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Malignant digestive tract tumors are a great threat to human public health. In addition to
surgery, immunotherapy brings hope for the treatment of these tumors. Tissue-resident
memory CD8+ T (Trm) cells are a focus of tumor immunology research and treatment due
to their powerful cytotoxic effects, ability to directly kill epithelial-derived tumor cells, and
overall impact on maintaining mucosal homeostasis and antitumor function in the
digestive tract. They are a group of noncirculating immune cells expressing adhesion
and migration molecules such as CD69, CD103, and CD49a that primarily reside on the
barrier epithelium of nonlymphoid organs and respond rapidly to both viral and bacterial
infection and tumorigenesis. This review highlights new research exploring the role of
CD8+ Trm cells in a variety of digestive tract malignant tumors, including esophageal
cancer, gastric cancer, colorectal cancer, and hepatocellular carcinoma. A summary of
CD8+ Trm cell phenotypes and characteristics, tissue distribution, and antitumor functions
in different tumor environments is provided, illustrating how these cells may be used in
immunotherapies against digestive tract tumors.
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INTRODUCTION

Malignant digestive tract tumors are a great threat to human public health. According to 2020 global
cancer statistics, digestive tract tumors such as esophageal cancer (EC), gastric cancer (GC), colorectal
cancer (CRC), and hepatocellular carcinoma (HCC) rank in the top 10 in cancer incidence and
mortality and account for 23.4% of all new cases and 36.7% of deaths (1). The gastrointestinal mucosa
is prone to inflammatory lesions and tumors resulting from long-term stimulation by physical and
chemical factors and microorganisms (2). When tumors occur, although innate immune cells, as the
vanguard, can induce rapid effector responses, powerful adaptive immunity involving various subsets
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of T cells, which is then triggered, is the main force to exert
antitumor roles (3). As an important member of memory T cells,
the tissue-resident memory T (Trm) subset is a group of
noncirculating immune cells that reside in peripheral tissues and
mediate tumor defense through cytokine secretion in humans and
rodents (4–6). Trm cells include CD8+ Trm cells, CD4+ Trm cells,
regulatory Trm cells, natural killer Trm cells, and gd Trm cells, in
which CD8+ Trm cells are extensively studied in antitumor
research due to their powerful cytotoxic activity. CD8+ Trm cells
mainly reside on the barrier epithelium of nonlymphoid organs
and respond rapidly to both viral and bacterial infection and
tumorigenesis. In human digestive tract mucosa, CD8+ Trm cells
play a key role in anti-infection and antitumor immunity because
they elicit a rapid immune response after antigen stimulation (7) .

Thus, CD8+ Trm cells play an important role in maintaining
homeostasis and resisting tumorigenesis within the digestive
tract mucosa. By recognizing homologous antigens, CD8+ Trm
cells in the tumor microenvironment (TME) can rapidly secrete
cytokines to activate innate immune cells and enhance the
expression of chemokines and adhesion receptors, which in
turn recruit circulating immune cells needed to exert essential
antitumor functions. CD8+ Trm cell infiltration is associated
with improved prognosis in common digestive tract tumors,
such as EC, GC, CRC, and HCC (8–11).

Many treatments for malignant digestive tract tumors have
shifted from traditional chemotherapy to a combination of
chemotherapy and immunotherapy. In the TME of most
digestive tract cancers, CD8+ Trm cells usually show an
exhausted phenotype with the expression of inhibitory immune
checkpoints such as programmed cell death protein-1 (PD-1) and
T cell immunoglobulin and ITIM domain (TIGIT) (12–14).
Although immune checkpoint inhibitors are widely used in the
treatment of digestive tract tumors, there is still a high incidence of
immune-related adverse events, and many patients do not
respond well to immune checkpoint inhibitors due to the
absence of prognostic markers, resulting in poor therapeutic
outcomes (15–17). Therefore, adequate understanding of how
variations in CD8+ Trm cells in the TME affect digestive tract
tumor pathogenesis is of great practical significance for clinical
treatment. However, until now, the roles of CD8+ Trm cells in
digestive tract tumors have not been comprehensively described.

