET (Positron
Emission Tomography), and SPECT (Single Photon Emission Computed Tomography).
Brain structural alterations were observed in proband, alterations in brain functional con-
nectivity and influence of the drug in the treatment of ADHD using the DTI modality were
discussed in the studies in [12–14]. Diagnostic psychiatry tests for ADHD were based on
four steps using the the 17 meta-studies and a meta-analysis based on randomized control
trials on the ADHD were discussed in [15,16], respectively. A triple-blinded studies on the
275 children and adolescents to integrate the biomarkers for the diagnosis of ADHD and
a deep learning-based framework for the diagnosis of ADHD were discussed in [17,18].
A convolution neural network and a comparisons of alpha powers between the 25 patients
and 22 healthy controls for the diagnosis of ADHD using the EEG modality were discussed
in [19–21], respectively. Effect of psychostimulants on the 16 youths, with modeling of
the brain using the resting state of the brain with the help of Independent Component
Analysis (ICA) and A meta-analysis of 55 studies involving 55 children and adults were
discussed in [22–24], respectively. The inter-connections and intra-connections in the brain
functional regions, effect of 40 mg methylphenidate on the 37 individuals, and effect of
L-theanine (2.5 mg) and caffeine (2.0 mg) on the patients with ADHD using fMRI modality
were studied in [25–27], respectively. PET-related studies have also shown promising
results on the ADHD subjects and the biology of this disorder [28]. A significant increase
in Dopamine Transporter (DAT) binding was observed in [29] conducted on 47 subjects
with matched control. In [30], alterations in the cortical thickness were found between
the ADHD and the healthy controls. One multimodal study [31] using PET and genetic
data on the 20 ADHD and matched healthy controls and another machine learning-based
study [32] on 16 ADHD subjects and 22 healthy controls found promising results in the
diagnosis of this disorder. SPECT-based studies were conducted in [33] to distinguish
sub-types of ADHD. A meta-analysis [34] involving 51 studies on 53 ADHD subjects found
13 promising genes for the diagnosis of ADHD using the SPECT-based image scans on
the patients. A study on ADHD and other disorders using the SPECT modality showed
alterations in some of the brain regions [35]. A genetic SPECT study [36] found a decrease
in DAT on the 20 adolescents. A use of SPECT as to how it is aiding the medical treatment
of the ADHD subject is discussed in the study [37].

fMRI studies based on functional connectivity on the ADHD are becoming, of late,
very popular due the the noninvasive nature of fMRI and interpretable regions found
from the extraction of functional connectivity matrix. In this regard, ADHD diagnosis
using personal characteristics (age, IQ, and handedness) [38] showed promising results.
Independent Component Analysis (ICA) with the combination of functional connectivity
matrix found neural network dysregulation in ADHD [39]. Fusion [40] of non-imaging
data with the imaging data also showed promising results in the study. fMRI study also
found functional connectivity alterations [41] in the right inferior frontal cortex of the
adolescents. A study using Convolution Neural Network (CNN) [42] on the multi-site
resting state fMRI data showed promising results in the classification of the ADHD .

In this study, we propose a Deep Learning-based approach for the classification of
ADHD subjects and healthy controls. Our approach is inspired from the work in [43], as a
similar distillation model is conceptualized in that problem, but the novelty of our work is
that we have used this model as a part of the bigger pipeline of feature selection. We used
knowledge distillation as a first step to find the indices of the most discriminating features
from the final feature index vector and after that to selection of the most discriminating
features subset using Sequential Forward Feature Selection (SFFS) Approach. Details of our
knowledge distillation process is as follows. First a connectivity matrix between the each
pair of region on a subject is computed using a “community matrix” which is described in
Section 3.3.2 and the lower triangular unique elements excluding the diagonal are extracted
from this matrix to be used as an “Input” in our study. In phase one, we trained a large



