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AI-powered omics-based drug pair discovery
for pyroptosis therapy targeting triple-
negative breast cancer

Boshu Ouyang 1,2,10, Caihua Shan3,10, Shun Shen4,10, Xinnan Dai3,
Qingwang Chen5, Xiaomin Su1, Yongbin Cao5, Xifeng Qin1, Ying He1, Siyu Wang1,
Ruizhe Xu 1, Ruining Hu1, Leming Shi 5, Tun Lu6, Wuli Yang 7,
Shaojun Peng8 , Jun Zhang 9 , Jianxin Wang 1 , Dongsheng Li 3 &
Zhiqing Pang 1

Due to low success rates and long cycles of traditional drug development, the
clinical tendency is to apply omics techniques to reveal patient-level disease
characteristics and individualized responses to treatment. However, the het-
erogeneous form of data and uneven distribution of targets make drug dis-
covery and precision medicine a non-trivial task. This study takes pyroptosis
therapy for triple-negative breast cancer (TNBC) as a paradigm and uses data
mining of a large TNBC cohort and drug databases to establish a biofactor-
regulated neural network for rapidly screening and optimizing compound
pyroptosis drug pairs. Subsequently, biomimetic nanococrystals are prepared
using the preferred combination of mitoxantrone and gambogic acid for
rational drug delivery. The unique mechanism of obtained nanococrystals
regulating pyroptosis genes through ribosomal stress and triggering pyr-
optosis cascade immune effects are revealed in TNBC models. In this work, a
target omics-based intelligent compound drug discovery framework explores
an innovative drug development paradigm, which repurposes existing drugs
and enables precise treatment of refractory diseases.

Drug development, an important research area for chemical scien-
tists and pharmaceutical companies, has been plagued by pain points
such as low success rates, high costs, and long development cycles1.
Traditional drug development often fails due to inaccurate targets,
poor safety, unsatisfactory efficacy, and the inability to identify

suitable patient populations2. In light of advancing technologies and
the transformative impact of data science on drug development,
there is an urgent need to change the status quo with innovative
technologies and models to open the era of intelligent drug
development.
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Upon reviewing nearly two decades of observations, it has been
discovered that single-target therapeutics often fail to produce satis-
factory outcomes due to the intricate nature of disease systems.
Rather than focusing solely on modulating a predetermined single
target, most first-in-class medications approved by the U.S. Food and
Drug Administration (FDA) have concentrated on influencing disease
phenotypes or biomarkers to provide therapeutic benefits3. The key to
achieving drug innovation and personalized treatment lies in utilizing
phenotypic screening to proactively discover original medications.
Target omics-based smart medicine involves utilizing genomic, pro-
teomic, metabolomic, or other omics data to provide personalized
healthcare4. Omics technologies enable the analysis of large-scale
biological data, identifying specificmolecular targets linked to disease
susceptibility and predicting drug response based on an individual’s
unique genetic makeup, thereby facilitating diagnosis, prognosis, and
treatment selection5,6. For example, genome sequencing can locate
mutated genes in cancer cells that drive tumor growth, enabling the
selection of targeted therapies accordingly. Metabolomic analysis can
determine changes in the levels of specific metabolites in blood or
urine during disease progression7,8. Given the vast amount of complex
clinical data, the explosion of biological knowledge, and the creation
of various databases, it is crucial to identify high-risk biomarkers
associated with diseases as target omics and find the appropriate
medications to effectively intervene with these targets, thus fostering
precision medicine and aiding in drug discovery.

Theories based onmodulating disease phenotypes or biomarkers
have led to the development of molecularly targeted combination
therapies in the clinic9. Although potential drug combinations can
traditionally be tested based on biological or clinical expertise through
methods such as high-throughput screening, the limited number of
experimentalfilters and the heterogeneity of the physical environment
still hinder the discovery and optimization of compound drugs10,11.
More systematic predictivemethods are needed to efficiently navigate
and explore this vast space, ultimately reducing development costs
and time. In recent years, artificial intelligence (AI) has shown pro-
mising applications in compoundvalidation, target identification, drug
discovery, dosage design, and drug repositioning, significantly con-
tributing to the drug development process12–16. Comprehensive
benchmarking of several computational models for drug screening
was performed in two DREAM Challenges originated from the public.
With sufficient drug information and augmented training data, com-
putational predictions can attain high accuracy for sorting chosen
drugs17. Deep neural networks have recently outperformed other less
complexmodels and shown state-of-the-art performance in predicting
drug combination synergy18. However, accurate modeling of drug
combination effects remains a challenge due to the scarcity of high-
quality training data, and the “black box” character of machine learn-
ing models presents difficulties in providing transparent and inter-
pretable biological insights for human understanding. Therefore,
developing integrated and robust models that can generalize, learn
from a large amount of available data, and interpretably identify bio-
signatures to facilitate exploration of the broad combinatorial drug
space is of great importance for compound drug development.

In this work, we propose a framework for intelligent compound
drug discovery based on target omics and evaluate the advancement
of this technology platform, which integrates bioinformatics analysis,
artificial intelligence, and experimental validation for the discovery
and optimization of compounddrugs (Fig. 1a).We specifically focus on
the paradigm of pyroptosis therapy for triple-negative breast cancer
(TNBC), a subtype with highly malignancy and poor prognosis, lacking
effective therapeutic targets and treatments19. Pyroptosis has recently
been recognized in recent years as a powerful pathway for cancer
eradication, an inflammatory death modality mediated by the gas-
dermin (GSDM) protein family in tumor cells that initiates a robust
anti-tumor immune response20,21. We perform a bioinformatic analysis