Herein, we review recent progress in understanding of the
tissue distributions, biological characteristics and antitumor
mechanisms of CD8+Trm cells in EC, GC, HCC and CRC to
provide directions for combined precision targeted therapy
strategies and prognosis prediction.
BIOLOGICAL CHARACTERISTICS OF
CD8+ TRM CELLS

The Origin and Maintenance of CD8+

Trm Cells
Trm cells are differentiated from naive T cells (18). The
predominant phenotypes of CD8+Trm cells express CD69,
CD103, and CD49a (19–21), but do not express lymphoid
Frontiers in Oncology | www.frontiersin.org 2
homing molecules CCR7 and CD62 L and cannot be recycled
(22–24). For tumor immunity, cross-priming by type 1 classical
dendritic cell (cDC1) subsets, whose development and/or function
depends on basic leucine zipper ATF-like transcription factor 3
(Batf3) transcription, is necessary for optimal generation of Trm
cells (25–27). Indeed, Batf3-lineage DCs migrate to the draining
lymph node to mediate T cell cross-priming, while another subset
remains in the tumor site to produce CXCR3 ligands CXCL9 and
CXCL10 (CXCL11 in humans) used to recruit CD8+ effector T cells
back to the target tissue (27). After cross-priming by Batf3-driven
DCs, naive T cells and central memory T (Tcm) cells can
differentiate into precursor Trm (pTrm) cells that enter the blood
and circulate into targeted tissues. CD69 is upregulated on pTrm
cells after exposure to IFN-a released by macrophages. After
reaching the upper cortex, pTrm cells express CD103 and further
differentiate in response to TGF-b. Kruppel-like factor 2 (KLF2) is
a transcription factor encoding sphingosine-1 phosphate receptor 1
(S1PR1) and CD62 L, two molecules critical for naive T cell
recirculation (28). Competition of CD69 and S1PR1 enables T
lymphocytes to reside in peripheral tissue and differentiate into
Trm cells. At the same time, T cells entering the epithelial tissue
upregulate CD103 and downregulate the transcription factor KLF2
in response to TGF-b, promoting the residence of CD8+ T cells
(29). TNF-a and type I interferon can upregulate the expression of
CD69 on the surface of CD8+ Trm cells (24). In CD103-Trm cells,
the memory lymphocyte cluster (MLC) can also provide signals to
maintain CD103-Trm residence (23, 24) (Figure 1).

Although CD69 expression is upregulated in the early stage of
Trm cell development, it cannot be used as a reliable marker of
tissue residence because it is also expressed on other immune
cells, and T cells expressing CD69 are still able to enter the
circulation (30). CD103, also known as a E-integrin and human
mucosal lymphocyte antigen, is an integrin expressed on
intraepithelial T cells and some peripheral regulatory T cells.
By binding to its ligand E-cadherin, CD103 can make antigen-
specific T lymphocytes reside in epithelial tissue and is thus
considered a reliable marker for Trm cells (23). CD49a, also
known as very late antigen-1 (VLA-1), is a member of the
integrin family. By binding to collagenase type IV, CD49a can
prompt cells to be retained and survive in tissues (31).
Furthermore, the maintenance of Trm cells in tissues is
dependent on cytokines such as TNF-a, IL-15, TGF-b, and IL-
33, while migration and retention are impacted by chemokines
such as C-X-C motif chemokine receptor 6 (CXCR6), CCR10,
and CXC chemokine ligand 17 (CXCL17) (30).
The Role of CD8+ Trm Cells in the
Antitumor Immune Response
Tumor-infiltrating CD8+ T cells are effector T cells that can
directly recognize and kill target cells, serving as the immune
system’s frontline force against tumors. CD8+ T lymphocytes are
represented by cytotoxic T lymphocyte (Tc1) subsets, which have
antitumor and anti-infection functions by producing high levels
of perforin, granzyme B, IFN-g, and TNF-a (32). Of the immune
cells that infiltrate the TME, the infiltration of CD8+ T
lymphocytes, especially Tc1 subsets, is usually associated with a
January 2022 | Volume 11 | Article 819505
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more favorable prognosis (33). The antitumor function of CD8+