Biomolecules 2021, 11, 1093 3 of 18

neural network on all the input corresponding to all the subjects and extracted the trained
codes of the hidden layer, the idea was that the large neural network should be able to
understand the complex structure that existed between the Input and the output condition
of ADHD and healthy controls. In the second phase, we trained a one hidden layer-based
autoencoder on the input connectivity features and the extracted trained codes on the
subjects from the large neural work. Here, the purpose of autoencoder was to be able to
learn the underlying structure between the input connectivity features and the trained
codes. After that we extracted the weights from the input to hidden layer matrix from the
autoencoder and sorted them in descending order of magnitude. The higher the value of
the weight, the most likely that feature index correspond to most discriminating feature
vector. In the final phase, as we needed a set of most discriminating features, we used
a Sequential Forward Feature Selection (SFFS) approach to select the subset of features
that were most discriminant using various classifiers and compared our results using the
experiments that we described in the experimental subsection. In the sections to follow, we
will proceed as follows. First, we will discuss about the related research. Second, we will
discuss about the dataset and our proposed methodology. Third, we will discuss in details
about the feature selection for the classifiers. After that we will discuss the and interpret
the usefulness of he related features, selected using our approach. Last, we will conclude
our study, will discuss its limitations and future improvement to solve these issues.

2. Related Research

In this section, we have categorized and explained various studies that were conducted
on ADHD using the fMRI modality.

2.1. Structural Information Based Approaches

In [44], the authors used morphological information to classify 210 ADHD subjects
from the 226 healthy controls. They used isotropic local binary patterns on three orthogonal
planes to extract features from the high-resolution MRI scan data on the subjects resulting
in 69% accuracy. In the study [45], high-resolution 3-D scans of 55 ADHD subjects and
matched healthy controls were acquired using MRI machine. After processing them with
the FreeSurfer [46] software, 340 features such as cortical thickness, curvature, volume, etc.
were measured for each type of subjects resulting in maximum accuracy of 90.18% when
given to Extreme Learning Machine classifier. Gaussian Process Classification was applied
in [47] to the brain gray matter volumetric data including 29 ADHD and matched control
subjects resulting in overall accuracy of 79.3%. Structural as well as functional features were
used in [48,49] to classify the ADHD subjects resulting in 76% accuracy in the multi-class
setting and 92.8% accuracy in the binary class setting in the first study and 67% accuracy in
the second study. A study [50] on 508 individuals containing ADHD subjects and healthy
control using the source based morphometry of the brain scans showed alterations in
bilateral CrusI and bilateral insula between the two conditions among subjects.

2.2. Functional Connectivity Based Approaches

In [51], decreased functional connectivity was observed in dorsal anterior cingulate
cortex and regions of default mode network between the 21 ADHD patients and 21 matched
healthy controls. In study [52], 20 medication-naive ADHD children with 20 age- and
gender-matched healthy controls were investigated for the alterations in functional con-
nectivity and found delayed maturation in two functional networks. In [53], functional
connectivity alterations in the brain areas related to motor circuitry which contribute to
the functioning of motor and attention were exhibited in children. A Fully Connected
Cascade (FCC) neural network was proposed in [54] to discriminate ADHD from the
healthy controls, and directional and non-directional based connectivity features were
given to the classifier resulting in 90% accuracy. In [55], involving 20 ADHD patients and
27 healthy controls, increased connectivity in the brain Default Model Network (DMN) was
found both between and among the functional connectivity networks. In [56], from the
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data on 95 ADHD subjects and 90 healthy controls, the authors selected five subcortical
regions. Their analysis showed significant difference in resting state functional connectivity
in caudate nucleus. In [57], the authors formed two cohorts: a child cohort consisting
of 34 ADHD and 28 health controls and an adult cohort consisting of 112 ADHD and
77 healthy controls. Functional connectivity alterations were found both in the children
cohort and in the adult cohort. A multi-objective scheme using Support Vector Machine
(SVM) was used in [58] to first tackle the task of imbalanced dataset and then classifying
the ADHD subjects from the healthy controls with promising results. The dual subspace
method was observed in [59] by first making two subspaces corresponding to ADHD and
healthy control and then using them based on the energy principle to classify ADHD from
the healthy controls.