of the typical pyroptosis genes to generate target omics associated
with TNBC and then identify corresponding potential pyroptosis-
inducing drugs based on a large TNBC cohort and drug databases.
Subsequently, a biofactor-regulated neural network AI model, BFReg-
NN, is established to screen and optimize pyroptosis compound drugs
rapidly, followed by preliminary experimental validation (Fig. 1b). A
representative preferred drug pair, mitoxantrone (MIT) and gambogic
acid (GA) is formulated into a bionic nanococrystal (MG@PM) to
promise the rational drug delivery with optimal synergistic ratios. The
potent pyroptosis-inducing and anti-tumor immunological effects of
MG@PM are confirmed in the TNBC model (Fig. 1c). We also carefully
identify the presence of pyroptosis cascade effect in TNBC metastatic
models after MG@PM treatment. In addition, the unique mechanism
by which compound drugs disrupt tumor cellular redox homeostasis
to stimulate ribosomal stress, thereby effectively modulating specific
pyroptosis genes, has been carefully explored. Overall, this study
provides an innovative methodological strategy for compound drug
development in TNBC or other refractory diseases.

Results
Identification of pyroptosis genes and drugs across TNBC
cohorts
To assess the pyroptosis characterization and probe potential oppor-
tunities for precise targeting of pyroptosis in TNBC, we analyzed
transcriptomic data from 360 patients with TNBC at Fudan University
Shanghai Cancer Center (FUSCC) using bioinformatics techniques
(Fig. 2a)22. We summarized 45 specific pyroptosis-related genes by
KEGG pathway enrichment and previous literature23–25. Figure 2b
illustrates the pathways discovered through Gene Ontology (GO)
functional enrichment analysis of these genes. Notably, the pyroptosis
and NOD-like receptor signaling pathways exhibit high enrichment
levels, indicating a positive correlation with pyroptosis. We found that
these pyroptosis-related genes showed significant differential expres-
sion in the transcriptome profiles of 360 TNBC tissues versus 88 nor-
mal breast tissues, and most of them showed marked upregulation
(Fig. 2c). Depicting the transcriptome features of 45 genes in a rela-
tional map presents that they had extensive interactions in TNBC,
suggesting that pyroptosis could be an option for TNBC treatment
(Fig. 2d). By applying the Cox proportional hazards model and Akaike
information criterion (AIC), we identified a set of nine genes (CASP1,
BCL2, CTSD, CASP5, TRADD, NFKB2, CASP9, TNF, and GSDMD) as target
omics of TNBC pyroptosis that significantly predicted recurrence-free
survival (RFS) of TNBC patients. Our pyroptosis-based survival model
for TNBC RFS showed a concordance index (c-index) of 0.7. The
expression profiles of these nine key pyroptosis genes are shown in
Supplementary Fig. 1. The fact that the pyroptosis genes significantly
affected patient RFS compared to other factors, such as age and
therapy (radiotherapy/chemotherapy), also further suggested that
pyroptosis phenotypemodulation strategies could bemore important
in treating TNBC (Supplementary Fig. 2). Furthermore, the hazard ratio
of the nine identified genes indicating that CASP9 increased the risk of
TNBC RFS, whereas CASP5 significantly reduced it (Fig. 2e). We pre-
dicted the Kaplan-Meier curves and immune scores for TNBC RFS
based on the high and low risk of key pyroptosis genes, emphasizing
their significant influence on the survival and immune profile of TNBC
patients (Fig. 2f and Supplementary Fig. 3)26. These results suggest that
pyroptosis therapy can be an effective treatment for TNBC. Next, we
utilized various drug databases and filteringmethods to discover drug
candidates associated with the nine key pyroptosis regulators. The
Comparative Toxicogenomics Database (CTD) dataset was used to
identify drugs associated with at least one of these regulators and to
calculate the mean z-score of therapeutic drug activity (DTP NCI-60)
based on RNA expression of pyroptosis regulators, deriving 133
potential pyroptosis-related drugs from 20348 drugs (Supplementary
Fig. 4). We then used the Swiss Target Prediction tool to obtain the
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targets of these drugs and confirmed their association with pyroptosis
regulators using the distance in the protein-to-protein interaction (PPI)
network. Thus, we narrowed our search to 35 drugs, which demon-
strated a significant correlation with the nine key pyroptosis reg-
ulators (Fig. 2g).

Screening compound medications and predicting effects
through machine learning
Based on the set of potential pyroptosis drugs obtained, we proposed
to use a biological factor-regulated neural networkmodel (BFReg-NN)
to learn and obtain excellent compound medications27. Specifically,
BFReg-NN used the existing knowledge (e.g., protein-protein interac-
tion network) to build a “white-box” architecture of biological factors,
and learn the factor functions in cells by graph neural networks, ulti-
mately giving insight into the mechanisms of the whole system
(Fig. 3a, b). BFReg-NN is able to simulate interactions between biolo-
gical factors (e.g., genes, proteins, or drug targets) in the cell trans-
parently and accurately. In many tasks (e.g., TNBC subtype
classification), BFReg-NN outperformed the traditional methods of
logistic regression, neural network, and random forest in terms of
accuracy (Fig. 3c). Herein, BFReg-NN was instantiated by restricting
biological factors as drug targets and pyroptosis genes and learning
how targets influence pyroptosis-related genes and ultimately affect
TNBC RFS (Fig. 3a). Since our goal was to predict the effect of com-
pound drugs through pyroptosis signature genes, we constructed the
architecture of BFReg-NN from four layers: (1) the layer for the rela-
tionship among two drug targets, (2) links from drug targets to genes,
(3) the layer for the relationship among pyroptosis genes and (4)
survival layer. A more detailed diagram is shown in Supplementary
Fig. 5.We trained BFReg-NN for a survival task byTNBCRFS data. Thus,
we could constrain drug targets to influence TNBC RFS through pyr-
optosis signature genes (Fig. 3b). More details on the AI procedures
can be found in Methods.