T cells depends on both differentiation and transport into the
TME (34). In the TME of solid tumors, factors such as abnormal
chemokine secretion and tumor angiogenesis can hinder the
transport and function of CD8+ T lymphocytes (35). When this
occurs, CD8+ Trm cells play an extremely important role in the
antitumor process (36). Among the various subsets of Trm cells,
CD8+ Trm cells are considered the first line of defense for
peripheral tissues to inhibit early exposed antigens and have
thus received considerable attention. The response of CD8+ Trm
cells to re-exposed homologous antigens in the barrier tissue is
faster than the response of circulating memory T cells (37, 38),
primarily as a result of the critical locations in which they reside.
These regions are the most common sites exposed to pathogens
such as bacteria and viruses and where epithelial cancers
originate. When activated, CD8+ Trm cells can quickly release
perforin and granzyme B to directly kill target cells (6, 39) and
amplify the activation of a small number of cells into an organ-
wide response (40). While Trm cells may have phenotypic
heterogeneity based on their location in the epithelia or stroma
and the tumor subtype, these cells can promote recruitment of T
lymphocytes into the epithelial TME and enhance the early signal
transduction of CD8+ T lymphocytes within tumors (41).
Frontiers in Oncology | www.frontiersin.org 3
During tumorigenesis, CD69+CD8+/CD103+CD8+/CD49a+CD8+

T lymphocytes are highly activated, showing better effector
function than traditional CD8+ T cells, and are able to control
tumor growth (42).

When persistently exposed to tumor antigens, upregulation of
inhibitory receptors such as PD-1, cytotoxic T lymphocyte
associated antigen-4 (CTLA-4), TIGIT, T cell immunoglobulin-
and mucin-domain-containing molecule-3 (TIM3), and
lymphocyte activation gene-3 (LAG3) can lead to impaired
killing function and exhaustion of CD8+ T cells (43, 44). For
example, as esophageal squamous cell carcinoma (ESCC)
progresses, changes in the TME are accompanied by an increase
in immunosuppressive cells such as regulatory T (Treg) cells,
myeloid-derived suppressor cells (MDSCs), and immuno-
suppressive DCs, as well as soluble inhibitory molecules such as
indole-2,3 dioxygenase (IDO) (45) and fibroblast growth factor 2
(FGF2) (46), resulting in reduced infiltration and functional
inhibition of CD8+ T cells (47). In recent years, it has been
shown that tissue-resident T lymphocytes can overexpress PD-1
and other immune checkpoint molecules, such as TIGIT, LAG-3,
and Tim-3, in some experimental animal and human tumor
tissues (36, 48). There are two possibilities for this phenomenon:
1) tumor infiltrating CD8+ T lymphocytes express a variety of
FIGURE 1 | The origin and phenotypes of CD8+ Trm cells in human digestive tract tumors. In the draining lymph node, naive CD8+ T cells can differentiate into
precursor Trm (pTrm) cells after cross-priming by Batf3-driven DCs and then enter the blood and circulate into the target tissue. By producing the CXCR3 ligands
CXCL9 and CXCL10 (CXCL11 in humans), another subset of DCs remaining in the tumor site recruits pTrm cells into the tumor microenvironment. CD69 is
upregulated on pTrm cells after exposure to TNF-a and IFN-a. After reaching the upper cortex, pTrm cells express CD103 and further differentiate in response to
TGF-b. In addition to expressing CD69 and CD103, mature CD8+ Trm cells also express the adhesion molecule CD49a, thus possessing resident properties.
January 2022 | Volume 11 | Article 819505
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integrins, including CD49a, and remain in the TME in a
quiescent/exhausted state, or 2) CD8+ T cells in the TME
upregulate the expression of multiple integrins after exhaustion
through an undetermined mechanism (Figure 2).

The following sections define the characteristics of CD8+Trm
cells along with current research evaluating a role for CD8+Trm
cells in antitumor therapy for four common digestive tract
cancers, EC, GC, CRC, and HCC (Table 1).
CHARACTERISTICS OF CD8+ TRM
CELLS AND THEIR POTENTIAL USE
IN THE TREATMENT OF DIGESTIVE
TRACT CANCERS

CD8+ Trm Cells in EC
In 2020, EC ranked seventh in new cases and sixth among
cancer-related deaths, with one in 18 deaths caused by EC (1).
Frontiers in Oncology | www.frontiersin.org 4
ESCC, which primarily occurs in Asian countries, accounts for
about 90% of all pathological types of EC (63). Since it is directly
exposed to foreign antigens in food, the esophageal mucosa has a
special immune cell composition that plays an important role in
maintaining esophageal homeostasis and mucosal anti-infective
and antitumour processes. Strong expression of CD45RO, CD8,
CD3, and CD107a in EC tissues indicates that there are cytotoxic
memory CD8+ T cells in the stroma of these tumors (64).
Although CD103+CD8+ T cells express PD-1 and TIM-3 in
ESCC, they are relatively active cell subsets (12). Cells with the
Trm phenotype have higher proliferation ability and express
cytotoxicity-related molecules, indicating that there are highly
activated antitumor subsets in CD8+ tumor infiltrating
lymphocytes (TILs) in the TME.