2.3. Deep Learning-Based Approaches

Deep learning is a computational model using which we learn multilevel abstraction
of the input data and learn the intricate pattern from the data by training layer wise feed
forward neural network with back-propagation algorithm [60]. Deep learning is closely
associated to machine learning which has applications in various practical domains such
as IoT, renewable energy, medicine, and agriculture [61–64]. Of late, deep learning is
being used increasingly more in the medical image analysis domain to replace handcrafted
features with automatic extracted features [65,66]. In [67], the authors discussed scenarios
where the subdomains of deep learning including computer vision, natural language
processing and reinforcement learning can be applied in the healthcare setups. A 4D-
CNN-based algorithm was proposed in [68] with data augmentation for balancing to
extract both spatial and temporal features from the ADHD subjects and healthy controls
resulting in 71.3% accuracy. DeepFMRI was proposed in [69], three networks—a feature
extractor network, a functional connectivity network, and a classification network—were
all combined into one big network to form an End-To-End approach with promising results
across three ADHD sites. In [70], a Convolution Denoising Autoencoder (CDAE) was
used to extract the discriminating features between the ADHD subjects and healthy control
and then the Adaptive boosting Decision Trees (AdaDt) was used for classification using
the extracted Features.

3. Materials and Methods
3.1. Dataset

The dataset used in this study is ADHD-200 [71], which is compiled by the Interna-
tional NeuroImaging Datasharing Initiative (INDI) consortium, consisting of eight interna-
tional imaging sites around the world. This dataset consists of 776 training and 197 testing
subjects with information on gender, age, IQ, and handedness. The dataset that we used
consists of five different sites out of total 8 sites which are Kennedy Krieger Institute (KKI),
NEUROIMAGE Sample (NI), New York University Child Study Center (NYU), Peking Uni-
versity (PEK), and Oregon Health and Science University (OHSU). The INDI consortium
has also provided the testing dataset for the six sites, for comparison with state-of-the-art
methods we have only used dataset from the five sites. Details of training and testing
dataset along with phenotypic condition is presented in Table 1.

3.2. Preprocessing of the Dataset

The ADHD-200 dataset was preprocessed with the Neuroimaging Analysis Kit (NIAK).
The steps of the preprocessing include, slice time correction, motion correction, coregis-
tration, normalization, quality control, spatial smoothing, and many others as described
in [72–74]. Moreover, each of the sites has different scanning parameters that they used for
the participants and varying inclusion, exclusion, and update criteria. For example, OHSU
site has problem in four subjects in T1-fMRI coregistration step they made adjustment with
alignment and after that updated those four subjects.
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Table 1. ADHD-200 Preprocessed Dataset.

Training Testing

Sr Imaging Site ADHD HC Total ADHD HC Total

1 KKI 18 51 69 3 8 11

2 NI 25 23 48 11 14 25

3 NYU 118 98 216 29 12 41

4 OHSU 37 42 79 6 28 34

5 Peking_1 24 61 85 24 27 51

Total 497 162

3.3. Methodology
3.3.1. Affinity Propagation

Clustering is a crucial step in forming the community matrix that we used as the
input in our proposed approach. Clustering approaches suffer from the drawback of
pre-specifying the number of clusters to be formed out of the dataset. We have used
Affinity Propagation [75] clustering message passing approach in our algorithm that does
not need pre-specification of number of clusters. An important consideration in using
Affinity Propagation is the value of preference as this value affects the number of clusters.
In our proposed approach, we set preference value from negative −10,000 to +10,000 in
increments of 100 so that the complete distribution of the preference value is taken into
consideration when calculating the community connectivity matrix.

3.3.2. Architecture of the Proposed Approach

The detailed architecture of the proposed approach is displayed in Figure 1. Our
proposed approach works by training of a large neural network to learn the representation
of the features, an autoencoder for features reconstruction and finally a feature selection
method that we explain in the following three sections.

3.3.3. Latent Representation of Dataset

We converted the subject matrix corresponding to the ADHD and Control subjects
into the feature vector that were extracted using the community matrix and trained a large
neural network based on these features on the whole dataset as displayed under the title
of “Training Neural Network” in Figure 1. The core purpose of training a relatively large
neural network was to learn the trained embeddings corresponding to the ADHD and
Control subjects that could be used in the later stage of knowledge distillation.