We applied BFReg-NN to screen all possible drug combinations
and calculated their c-index scores to indicate the correlation between
drug targets and TNBC RFS. The ranking results are shown in Fig. 3d,
wherewe considered the compounddrugs ranked in the top 10%as the
most promising combinations for treating TNBC by affecting the sig-
nature pyroptosis genes. To examine the effectiveness of the com-
pound drugs by the BFReg-NN screening, we performed the
intervention treatment on MDA-MB-231, a human-derived TNBC cell
line. These results yielded surprising findings as all twelve randomly
selected drug pairs, within the top 10% of drug combinations, caused
varying degrees of balloon-like changes in MDA-MB-231, a typical fea-
ture of pyroptosis (Fig. 3e, Supplementary Fig. 6). Collectively, our
approach to compound drug discovery that integrates big data
bioinformatics analysis and neural network artificial intelligence is
reliable and quite promising.

In order to verify the pyroptosis effect and anti-tumor efficacy of
these preferred pyroptosis compound drugs, we conducted more
intensive experimental exploration for the representative drug pair of
mitoxantrone (MIT) and gambogic acid (GA) (Supplementary Fig. 7).
Recent studies have demonstrated thatbothMIT andGAhavemultiple
tumor-killing mechanisms. MIT is a first-line chemotherapeutic for
breast cancer, and its in vivo toxicity may be attributed to its potential
pyroptosis-inducing ability24,28. GA, a natural product with strong
anticancer activity, could significantly enhance the sensitivity of tumor
cells to chemotherapeutics29,30. The combination of MIT and GA has a
c-index value of 0.90 (ranked in the top 8%), and both have relatively
low IC50 values (Supplementary Fig. 8). The architecture was visua-
lized by BFReg-NN to explore how the targets of MIT and GA interact
together and to predict important targets using Integrated Gradient31.
As shown in Fig. 3f, we found that GA targetsMCL1 and TXN, as well as
MIT targets BTK and TOP2A, had high importance scores, indicating
that theywill strongly impact the pyroptosis signaturegenes. Figure 3g

showed the three-dimensional structures of GA and MIT and the non-
covalent bonding sites of TXN, MCL1, BTK, and TOP2A, respectively.

Combination of MIT and GA synergistically induces pyroptosis
We combined MIT with GA as compound drugs for the effective
induction of pyroptosis and investigated whether they synergistically
affected malignant cancer cells. Through analyzing the cell viability of
4T1 cells incubatedwith differentmass ratios of drug combinations for
24 h, we found that MIT and GA produced different synergistic effects
(Fig. 4a, b). The most decisive synergistic impact was observed when
the mass ratio of MIT to GA was 1:1.5 (Supplementary Table. 1), with a
combination index (CI) value of 0.599, which was much lower than 1.
More importantly, at this ratio, the IC50 of MIT and GA decreased to
0.30μg/mL and0.45μg/mL, respectively,much lower than that of free
MITandGA. Lowdosebut high efficacywould greatly reduce drug side
effects and satisfy the prerequisite for chemotherapeutics-induced
pyroptosis24. Observation by phase-contrast microscopy revealed a
massive ballooning of cells at the mass ratio of MIT to GA 1:1.5, sug-
gesting a strong pyroptosis effect induced by the combination of both
chemotherapeutics (Fig. 4c). Pyroptosis occurs when the N-terminal
fragment of theGSDM family is activated to cleave to formpores in the
plasma membrane, causing the inward flow of aqueous fluid and cell
swelling, and eventually leading to cell membrane rupture20. Con-
sidering that the degrees of pyroptosis varied with different drug
ratios, we used the pyroptosis index (percentage of pyroptosis cells to
all cells in the photos at the indicated time point) to screen the optimal
drug ratio for inducing pyroptosis32. As shown in Fig. 4d, themaximum
value of the pyroptosis index was 61.7% at the mass ratio of MIT to GA
1:1.5. With this ratio, the drug combination could induce the maximal
pyroptosis, which was consistent with the cell viability results.

Synthesis and characterization of nanococrystals
Despite the great potential of MIT in combination with GA to achieve
promising cell pyroptosis effects, the poor solubility of both drugs
limits their clinical application. Furthermore, different pharmacoki-
netics and tissue distribution characteristics of both free drugsmake it
impossible to guarantee an optimal synergistic ratio at the tumor site
after intravenous injection of both free drugs33. Therefore, to guaran-
tee the rational tumor drug deliverywith optimal synergistic ratios, we
formed nanococrystals (MG) of MIT and GA by carrier-free self-
assembly and coated them with platelet membranes by extrusion to
achieve stable bionic nanocrystals (Fig. 1c). The prepared nanoco-
crystals were spherical and had a good monodispersity. A 10-nm layer
of cell membrane coating was observed on the surface of MG@PM
compared with MG, demonstrating the successful coating of platelet
membranes (Fig. 4e). Dynamic light scattering (DLS) indicated that the
particle size of MG and MG@PM were separately 125.6 nm and
155.3 nm, while the corresponding zeta potentials were −5.8mV and
−22.1mV, respectively (Fig. 4f, g). The surface of MG@PM was suc-
cessfully coated with negatively charged platelet membranes, which
would avoid plasma protein adsorption and maintain nanococrystal
stability in the circulation. The particle size of MG andMG@PM in PBS
was measured for seven consecutive days, and it was found that the
particle size of MG increased to 1175.2 nm while that of MG@PM only
increased to 315.0 nm, indicating that MG@PM has superior stability
under physiological conditions due to the preventionof nanococrystal
aggregation by the platelet membrane coating (Fig. 4h). In addition,
MG@PMkept stable in H2O, PBS, DMEM, and FBS, and the presence of
the Tyndall effect under laser irradiation also confirmed the dimen-
sional stability of MG@PM (Supplementary Fig. 9a). The characteristic
absorption peaks of MIT (610 nm) and GA (368 nm) were visible after
the formation of MG nanococrystals, indicating that both drugs were
successfully loaded in the nanococrystals (Fig. 4i and Supplementary
Fig. 9b). The standard curves ofMIT andGAwere established based on
the absorbance values (Supplementary Fig. 9c, d), and the specific
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synergistic ratio (MIT/GA = 1:1.5) was achieved by the current method.
The drug loading for MIT and GA in nanococrystals was 40.0% and
60.0%, respectively, and the encapsulation rate for MIT and GA was
24.7% and 57.3%, respectively. Additionally, the results of release

profile showed that MIT and GA were rapidly and almost synchro-
nously released fromMG@PM in PBS with a pH of 5.5 and reached the
maximum of 73.6% and 66.5% at 8 h, respectively (Supplementary
Fig. 10). In contrast, the release of MIT and GA was much lower in PBS