The role of CD8+ Trm cells in EC is not well understood.
Alterations in CD8+ Trm cell phenotypes and biological
functions and the significance of these cells to EC prognosis
and diagnosis remain obscure. Indeed, we have focused on the
role of tissue-resident CD8+ T cells in EC for many years and
FIGURE 2 | The antitumor effects of CD8+ Trm cells in the TME of human solid tumors. In the process of tumorigenesis, CD8+ Trm cells could be highly activated
and show a higher effector function than traditional CD8+ T cells, releasing perforin and granzyme B and killing cancer cells. However, when persistently exposed to
tumor antigens and immunosuppressive factors, the upregulation of inhibitory receptors such as PD-1, CTLA-4, TIGIT, TIM3 and LAG3 leads to impaired killing
function and exhaustion of CD8+ Trm cells, making them unable to control tumor growth.
January 2022 | Volume 11 | Article 819505

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Mei et al. CD8+Trm Cells in Gastrointestinal Tumors
found that CD49a, PD-1, and TIGIT molecules are highly
expressed on CD8+ T cells in the TME of ESCC patients,
indicating that there is also a population of tissue-resident
CD8+ T cells with high expression of CD49a that shows the
immune exhaustion phenotype in the ESCC TME. Multiple
components of the ESCC TME can lead to immune exhaustion
of CD103+CD8+ TILs, which can be repaired by aPD-1 blockers.

Clinical studies show that CD103+ CD8+ TILs are linked to
the overall survival of ESCC patients (12). Thus, CD103 may be a
suitable marker to evaluate the antitumor immune response of
CD8+ T cells in ESCC, and infiltration of CD103+CD8+ TILs in
the TME may be used as a biomarker to predict better prognosis
in esophageal carcinoma (8, 12). It is worth noting that
understanding the phenotype and function of CD8+ Trm cells
in the occurrence and development of ESCC and exploring how
best to reverse immune exhaustion and restore the antitumor
function of CD8+Trm cells is an urgent issue that must be
addressed by ESCC immunotherapeutic research. Establishing
effective immune intervention strategies that target inhibitory
molecules and reverse immune exhaustion will improve
precision clinical immunotherapy for ESCC.

CD8+ Trm Cells in GC
GC is one of the most common cancers in the world. In 2020,
this disease ranked fifth in morbidity, with more than one
million new cases, and fourth in mortality, with an estimated
769,000 deaths (1). Helicobacter pylori infection is a major risk
factor for the development of chronic gastritis to GC (65, 66), but
the exact role of inflammatory components in disease
progression remains unclear. Two types of gastric metaplasia,
intestinal metaplasia and spasmodic cleavage peptide expression
metaplasia (SPEM), are precancerous lesions of human gastric
adenocarcinoma (51). The accumulation of CD8+ Trm cells in
the gastric mucosa involves the regulation of absent in melanoma
2 (Aim2), one of the key components of the inflammasome.
Previous studies show that the lack of Aim2 can promote the
Frontiers in Oncology | www.frontiersin.org 5
accumulation of CD8+ Trm cells in chronic inflammatory gastric
mucosa by preventing CD62 L and S1PR1 function (67). While
the high levels of IFN-g produced by gastric CD8+ Trm cells can
induce SPEM (68), these cells have antitumor cytotoxicity when
a tumor occurs (67).

CD103+CD8+ Trm cells in GC have similar phenotypes to
those in other nonlymphoid tissues, including downregulation of
lymph node homing-related molecules such as CD62 L, CCR7,
and T cell factor 1 (TCF-1) and upregulation of tissue
inhabitation promoting molecules such as CD69, CD49a, and
Runt-related transcription factor 3 (RUNX3) (20, 31, 50, 52, 69,
70). Approximately 30% of TILs in GC are CD69+CD103+ Trm
cells, which highly express the inhibitory receptors PD-1, TIGIT,
and CD39 (53). However, CD103+CD8+ T cells can produce high
levels of cytolytic enzymes and IFN-g in the presence of a wide
variety of inhibitory receptors (9). Moreover, PD-1 blockade
effectively restored the function of CD103+CD8+ T cells but not
CD103-CD8+ T cells. Thus, CD103+CD8+ Trm cells represent
highly activated T cell subsets in GC and play an important role
in inhibiting tumors (9).