3.3.4. Knowledge Distillation

After learning the trained embeddings on the dataset, we used a one-layer Autoen-
coder with the output layer set to the trained embeddings and the input layer set to the
community based features. This is called the knowledge distillation phase as we want our
features get reconstructed based on the bottleneck layer so that discriminating features
could be sorted as displayed under the title of “Knowledge Distillation” in the Figure 1.

3.3.5. Sequential Forward Feature Selection

Finally, a sequential features selection algorithm, which will select the features in
stepwise increments, is used. It selected the most discriminating features corresponding
to ADHD and Control subjects as displayed under the title of “Features Selection” in the
Figure 1. The reason we want to use the sequential feature selection approach is that we do
not want to miss the discriminating features.
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Figure 1. Proposed architecture of the feature selection approach.

3.4. Algorithms

We describe now the algorithms that are used in our proposed approach.

3.4.1. Connectivity Matrix

We have used a connectivity matrix based features as the input to our model, that is
described in detail in the Algorithm 1. Here, first a clustering of the subject region wise
time series is done using the Affinity Propagation [75] which will assign the clusters to
each of the 90 regions of the subjects which we can name as a region clustered labels.
Then, a matrix of 90 × 90 regions is constructed based on the similarity of the labels of
the region clustered labels. The reason of using Affinity Propagation or message passing
algorithm is that it does not require predefined number of clusters. In this algorithm, “X”
is the input connectivity matrix, “P” is the preference value and “AffProp” is the Affinity
Propagation algorithm.

3.4.2. Community Matrix

A correlation matrix based on the Pearson correlation [76] is constructed for the
connectivity matrices; however, here we have used the community matrix as described
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in [77] instead. The details of the community matrix are also described in the Algorithm 2
where different connectivity matrix based on the change in the “preference” parameter in
the Affinity propagation is used to construct a number of connectivity matrix which are
then averaged together. The core reason for using the community matrix instead of the
correlation matrix as described in the study [77] is the sparseness of the community matrix.
Moreover, the value of the community matrix corresponding to the two brain regions
measures the probability of those two regions to be in the same cluster. Connectivity
matrices are usually constructed using the Person’s correlation coefficient and they are easy
to calculate. However, two regions which are not connected still have a value corresponding
to their correlation which makes it difficult for the classifier to ignore this value. On the
other hand, community-based connectivity matrices are calculated using the clustering
method. Therefore, two regions which are in the same cluster are more probable to be
connected. Due to clustering the community matrix based connectivity matrix is more
sparse and make it easy for classifier in learning the pattern of the latent dimension from
the data. In this algorithm “X” is the input connectivity matrix and “P” is the preference
value of the Affinity Propagation algorithm.

Algorithm 1 Connectivity Matrix
Input: XM×N , P
Output: CR×R

1: CR×R ← 0
2: YR ← A f f Prop(Xm×n, P)
3: for i = 0 to R do
4: for j = 0 to R do
5: if Yi = Yj then
6: Ci,j = 1
7: else
8: Ci,j = 0
9: end if

10: end for
11: end for

Algorithm 2 Community Matrix Features
Input: XM×N , PArray
Output: MR×R

1: MR×R ← 0
2: for i = 0 to Len(PArray) do
3: P← PArrayi
4: C ← ConnectivityMatrix(Xm×n, P)
5: M← M + C
6: end for
7: M← M/Len(PArray)
8: M← LOWERTRIA(M)

3.4.3. Ranking of Features

The details of features ranking are explained in Algorithm 3, where the first community
matrix features are fed to a large neural network and the learned codes extracted from
the large neural network are fed to a one layer Autoencoder, and finally a ranking of
the features is obtained using a simple Argsort method. In this algorithm ‘X’ is input
connectivity matrix, ‘PArray’ is the list of preference values, and ‘LOWERTRIA’ is the lower
triangular elements of the square matrix.
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Algorithm 3 Features Ranking Algorithm
Input: FM×N
Output: IN×1

1: CODESM×N ← TrainingNeuralNetwork(FM×N)
2: WM×D ← KnowledgeDistill(FM×N , CODESM×N)
3: SCORES← Diag(W.WT)
4: I ← ARGSORT(SCORES)