Fig. 2 | Identificationof pyroptosis genes anddrugs across TNBCcohorts. a The
workflow for screening of signature genes and corresponding drugs. b Gene
Ontology (GO) enrichment analysis of 45 typical pyroptosis-associated genes.
c Heat map of differentially expressed pyroptosis regulator genes in TNBC and
normal breast tissues from the FUSCCTNBC cohort. dDiagrams of the correlations
between the expression levels of pyroptosis regulators. The scatter plot repre-
sented the correlation between CASP1 andNLRP3, GSDMD andCASP1, TRADD, and
NFKB2 (NLRP3 vs. CASP1: P <0.0001; CASP1 vs. GSDMD: P <0.0001; NFKB2 vs.

TRADD: P <0.0001). Data are analyzed with Spearman correlation. e The dis-
tribution diagram (forest plots) of hazard ratios across typical pyroptosis genes.
f The Kaplan-Meier overall survival curve of two clusters distinguished by pyr-
optosis strata (risk=high vs. risk = low: P <0.0001). Data are analyzed with Log-rank
test.gCorrelation between IC50values of 35predictedpyroptosis inducers and the
expression levelsof typical pyroptosis genes. *P <0.05, **P <0.01, and *** P <0.001.
Data are represented asmean ± SD and analyzed with two-way ANOVA followed by
multiple comparisons test. Source data are provided as a Source Data file.
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with a pH of 7.4, with both being less than 20% at 8 h, suggesting that
MG@PMcanmaintain stability under normalphysiological conditions,
minimize drug leakage, and keep the drugs at the appropriate ratios
upon reaching the tumor foci to ensure optimal therapeutic efficacy.

Since nanococrystals camouflaged by platelet membranes are an
emerging bionic nano platform, we verified whether MG@PM had
physicochemical properties similar to platelets, such as tumor tar-
geting, low immunogenicity, and high compatibility. Analysis of the
protein composition in MG@PM using sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) revealed protein

expression similar to those of platelet membranes (Supplementary
Fig. 9e), suggesting effective migration of platelet membranes on the
surface of MG@PM. Specific protein markers of platelets such as
CD4734–36, CD41, and P-selectin were not significantly differentially
expressed in PM and MG@PM (Fig. 4j, k). Based on the excellent
in vitro physicochemical characteristics of bionic nanococrystals, we
further examined their in vivo behavioral properties in 4T1 tumor-
bearing mice. For this purpose, we constructed ICG-labeled MG (IMG)
and MG@PM (IMG@PM) (Supplementary Fig. 9f). As shown in Fig. 4l,
IMG@PM exhibited a longer blood circulation time than IMG, which
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was attributed to the stabilizing effect of platelet membranes on
nanococrystals and the immune evasion ability of the platelet mem-
brane coating. Due to the simultaneous tumor-targeting ability of
platelet membranes, the accumulation of IMG@PM at the tumor site
was significantly enhanced at 24 h after intravenous administration,
with a 6.5-fold higher fluorescence intensity than IMG (Fig. 4m, n). In
order to more accurately detect the behavior of the drug in the body,
we used LC-MS/MS to reassess the changes in blood concentrations at
different time points after systemic administration, as well as organ-
specific distribution. The standard curves and the drug concentration-
time curves for MIT and GA were plotted as shown in Supplementary
Fig. 11a–d. We analyzed the main pharmacokinetic parameters
including area under the curve (AUC), blood circulation half-life (t1/2),
clearance (CL), and mean residence time (MRT) (Supplementary
Table. 4). TheAUC forMIT andGA in theMG@PMgroupwere 3.28 and
1.82-fold higher than those in the MG group, respectively. In addition,
MIT and GA in MG@PM had longer t1/2 than those in MG (P <0. 01).
Elimination of MIT and GA in the MG@PM group was also slower than
those in theMGgroup (P <0.001 forCL), andMRTofMIT andGA in the
MG@PM was observed to be 1.92-fold and 1.54-fold longer than in
those of theMG group, respectively. Interestingly, MIT has a higher CL
and a lower MRT than GA in the MG group, indicating that MG is not
stable in the blood and at least part of MG disassembles during cir-
culation. In contrast, MIT had CL and MRT consistent with GA in the
MG@PM group, indicating that MG@PM is stable in the bloodstream,
maintaining a consistent mass ratio of MIT and GA throughout circu-
lation. Together, these data demonstrate that platelet modification
improves the in vivo behavioral profile of MG and that the long-lasting
blood circulation of bionic nanocrystals will ensure superior targeting
of tumors. The results of drug distribution in various organ tissues
showed that the accumulation of MIT and GA in tumor tissues was
increased about 3-fold with the help of the targeting ability of platelet
membranes, and the accumulation ratio of MIT and GA was as
expected (Supplementary Fig. 11e, f).