Trm cell metabolism in GC tissues does not utilize glucose but
relies on fatty acid oxidation to maintain cell survival, such that
loss of fatty acids results in Trm cell death. GC cells outperform
Trm cells at lipid uptake and may induce Trm cell death.
Targeting PD-L1 can promote the survival of Trm cells by
reducing the expression of fatty acid binding protein (Fabp)4
and Fabp5 in gastric tumor cells, increasing the expression of
Fabp4/5 in Trm cells, and promoting lipid uptake by Trm cells
(53). Thus, metabolic reprogramming may be an effective way to
prolong the life span of GC Trm cells and enhance antitumor
immunity, including CD8+ Trm cell survival. In addition, B cells
in the tumor can form cell masses known as tertiary lymphoid
structures (TLSs), which can induce immune cells to effectively
recognize and attack cancer cells. In the gastric TME, TLSs are
positively correlated with tumor-infiltrating CD8+Trm cells.
Studies have indicated that Trm cells may be related to the
TABLE 1 | Characteristics of CD8+Trm cells in human digestive tract tumors.

Tumor
types

Phenotypes Inhibitory
receptors

Cytotoxicity Characteristics Cytokines References

EC CD69
CD103

PD-1
TIGIT
TIM-3

+ In addition to expressing inhibitory receptors, CD8+Trm cells in the EC have high
proliferation ability and high cytotoxicity-related molecule expression.

IFN-g
IL-2
CD107a

(13, 49)

GC CD69
CD49a
CD103
RUNX3

PD-1
TIGIT
CD39

+ CD8+Trm cells in the GC can induce SPEM by producing high levels of IFN-g,
produce high levels of cytolytic enzyme and IFN-g in the presence of a large amount
of various inhibitory receptors, and are related to the formation of TLS.

IFN-g
Granzyme B
Perforin
CD107a
IL-2
TNF-a

(10, 21, 28,
50–53)

CRC CD69
CD103

PD-1
CD39

+ CD8+Trm cells in the CRC have significant resident properties and tumor reactivity.
With a unique methylome pattern and distinct epigenetic properties, they can
enhance tissue immunity, improve barrier function, and prevent microbiota-
associated diseases.

IFN-g
Granzyme B
Perforin

(11, 54–59)

HCC CD69
CD49a
CD103
CD49b
CD11c

PD-1
TIM-3
LAG-3
CTLA-4
CD244
CD39

+ As a unique population with low cytotoxicity, hepatic CD8+Trm cells provide long-
term protection for human papillomavirus-like virus HPV-induced HCC.

Granzyme B
Granzyme K
Perforin
Granulysin

(60–62)
January 2022 |
 Volume 11 | A
rticle 819505

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Mei et al. CD8+Trm Cells in Gastrointestinal Tumors
formation of TLSs, and both may improve the outcomes of
targeted therapy for PD-1 inhibitors in GC (71–73).

CD8+Trm Cells in CRC
CRC ranks third in the world in incidence and second in
mortality (1). As the organ with the largest interface with its
environment, the gut is exposed to billions of antigens every day.
The immune system needs to ensure tolerance to non-dangerous
antigens and establish a strong immune response against
potentially dangerous antigens (74). Immune cells are unevenly
distributed in the gut. While CD8+ T cells (especially CD8+ Trm
cells), monocytes, and CD19+ B cells are concentrated in the
proximal colon, gd T cells and NK cells are more abundant in the
transverse colon, and CD4+ T cells and antibody-secreting cells
are enriched in the distal colon and rectum (54). CD8+ T cells in
the human intestinal tract are mainly Trm cells, which have
CD103 and CD69 phenotypes and provide the first response to
infection and tumors on the mucosal surface. TGF-b plays
different roles in the formation and maintenance of Trm cells
in the intestine. During secondary lymphoid organogenesis,
TGF-b inhibits the migration of effector CD8+ T cells to the
intestine, while during maintenance, TGF-b promotes the
residence of CD8+ T cells (55). The regulatory function of Trm
cells in the intestinal tract may be involved in intestinal
homeostasis. It has been reported that promoting Trm and
dendritic cell interactions can enhance tissue immunity,
improve barrier function, and prevent microbiota-associated
diseases (56). Due to the distinctiveness of the intestinal tract,
CD8+ Trm cells have phenotypic and functional heterogeneity in
response to infection and cancer, from pluripotent to
differentiated, and show preferential protection at sites of
imminent exposure to pathogens or persistent disease (75). In
CRC, CD103 and CD69 are associated with immune recognition
of Trm cells (57–59). CD103+CD39+CD8+ T cells have
significant resident properties and tumor reactivity (10), with a
unique methylome pattern in which the tumor reactivity markers
CD39 and CD103 are specifically demethylated. This process
provides these cells with distinct epigenetic properties (76).