3.4.4. Features Subset Selection

ADHD is a disease in which not just one region but a subset of regions are involved,
as described in the “Introduction” section. Therefore, after ranking the features we need
to find a subset of the most discriminating features between ADHD and Controls which
is explained in Algorithm 4, where a stepwise forward feature ranking algorithm is used
to extract the most discriminating subset of features which could apart Healthy controls
from the ADHD. In this Algorithm, ‘X’ is input connectivity matrix, ‘I’ is the indexed of the
features, CLF’ is a classifier, and ‘ACCURACY’ is 10-fold accuracy.

Algorithm 4 Sequential Feature Selection
Input: XM×N , IN×1,CLF
Output: F

1: f eaturesBox ← Empty
2: accList← Empty
3: for i = 0 to Len(I) do
4: f eatures← I[0 to i]
5: DataMatrix ← X[ f eatures]
6: ACC ← ACCURACY(CLF[DataMatrix])

f eaturesBox.append( f eatures)
accList.append(ACC)

7: end for
8: maxIndex ← ArgMax(accList)
9: F ← f eaturexBox[maxIndex]

3.5. Experimental Settings

A challenging area in training a Neural Network is the setting the values of various
hyperparameters of the model. In this study, we used two types of neural network for
training and Knowledge Distillation. For learning a latent representation of all the data
we used a 13 layer Neural Network model with the input layer set to 4005 connectivity
features units and the output layer set to 1 ‘sigmoid’ units corresponding to the ADHD
disease presence or absence. The hidden layers of this model were set to 3000, 2500, 2000,
1500, 1000, 500, 100, 50, 10, 5, and 2 units, respectively. A dropout of 0.3 in the initial
3 hidden layers and then 0.2 and 0.1 were used in the later layers. We used ‘tanh’ activation
function so that negative values are not clipped away, a batch size of 16, an epoch size of
1000, and optimizer ‘adadelta’ with a learning rate of 0.01 was used for training this large
neural network. The combinations of these hyperparameters were used after observing
too many oscillations in loss and slow convergence, which are typical in training neural
networks. After training, these neural networks codes were extracted from layer 10 of
this network and then an Autoencoder with 4005 connectivity units, a hidden layer of
100 units, and the output layer of the trained 10 codes were used for the training with the
same hyperparameters settings as in the Neural Network with the exception of optimizers
which was set to ‘mse’ as this time task was not classifications but of reconstruction. Note
that extraction of codes from a specific layer is a challenging task, as layers with too
many parameters or with too few parameters do not produce good reconstruction results.
Another justification for selecting the layer from the later layers of the trained neural
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network is that the final layers of the neural network capture a more abstract representation
of the input data in the latent dimension.

4. Features Selection

The proposed feature selection philosophy using various classifiers is explained in the
Figure 2 where the x-axis represents the number of features(4005) and the y-axis represents
the 10-fold accuracy. We have employed various classifiers to check the validity of our
feature selection approach so that the robustness of our feature selection approach be
emphasized. It can be observed using Figure 2. Initially, the accuracy is low because of the
lesser number of features then the accuracy increases for the classifiers until it reached the
maximum level and from there it again starts to decrease. In the following three sections
we will explain the reasons for having such a phenomena in the case for all the classifiers.

Figure 2. Feature selection approach.

4.1. Low Number of Features

A low features set represents the case of underfitting which is a common problem in
all those statistical models where the complex phenomena is to be modeled on the given
data containing large number of features. In the under-fitting scenario the model is too
simple to represent the complex relationship that exists in the problem under hand. As
can be seen in Table 2, as the number of features or features set size increases, so does
the accuracy of the classifiers; this validates the phenomena of underfitting or bias of the
machine learning models. This increasing accuracy corresponding to features set size in all
the classifiers thereby ascertaining our assertion of the presence in bias in the model.