In vitro cytotoxic and pyroptosis effects of nanococrystals
After the successful construction of bionic nanococrystals, we eval-
uated whether the platelet membrane coating could facilitate the
internalization of the MG payload. As shown in Fig. 5a, IMG@PM was
found to be more uptake by 4T1 cells than IMG at 4 h, which could be
due to the interaction of P-selectin on platelet membranes and CD44
receptors on tumor cells that promotes the cellular uptake of MG37.
Given the excellent cellular uptake ofMG@PM,we further investigated
the cytotoxicity of nanococrystals on 4T1 cells. As shown in Fig. 5b,
compared to the weak cytotoxicity in the MIT and GA groups, cell
viability was significantly diminished in theMG andMG@PMgroups in
a concentration-dependent manner. At minute concentrations
(0.25μg/mL of MIT, 0.375μg/mL of GA), the cell viability of 4T1 cells
after MG treatment decreased to 39.7%. Due to the platelet membrane
coating, MG@PM had higher stability, cellular uptake, and lower cell
viability (32.3%) compared with MG. Meanwhile, the strongest killing
effect on 4T1 cells was also found in the MG@PM group by live/dead
cell staining experiments (Supplementary Fig. 12a), consistent with the
above results.

Since a combination of MIT and GA with a specific mass ratio
(MIT/GA= 1:1.5) had prominent pyroptosis-inducing properties, we
further validated whether MG@PM could efficiently activate pyr-
optosis. 4T1 cells treatedwithMGandMG@PM swelled and generated
typical spherical bubbles, while no significant changes were observed
in cells treated with the same amount of free MIT or GA (Fig. 5c and
Supplementary Movie. 1). In addition, flow cytometry assay showed
that MG@PM significantly increased the number of PI-positive cells,
indicating that pyroptosis leads to the loss of cell membrane integrity
(Supplementary Fig. 12b). When pyroptosis occurs, a large amount of
intracellular lactate dehydrogenase (LDH), ATP, and other contents

leak into the supernatant. We examined the LDH release and intra-
cellular ATP content in cells after different treatments. It was found
that the release of LDH from the MG and MG@PM groups was much
higher than that from the MIT and GA groups, while intracellular ATP
concentration in the MG and MG@PM groups decreased significantly
(Fig. 5d, e). We applied Western blot experiments to investigate the
effects of MIT and GA on pyroptosis-associated proteins. Firstly,
through the detection of the expression levels of several GSDM-family
proteins, we found that bothMIT andGA could enhance the amount of
GSDME-N-terminal but could not increase the GSDMD and GSDMB-N-
terminal. Meanwhile, the expressions of GSDME-FL and Pro-Caspase-3
in the MG andMG@PM groups were decreased compared with that in
the free drug groups, whereas the amount of GSDME-N and Cleaved-
Caspase-3 were significantly upregulated (Supplementary Figs. 13, 14).
By immunofluorescence stainingwe found that the amount of GSMDE-
N increased in the cells after MG and MG@PM treatment (Supple-
mentary Fig. 15). Quantitative analysis showed that the number of
GSDME-N positive cells increased to 49.7% and 59.5% in MG and
MG@PM group, respectively (Supplementary Fig. 16).

To verify that MG@PM-triggered pyroptosis was dependent on
the Caspase-3/GSDME pathway, we knocked down the expression of
Caspase-3 in 4T1 cells using siRNA technology (Supplementary
Fig. 17a). We found that Caspase-3 knockdown sharply inhibited the
production of GSDME-N fragments in MG@PM-treated 4T1 cells
(Supplementary Fig. 17b), and eliminated the morphological features
of cell pyroptosis (Supplementary Fig. 17c). In addition, we continued
to use siRNA technology to knock down the expression of GSDME in
4T1 cells (Supplementary Fig. 18a). The results showed that after
GSDME knockdown, the pyroptosis swelling feature disappeared, and
instead, the apoptosis morphology feature appeared in MG@PM-
treated 4T1 cells. In addition, the level of LDH release was significantly
reduced inMG@PM-treated 4T1 cells (Supplementary Fig. 18b, c). The
above results demonstrated that MG@PM-triggered pyroptosis was
dependent on the Caspase-3/GSDME pathway. Additionally, we also
scrutinized the dose-dependent effects of MG@PM. The results
showed that both medium (0.625μg/mL) and high doses (1.25μg/mL)
of MG@PM caused balloon-like alterations of cells and release of LDH,
whereas the low-dose (0.25μg/mL) group was not significantly altered
compared with the control group (Supplementary Fig. 19). The clea-
vage of Caspase-3 and GSDMEwas initiated in 4T1 cells after treatment
of both medium and high doses of MG@PM, and the highest amount
was observed in the high-dose group. The above results indicate that
MG@PM can significantly induce cell pyroptosis at a 1.25μg/mL
concentration.

A disruption of the intracellular redox environmental balance
often accompanies the onset of pyroptosis38. We detected the pro-
duction of ROS in 4T1 cells after different treatments using a fluor-
escent probe (2,7-dichlorofluorescein diacetate, DCFH-DA). As shown
in Fig. 5f, the mean fluorescence intensity of the MG and MG@PM
groups was much higher than that of the MIT and GA groups. Subse-
quently, the detection of intracellular GSH content revealed a sig-
nificant decrease of 43% in the GA group and 60% in the MG@PM
group compared with the control group, indicating that MG@PM
treatment has a stronger GSH depletion capacity (Fig. 5g). We inferred
that the MG@PM might induce pyroptosis by disrupting intracellular
redox balance.