CRC can be divided into microsatellite stable CRC (MSS) and
high microsatellite unstable CRC (MSI-H). While tumor-
infiltrating lymphocytes are abundant in MSI-H, which make
up approximately 15% of CRCs, MSS CRC lacks tumor-
infiltrating lymphocytes and is thus associated with a less
favorable prognosis (77, 78). CD8+ Trm cell numbers were
much higher in MSI-H than in MSS. Other studies show that
deletion of the IL-15 gene, which is essential to maintaining
intestinal Trm cells (79), is associated with poor prognosis,
indicating that CD8+Trm cells play an important antitumor
role in CRC. However, in MSI-H CRC, the expression of PD1
tended to increase in CD8+Trm cells, indicating that checkpoint
inhibition therapy targeting Trm cells in MSI-H CRC may be of
great significance (79).

CD8+ Trm Cells in HCC
In 2020, primary HCC was the sixth most frequently diagnosed
cancer, with more than 900,000 new cases, and the third leading
cause of cancer mortality, with 830,000 deaths (1). This
Frontiers in Oncology | www.frontiersin.org 6
malignant tumor usually occurs in chronic inflammatory liver
disease, such as fibrosis or cirrhosis, and is associated with
certain risk factors, including hepatitis B virus (HBV), hepatitis
C virus (HCV), alcohol abuse, and metabolic diseases (80, 81).
Increased infiltration of cytotoxic T, NK, and NKT cells in the
liver plays an active antitumor role in primary HCC. To avoid
unnecessary activation of innate immune cells during continuous
exposure to food and microbial-derived antigens, the liver needs
to maintain a relatively immunotolerant environment. When
immunogenic stimulation occurs, liver CD103+ dendritic cells
express high levels of MHC-II, CD80 and CD86, which result in
massive activation of CD8+ T cells (82). For example, HBV
induces IFNg+CD8+ T cells to upregulate CD69 and CD103 and
induces liver CD8+ T cells to show the Trm phenotype in situ
(83). The presence of T cells and cytotoxic cells in TILs correlates
with a favorable prognosis of patients with HCC. More than 50%
of these tumor-infiltrating lymphocytes express CD69 (84), and
about 20-30% are positive for CD103, thus showing resident
characteristics. However, unlike other tumors, only about 5% of
human hepatic CD69+CD8+ T cells express CD103 (85). Recent
studies have shown that hepatic CD8+ Trm cells adhere to the
liver via LFA-1, and the residence of CD8+ T cells in the hepatic
sinusoid depends on the LFA-1-I/CAM-1 interaction (86).
However , chronic tumor ant igen st imula t ion and
immunosuppressive cells and their production in the TME can
put Trm cells into a “dysfunctional state”. Targeting immune
checkpoint molecules such as PD-1, TIM-3, LAG-3, and CTLA-4
can restore the dysfunction of Trm cells (87). However, hepatic
CD8+ Trm cells are a unique population with low cytotoxicity
(60), which may be related to the immunotolerant ecological
properties of the liver. Thus, anti-PD-L1 or anti-PD-1 alone may
not restore this dysfunction, and other agents, such as IL-2, may
have a synergistic effect in improving the antitumor immunity
of CD8+ Trm cells in HCC (87). In addition, the development
and maintenance of tumor-specific CD8+ Trm cells induced
by adenoviral vector immunization vaccine in the liver can
provide long-term protection for human papillomavirus-
like virus (HPV)-induced HCC and can enhance the formation
of CD8+ Trm cells by targeting CTLA-4 (61). Thus, CD8+

Trm cells may also play an active role in tumor vaccine
therapy for HCC.
APPLICATION OF CD8+ TRM CELLS IN
CANCER IMMUNOTHERAPY