4.2. Large Number of Features

Similarly, having a higher number of features set represents the typical overfitting
scenario, that is, when the model becomes too complex that it cannot correctly predict
the result for unseen data. It can be seen from Table 3 that there exists an inverse relation
between the number of features and the accuracy of the classifier. Therefore, for all the
classifiers, as the set of top features set increases , the accuracy of the classifiers decreases.
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This phenomena validates our assertion of overfitting or high variance that becomes
prevalent in case of selection of high number of features.

Table 2. Accuracy comparison of low number of features.

Top Features SVM LDC DTC DTC

1 0.49 0.5 0.49 0.49

5 0.53 0.55 0.51 0.53

10 0.54 0.56 0.52 0.54

15 0.55 0.56 0.53 0.56

20 0.55 0.57 0.54 0.56

Table 3. Accuracy Comparison of High Number of Features.

Top Features SVM LDC DTC DTC

100 0.55 0.53 0.54 0.53

500 0.55 0.52 0.55 0.53

1000 0.54 0.52 0.52 0.52

1500 0.52 0.51 0.48 0.45

3000 0.3 0.2 0.4 0.3

4.3. Selected Features

After adjusting the cases of underfitting and overfitting as described in the previous
two subsections we selected the features that resulted in the highest accuracy for the
classifiers. The selected features corresponding to the classifiers are tabulated in Table 4 .

Table 4. Selection of the Features.

Classifier Selected Features

SVM 22

LDC 43

DTC 589

RFC 64

4.4. Support Vector Machine Features

As can be observed in Figure 3, those features corresponding to the SVM classifiers
are the smallest and those corresponding to the decision tree classifiers are the largest.

Our dataset, as described in Table 1, is imbalanced, that is, there exists unequal
cases of ADHD class as compared to HC subjects. SVM has been extensively studied in
the literature under the scenario of imbalanced data and there exist optimized decision
threshold [78] methods and kernel scaling [79] techniques that can make SVM perform
well in the imbalanced cases. Therefore, based on these observations we selected SVM
features, as these features are common in all the classifiers and they validate the robustness
of this small number of features. Henceforth, in the following sections we will compare
results based on the selected SVM features and discuss the significance of these selected
features from the anatomical point of view also in the later section.



Biomolecules 2021, 11, 1093 11 of 18

Figure 3. Intersection of features corresponding to classifiers.

5. Results

Our proposed feature selection approach has produced promising results when com-
pared with the state-of-the-art methods available in the literature. In the following two
experiments, we will describe our results based on the two scenarios that are used in
literature for the ADHD classification problem.

5.1. Training Using Combining Sites

In the first experiment, we trained our model using all the training dataset available in
the ADHD-200. The training dataset corresponding to all five sites in Table 1 was combined,
and then for testing, the trained model the testing dataset corresponding to each site in
Table 1 was used . It can be seen in the Table 5 that our model performed well on all
the sites and it was able to perform well when compared to the state-of-the-art methods.
Moreover, the accuracy on the remaining two sites for which the comparison accuracy was
not available was also very promising.

Table 5. Accuracy(%) comparison of trained model using combined and individual sites.

Trained on Each Site Trained on Combined Sites

Sr Site Proposed DeepFMRI (2020) [69] Proposed DeepFMRI (2020) [69]

1 NYU 73 73.1 56 65.8

2 NI 70 67.9 64 60

3 Peking 60 62.7 60 43.1

4 OHSU 71 - 56 -

5 KKI 72 - 81 -

5.2. Testing on Benchmark Datasets

In the second experiment, we trained the model on the training dataset for each site
presented in Table 1 and tested the accuracy of our model on the benchmark testing dataset
that is presented in the Table 1. Our accuracy results are promising in all the sites as
can been seen in Table 6 and robustness of our features can be validated based on the
observations that for other model where the accuracy was highest in one site and lower
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in other, our model still consistently performed better in all scenarios. The accuracy of
SC-CNN-ATT [42] is high in the site NYU but low in the sites NI and Peking. Similarly for
the work in [80], the accuracy is very high in the site NYU but low in the other two sites.
A repeatable observation can be seen in all other methods presented in Table 6.

Table 6. Comparison of proposed method with state-of-the-art techniques.