Mechanism of nanococrystals-mediated pyroptosis
Based on the prominent pyroptosis induction of 4T1 cells by MG@PM
treatment, we conducted tandem mass-tagging (TMT)-based pro-
teomics to uncover the related mechanisms. Principal component
analysis (PCA) was performed on 6114 plausible proteins detected in
the control and MG@PM groups, accounting for 68.45% of the vari-
ables (Supplementary Fig. 20). Clustered heat map results showed
substantial differences in primary protein sources between the control
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and MG@PM groups (Supplementary Fig. 21). Compared with the
control group, 558 proteins were differentially expressed in the
MG@PM group, of which 275 proteins were upregulated and 283 were
down-regulated (Supplementary Fig. 22). GO enrichment analysis
revealed that differential proteins mainly affected cytoplasm, cell
death, mitochondria-related operations, and protein transport (Sup-
plementary Fig. 23). To investigate the mechanism in-depth, we
focused on the expression of proteins involved in pyroptosis. As
shown in Fig. 5h, after MG@PM treatment, Bax (Bcl2-associated X

protein), Bcl2l13 (Bcl2-like 13), Bcl2l15 (Bcl2-like 15), and other proteins
involved in apoptosis regulatory pathways did not show significant
activation but decreased instead (Supplementary Fig. 24a)39,40. In
contrast, the expressions of inflammatory signaling molecules such as
Hmgb1 (High mobility group protein B1) and Il1α (Interleukin-1 alpha)
were enhanced. In addition, the changes in cellular redox homeostasis-
related differential proteins were shown in Supplementary Fig. 24b.
Notably, there were significant differences in typical pyroptosis-
associated proteins, such as Tradd, Ctsd, Nfkb2, Tnf, Bcl2, and
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Gsdmd. Next, we focused on the proteins of the target genes of MIT
and GA (Supplementary Tables 2 and 3) and found that significant
changes in the expressions of Txn, Mcl1, Top2a, and Erbb2 were
detected in the 4T1 samples after MG@PM treatment (Fig. 5i). Txn
(Thioredoxin), a potential target of GA, is actively involved in cellular
redox response and regulates mitochondrial ROS content. Reduced
expression of Txn deteriorates oxidative stress and affects several
pyroptosis genes, such as Nlrp3, Casp1, Gsdmd, Casp3, and related
pathways41,42. Mcl1 (Induced myeloid leukemia cell differentiation
proteinMcl-1), as another target of GA, is amember of the Bcl-2 family,
which could induce Casp3/Gsdme pathway-dependent pyroptosis
upon inactivation43. Top2a (DNA topoisomerase 2-alpha) and Erbb2
(Receptor tyrosine-protein kinase erbB-2), a pair of often-jointly
mutated proto-oncogenes, are both major targets of MIT. This pair
of targets can alter the sensitivity of tumor cells to chemotherapeutic
agents after cell cycle disruption while perturbing Casp1 triggers
pyroptosis44,45. This identification of such drug targets was generally
consistent with the predicted results of BFReg-NN (Fig. 3f). Missing
results for other targets might be due to non-negligible differences
between cellular and tissue samples. To further clarify whether
MG@PM affected these target proteins, we detected the activity levels
of relevant target proteins in 4T1 cells after treatment with different
formulations by using enzyme immunoassay kits. GA could deplete
45.3% of Mcl1 and 25.8% of Txn in 4T1 cells, and MIT could deplete
39.3% of Top2a and 22.7% of Erbb2 in 4T1 cells, respectively, compared
with the Control group (Supplementary Fig. 25). Both MG and
MG@PM groups had significant effects on these four target protein
activities.

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis showed that MG@PM treatment mainly affected pathways
involving T cell receptor signaling pathway, TNF signaling pathway,
ribosome, oxidative phosphorylation, inflammatory mediator regula-
tion of TRP channels compared to untreated cells (Fig. 5j). We finally
visualized the up-down regulation and interconnections of proteins by
identifying the differential protein interaction network of MG@PM,
thus helping to reveal the hidden therapeutic targets (Fig. 5k).
According to the protein interactionnetwork results, ribosome-related
proteins, especially mitochondrial ribosomal protein (MRP) deficiency
played a key role in activating cancer cell pyroptosis by MG@PM
treatment. Since mitochondrial ribosome biogenesis is essential for
cellular respiration, defects in MRPs induce mitochondrial dysfunc-
tion, alter oxidative phosphorylation (OXPHOS) activity and NAD+/
NADH ratio, as well as increase ROS production46,47. Several studies
demonstrated that the silencing of Mrpl41, Mrpl43, and Mrps5, etc.,
which were involved in cell cycle regulation, led to specific down-
regulation of the pro-apoptotic factor Bax, while ribosomal stress
triggered by perturbed ribosome biosynthesis could initiate cell
pyroptosis48–50. Taken together with these analyses, we suggested that

MG@PM could induce extensive ROS toxicity by disrupting redox
homeostasis, making MRPs defective, and disrupting the mitochon-
drial respiratory chain, while MG@PM eventually induced the tumor
cell pyroptosis by triggering intracytoplasmic ribotoxic stress. To
verify the changes in intracellular homeostasis, we monitored the
intracellular levels of NAD+ and NADH and found that the NAD+/NADH
ratio was significantly elevated in the MG and MG@PM groups com-
pared to the Control group (Supplementary Fig. 26). This suggested
that the cells are in an oxidative environment and it has been reported
that an elevatedNAD+/NADH ratio could contribute to the inhibitionof
rRNA synthesis51,52. In JC-1 staining experiments, a large number of red-
to-green shifts were detected in the MG and MG@PM groups, indi-
cating the occurrence of mitochondrial membrane potential damage
(Supplementary Fig. 27). Thus, we clarified the effects of MG@PM on
ribosomal and mitochondrial stress by observing changes in energy
metabolism and mitochondrial function. In conclusion, we validated
the pathological processes related to tumor cell pyroptosis by pro-
teomics analysis and tapped the main targets of nanococrystals and
their role in regulating ribosomal stress to trigger pyroptosis.