The exhaustion phenotype of CD8+Trm cells in the TME does
not prevent antitumor activity from being reactivated. In vitro
studies of CD103+CD8+ T cells with high expression of PD-1 in
lung cancer have shown that blocking the expression of PD-1 on
these immune cells can restore their cytotoxicity against
autologous tumor cells, suggesting that anti-PD-1 therapy may
restore the killing function of CD8+ Trm cells toward autologous
tumors (62). In the last few decades, anti-PD-1/PD-L1 therapies
have shown remarkable efficacy in patients with malignant
gastrointestinal neoplasms. For instance, the international
January 2022 | Volume 11 | Article 819505
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randomized phase III KEYNOTE-181 and KEYNOTE-590
studies in EC patients showed that pembrolizumab provided a
clinically meaningful overall survival (OS) benefit versus the
control group (88, 89). Indeed, clinically meaningful
improvements in overall response rate (ORR), progression-free
survival and OS were observed in GC patients treated with
pembrolizumab plus chemotherapy in the KEYNOTE-059 and
KEYNOTE-062 trials (90, 91). However, although anti-PD-1
mAb is a promising approach for advanced GC patients, the
response rate is still limited, with an ORR of only about
12.0% and a disease control ratio of about 34.7% (92).
Although immunotherapy has produced durable responses in
MSI-H CRC, with recent FDA approval of pembrolizumab in
the first-line setting of metastatic CRC (93), MSS CRC has
long been considered resistant to PD-1/PD-L1 blockade.
However, combination therapy, such as co-inhibition of anti-
PD-1 and STAT3 or regorafenib, a small molecule tyrosine
kinase inhibitor, can elicit an effective antitumor response in
a small subset of MSS CRC patients (49, 94). Disappointingly,
the ORR of checkpoint inhibitors in HCC patients is only
15-20% (95). Recently, the Nivolumab (CheckMate-459)
III phase trial failed to meet the primary endpoint, so an
effective immunosuppressive therapy against HCC is still
lacking (96).

There is no denying that the use of PD-1 inhibitors to reverse
the exhaustion of immune cells such as CD8+ Trm cells, alone or
with other checkpoint antibodies, has had controversial results.
Due to tumor heterogeneity, a lack of reproducibility of results,
and a complex scoring system, PD-L1 is not suitable as a
predictive biomarker (97). While methods such as the
combined positive score, which detects PD-L1 levels in tumors
and lymphocytes, can be used clinically to evaluate patient
response to PD-1/PD-L1-related inhibitors, their specificity for
evaluating therapeutic impact is poor (98). Therefore, treatment
options for patients with unresectable, locally advanced, or
metastatic esophageal cancer are still limited, requiring the
search for new predictive indicators and immunotherapy
strategies (99).

Another way to increase the number of functional CD8+ Trm
cells in tumors is by inducing their expansion using tumor
vaccines. Studies demonstrate that vaccination can induce Trm
cells in the tissue after natural infection and vaccination. For
example, intravaginal immunization or systemic perfusion has
been shown to boost vaginal mucosa by inducing Trm cells in the
reproductive area (100). In addition, encoding respiratory
syncytial virus mechanisms or recombinant cytomegalovirus
vectors of Bacille Calmette-Guerin vaccine proteins for
intranasal vaccination promotes immune cells to develop
resident properties (101, 102). The vaccine-specific CD8+ T cell
response can provide long-term protection against HPV-induced
skin cancer and HCC but is dependent on the induction and
accumulation of CD8+ Trm cells by blocking CTLA-4 early after
immunization (61). Local radiotherapy by vaccination (103),
which changes the expression of selectin, integrin, and
chemokines, can also enhance the recruitment of resident
CD8+ T lymphocytes in the tissue and tumor site.
Frontiers in Oncology | www.frontiersin.org 7
PERSPECTIVE