Method NYU NI Peking OHSU KKI

Proposed 73.3 70 73.3 71 60

DeepFMRI (2020) [69] 73.1 67.9 62.7 - -

SC-CNN-ATT (2020) [42] 77.7 75.3 60.4 - 65.2

FCNet (2018) [40] 67.4 72.9 25.4 - 85.3

Nunez et al. (2015) [81] - - 56 - 58

AJHao et al. (2015) [82] 64.7 - 66.3 - 59

Dey et al. (2014) [80] 81 - 56 - 58

ADHD-200 (2012) [38] - 56.9 35.1 - 51

6. Discussion

Graph theory [83] is often used in the analysis of various brain disorders using
connectivity features. BrainNetViewer [84] is a tool that is employed to visualize the
connectivity between the hemispheres as well as the intra-hemispheric regions of the
brain. For the BrainNet tool, we need nodes and edges so that they can be visualized.
As we used the brain AAL 90 regions atlas, we know out of 4005 features or connectivity
regions which pair of regions are connected based on the selected features. Next, the
regions that are connected are mapped to the nodes and their existence in the 4005 look-up
corresponds to the edge between those two edges. There exists an altered connectivity
pattern between the inter-hemispherical and intra-hemispherical connectivity in the two
hemispherical regions of the ADHD disorder as can be seen in Figure 4. It can be seen that
there is an uneven connectivity pattern in the inter-hemispherical and intra-hemispherical
connectivity patterns. Our results are in agreement with the altered connectivity patterns
found in [85–88].

Figure 4. BrainNet visualizations of hemispherical connectivity.
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After observing the connectivity patterns between the hemispherical regions of the
brain, we also plotted the connectivity pattern between the six important regions in Figure 5.
It can be seen from this connectogram that there are connectivity pattern variations in the
brain regions. Moreover, the interconnectivity between the brain regions is also altered in
ADHD, which conforms to the previous studies in [40,59,69,89,90].

Figure 5. Connectogram for the six regions of the brain.

7. Conclusions

We have proposed a feature selection approach in this study on the preprocessed
fMRI Dataset on the ADHD brain disorder. Our approach has generated the features that
produced the most discriminating and interpretable features when compared with the state-
of-the-art methods available in the literature. We have reinforced the idea of functional
connectivity in this study, and as per our extensive literature review, this is the first such
study where functional connectivity was computed with the help of a community matrix
approach and then used in our feature selection pipeline. Our functional connectivity
matrix is more sparse and contains less noise that we then used in the knowledge distillation
pipeline with the sequential feature selection approach.

7.1. Applications

The feature selection technique derived from our knowledge distillation is pretty
fast and implementable in all scenarios ranging from slow machines to a comparatively
fast machines. There is no bottleneck of high-performance system requirements for our
methodology to work, as in the case of other deep learning-based approach. As the dataset
corresponding to each site is not big enough for practical purposes, we suggest that our
technique should be validated on the large dataset on ADHD so that the robustness and
usefulness of the knowledge distillation-based approach could be validated and suggested
in practical scenarios .
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7.2. Future Directions

Of late, End-to-End pipelines are getting more and more attention from the research
community in the deep learning paradigm. Therefore, keeping this in view, we believe that
an End-To-End deep learning model on ADHD disease based on our proposed approach
is an interesting direction to consider. It is no doubt challenging to combine such a
heterogeneous pipeline to a one unified model, but we believe that it will open up more
opportunities for researchers in knowledge distillation- based approaches working in
other domains.

7.3. Limitations

We have achieved good accuracy based on our feature selection approaches and our
results outperform the best methods available in literature, but still there are two key areas
that we need to consider and made progress before this technique could be adapted in
studies. First, we believe that the size of the ADHD-200 Dataset is a big issue in training
such classification models on ADHD disease. Particularly the availability of data on the
sites KKI and NI is far too sparse when compared with the NYU site. Second, the ADHD-
200 Dataset is also imbalanced and this can be seen from the data available on the sites
KKI and Peking. Based on the above two key issues on the dataset, we are well aware that
machine learning models are not well suited in those two cases and lead to biased results
in favor of the high number sites which distorts the applicability of the machine leaning
models in cases where the Dataset is low in examples.
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