In vivo antitumor effects of nanococrystals
We evaluated the therapeutic effect of nanocrystals MG@PM as pro-
mising pyroptosis activators on the orthotopic 4T1 model. The regi-
mens shown in Fig. 6a were followed to treat the tumor-bearing mice,
and tumors were removed for ex vivo photography on day 15
(Fig. 6c, d). Compared with PBS, GA and MIT had a weak inhibitory
effect on tumor growth. The reasonmight be attributed to the fact that
MIT andGA, both small-molecule chemotherapeutics, decayed rapidly
in circulation and accumulated little in tumors53. Moreover, due to the
systemic toxicity of MIT in vivo, mice in the MIT group showed sig-
nificant weight loss after treatment (Fig. 6b), and one died on day 9.
Hypertrophic cardiomyocytes in heart tissues, increased cytoplasmic
eosinophilic granules in lung tissues, and increased glomerular volume
and cell count in kidney tissues were observed in theMIT group, which
indicated that MIT could cause varying degrees of damage to multiple
organs (Supplementary Fig. 29). In contrast, MG and MG@PM treat-
ments displayed stronger antitumor effects than GA or MIT treatment
with significantly smaller tumor volume and stronger tumor necrosis
and apoptosis (Fig. 6e). The striking therapeutic effectwas observed in
the MG@PM group, where the tumor volume and tumor weight were
approximately 7 times smaller than those of the PBS group at the end
of this experiment (Fig. 6c, Supplementary Fig. 28). However, the MG
group had a relatively weaker therapeutic effect due to the lack of
stability and targeting in vivo. Notably, there was no significant weight
loss in the mice of the nanococrystal groups, and no distinct patho-
logical changes were observed in the organ sections compared to the
PBS group. The superior biosafety makes MG@PM a promising treat-
ment for tumors. We performed Western blot experiments on tumor

Fig. 5 | In vitropyroptosis effects andmechanismofnanococrystals. aUptakeof
ICG-labeled MG (IMG) and MG@PM (IMG@PM) in 4T1 cells at 1 h and 4 h, respec-
tively. Scale bar = 50 μm. b Viability of 4T1 cells after different treatments (n = 5
independent experiments). MIT vs. MG@PM: P <0.001; GA vs. MG@PM: P <0.001.
Data are analyzed with two-way ANOVA followed by multiple comparisons test.
c Phase contrast microscopy observation of 4T1 cell morphology under different
treatments. White arrows pointed to pyroptosis cells. Scale bar = 15 μm. d LDH
release from 4T1 cells after different treatments (n = 5 independent experiments).
MIT vs.MG@PM:P <0.001;MIT vs.MG:P <0.001; GAvs.MG@PM:P <0.001; GAvs.
MG: P <0.001. Data are analyzed with one-way ANOVA followed by multiple com-
parisons test. e Intracellular ATP content in 4T1 cells after different treatments
(n = 5 independent experiments). MIT vs. MG@PM: P <0.001; MIT vs. MG:
P <0.001; GA vs. MG@PM: P <0.001; GA vs. MG: P <0.001. Data are analyzed with
one-way ANOVA followed by multiple comparisons test. f Flow cytometry assay of
the ROS production in 4T1 cells after different treatments. g Intracellular GSH level
in 4T1 cells after different treatments (n = 5 independent experiments). MIT vs.

MG@PM: P <0.001; MIT vs. MG: P <0.001; GA vs. MG@PM: P =0.031; GA vs. MG:
P =0.145. Data are analyzed with one-way ANOVA followed by multiple compar-
isons test. h Heat map of the differential expression of pyroptosis-related proteins
in the MG@PM group compared with the control group. i Quantitative protein
analysis of predicted target genes for GA andMIT (n = 3 independent experiments.
Control vs. MG@PM in Txn: P <0.0001; Control vs. MG@PM in Mcl1: P =0.0059;
Control vs. MG@PM in Top2a: P =0.0157; Control vs. MG@PM in Erbb2:
P =0.0425). Data are analyzed with unpaired student’s t tests. j Bubble plot of the
KEGG pathway analysis for differentially expressed proteins enriched in the
MG@PM group compared to the control group. The colors of the nodes reflected
the P-values of the designated pathways, and the sizes of the nodes indicated the
number of differentially expressed proteins enriched in the pathways. Data are
analyzedwith two-way ANOVA followed bymultiple comparisons test. kAnalysis of
the protein functional interaction network of the MG@PM group using the Search
Tool for theRetrieval of InteractingGenes / Proteins (STRING) algorithm.Datawere
represented as mean± SD. Source data are provided as a Source Data file.
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samples frommice to identify important pyroptosis target proteins. As
shown inSupplementary Fig. 30, the amount of Cleaved-Caspase-3 and
GSDME-N were significantly increased in the MG@PM group. In con-
trast, neither the MIT, GA, nor MG groups were able to effectively

induce tumor pyroptosis due to low drug accumulation and syner-
gistic effects. At the same time, we were surprised to find significant
inhibition of hepato-pulmonary metastasis of tumor cells in the
MG@PM group (Supplementary Fig. 29). We speculated thatMG@PM

Fig. 6 | Antitumor and immune activation efficacy of nanococrystals in vivo.
a Schematic diagram of the therapeutic regimen of murine 4T1 tumor models.
bChanges in the bodyweight of tumor-bearingmice during the therapeutic period
(n = 5 mice). Data are analyzed with two-way ANOVA followed by multiple com-
parisons test. c Tumor volume change curves after different treatments (n = 5
mice). d Images of the excised orthotopic tumors in various groups on day 15. The
red dashed rectangle indicated mouse death. e Pathological H&E staining and
TUNEL staining of tumor slices on day 15. Scale bar = 100 μm. f The expression
levels of inflammatory factors INF-γ (MG@PM: P <0.001) and g TNF-α (MG@PM:
P <0.001) in the serumofmice treatedwith different formulationsondays 6, 7, and
8 (n = 3 mice). Data are analyzed with two-way ANOVA followed by multiple com-
parisons test. h Flow cytometry analysis of the proportion of mature DC cells in