CD8+ Trm cell infiltration plays a critical role in the antitumor
immune response in the digestive tract. CD69, CD103, CD39, and
CD49a are the key biomarkers of tumor-reactive CD8+ Trm cells
and can be used as prognostic molecules for different digestive
tract tumors (57, 59). However, CD8+ Trm cells that have
infiltrated digestive tract tumors can also express immune
checkpoint molecules such as PD-1, CTLA-4, TIGIT, TIM3,
and LAG3, which can damage their killing function and cause
immune exhaustion (104, 105). While targeted application of
immune checkpoint inhibitors has achieved good results, the lack
of immune markers and disparate responses to immune
checkpoint inhibitors diminish the efficacy of treatment.
Determining how best to increase the number and function of
tumor-associated CD8+ Trm cells helps to maximize antitumor
immunity. There is also great diversity among CD8+Trm cell
phenotypes found in different digestive tract organs. For example,
while PD-1hi CD8+ Trm cells highly express cell adhesion and
tissue positioning markers, including CD69 and integrins CD11c,
CD49a, CD49b, and CD103 in HCC (87), CD103+CD8+ Trm
cells express tissue residency-promoting molecules, such as
CD69, CD49a, and RUNX3, in gastric cancer (9). CD103 is an
important marker of CD8+ Trm in ESCC. ESCC patients with co-
expression of PD-L1/TIM3 or PD-L1/TIGIT in CD8+ Trm cells
have a lower survival rate than those expressing either marker
alone (106). This may explain why only a small number of ECC
patients benefit from treatment with PD-1 inhibitors. The
absence of predictive indicators results in a high rate of
immune-related adverse events in response to drugs targeting
PD-1/PD-L1, with only a small number of patients showing
positive outcomes. Nevertheless, a novel strategy to solve this
problem is developing nanodrug delivery systems with a high
drug loading capacity and targeting ability. It has been reported
that biodegradable polymers such as poly (ursolic acid) are used
as drug carriers for treating CRC and other cancers. The
anticancer drug effectively loaded into poly(salicylic acid)
nanoparticles shows ultrahigh blood vessel penetration, tumor
penetration, and tumor accumulation due to the special prickly
nanostructure (107, 108). Thus, the combination of a therapeutic
polymer platform and immunotherapy to achieve precise targeted
therapy may be a new attractive therapeutic strategy for treating
digestive tract cancer.

In conclusion, alimentary tract neoplasms are a serious threat
to human health. Immunotherapy for digestive tract tumors still
has many problems, including blind treatment, side effects, and
disparate individual responses. CD8+ Trm cells exist in various
digestive tract tumors and are closely related to disease
prognosis. However, current research on the utilization of
CD8+ Trm cells in digestive tract tumors is still in the early
stages. Thus, a comprehensive understanding of CD8+ Trm cell
phenotypes and the characteristics of corresponding immune
checkpoint molecules that are expressed in digestive tract tumors
will be important to help guide accurate diagnosis and treatment
of different tumor types. Specific drug therapy and tumor vaccine
therapy that targets tumor-associated CD8+ Trm cells may
January 2022 | Volume 11 | Article 819505
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become an important direction for antitumor research and
tumor precision therapy.
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GLOSSARY

AIM activation inducer molecule
Aim2 absent in melanoma 2
Batf3 basic leucine zipper ATF-Like transcription factor 3
CCR7 chemokine receptor 7
cDC1 classical dendritic cell
CRC colorectal cancer
CTLA-4 cytotoxic T lymphocyte associated antigen-4
CXCL17 CXC chemokine ligand 17
CXCR6 C-X-C motif chemokine receptor 6
EC esophageal cancer
ESCC esophageal squamous cell carcinoma
Fabp fatty acid binding protein
FGF2 fibroblast growth factor 2
GC gastric cancer
HBV hepatitis B virus
HCC hepatocellular carcinoma
HCV hepatitis C virus
HPV papillomavirus-like virus
IDO indole-2,3 dioxygenase
KLF2 Kruppel-like factor 2
LAG3 lymphocyte activation gene-3
MDSCs myeloid-derived suppressor cells
MLC memory lymphocyte cluster
MSI-H high microsatellite unstable CRC
MSS microsatellite stable CRC
ORR overall response rate
OS overall survival
pTrm precursor Trm
RUNX3 Runt-related transcription factor 3
S1PR1 sphingosine-1 phosphate receptor 1
SPEM spasmodic cleavage peptide expression metaplasia
TCF-1 T cell factor 1
Tcm central memory T
TIGIT immunoglobulin and ITIM domain
TILs tumor infiltrating lymphocytes
TIM3 T cell immunoglobulin-and mucin-domain-containing molecule-3
TME tumor microenvironment
TLSs tertiary lymphoid structures
Treg regulatory T
Trm tissue-resident memory T
VEGF vascular endothelial growth factor
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