tumor-draining lymph nodes (TDLN) (n = 4 mice). Data are analyzed with one-way
ANOVA followed by multiple comparisons test. i Flow cytometry analysis of the
ratio of CD4+ T cells in tumors (n = 4 mice). MIT vs. MG: P <0.001; GA vs. MG:
P =0.0038. Data are analyzed with one-way ANOVA followed by multiple com-
parisons test. j Flow cytometry analysis of the ratio of CD8+ T cells in tumors (n = 4
mice).MIT vs.MG: P <0.001; GA vs.MG: P =0.0015.Data are analyzedwith one-way
ANOVA followed by multiple comparisons test. k Flow cytometry analysis of the
proportion of Treg cells in tumors (n = 4 mice). MIT vs. MG: P <0.001; GA vs. MG:
P =0.0016. Datawere represented asmean± SDand analyzedwith one-wayANOVA
followed by multiple comparisons test. Source data are provided as a Source
Data file.
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elicited a potent antitumor immune response and eliminated tumor
metastasis.

Nanococrystals-mediated pyroptosis for in vivo immune system
activation
As tumor cell pyroptosis releases large amounts of contents, it could
promote the exposure of tumor-associated antigens and alleviate the
immunosuppressive microenvironment23. The content of high mobi-
lity group box 1 (HMGB1), a representative molecule of damage-
associated molecular patterns (DAMPs) in tumor tissues54, was found
to be significantly increased in the MG@PM group compared with
other groups (Supplementary Fig. 31). To investigate the ability of
MG@PM as an innovative pyroptosis inducer to stimulate the host
immune response, we then examined cytokines, including INF-γ and
TNF-α, in the serum of mice on day 6, 7, and 8 after different treat-
ments. Compared with the other groups, the secretion of INF-γ and
TNF-α in theMG@PMgroup on day 6 after treatment was significantly
higher (Fig. 6f, g) and peaked on day 7. Accordingly, we investigated
the immune environment of Balb/C tumor-bearing mice after seven
days of treatment. DCs in lymph nodes and the spleen were isolated
and collected for single-cell suspension preparation and antibody
staining. Flow cytometry assay showed that the subclusters of mature
DC cells (CD11c+CD80+CD86+) in lymph nodes of the MG@PM group
significantly increased (21.7%) by 6.06 folds compared with that of the
control group (3.58%) (Supplementary Fig. 32a, Fig. 6h). Similar results
were also reflected in the DC subpopulation of splenic lymphocytes
(Supplementary Figs. 32b, 33). These results confirmed the activation
of DCs and their positive involvement in the pyroptosis-induced
immune process. To further evaluate the alterations of the tumor
immune microenvironment, we observed the changes in immune cell
clusters in tumor tissues (Fig. 6i, j, Supplementary Fig. 32c, d). It was
revealed that theproportionof bothhelperCD4+ T cells andkillerCD8+

T cells was significantly increased in the MG@PM group compared
with other groups, and the cell population was up to 24.9% and 18.4%,
respectively, suggesting a potent immune response within the tumor
tissue. Otherwise, regulatory T cells (Treg), a subset of T cells that
suppress the antitumor immune processes, reduced 2-3 folds in the
MG@PM group relative to the control group, demonstrating the alle-
viation of the tumor immunosuppressive microenvironment (Fig. 6k,
Supplementary Fig. 32e). In conclusion, MG@PM-mediated tumor
pyroptosis releases tumor-associated antigens that trigger efficient
immune activation in vivo. Furthermore, we found that MG@PM
induced a substantial elevation of GZMB content in tumor tissues
(Supplementary Fig. 34), consistent with cohort analysis data (Sup-
plementary Fig. 35). It has been reported that GZMB released by killer
lymphocytes can induce tumor cell pyroptosis by cleaving GSDME at
the same site as Caspase-353,54. Thus, we reasonably have to propose
the hypothesis that GZMB might have contributed to the pyroptosis
effect triggered by MG@PM.

In vivo anti-metastasis efficacy and the cascadepyroptosis effect
The high metastasis of breast cancer has been a significant challenge
for clinical treatment55. Based on the potent immune response of the
pyroptosis inducer, we investigated the prospect of MG@PM versus
clinical first-line therapy, anti-PD-1/Abraxane, in murine lung metas-
tasis models56,57. Following the model construction and the treatment
schedule shown in Fig. 7a, the expansion and growth of tumor
metastases were monitored by bioluminescence imaging. The results
showed that 5 days after injection of 4T1-Luc cells, there were obvious
tumor bioluminescence signals in the lungs of the PBS group, which
gradually increased over time (Fig. 7b). Compared with the PBS group,
the anti-PD-1 and anti-PD-1/Abraxane groups started to present biolu-
minescence signals on days 19 and 24, respectively, which slowly
increased with time, indicating that anti-PD-1 and anti-PD-1/Abraxane
can restrain tumor metastasis to a certain extent. Surprisingly, mice in

the MG@PM group showed almost no apparent bioluminescence
signals at the end of the bioluminescence observation (days 29),
indicating that tumor metastasis was notably suppressed by MG@PM
treatment. The number of metastatic nodules in the lungs was recor-
ded by Bouin’s staining and photographed after the final biolumines-
cence observation (Fig. 7c, d). The number ofmetastatic nodules in the
MG@PMgroupwasdeficient and significantly less than that in the anti-
PD-1/Abraxane group. H&E staining of pathological sections showed
pulmonary tissue in the PBS group was primarily dominated by
metastases, while almost no metastases were seen in the MG@PM
group (Fig. 7c). Encouragingly, all mice in the PBS and anti-PD-1 groups
died within 60 days, while the survival rate in the MG@PM group was
83.4%, higher than that in the anti-PD-1/Abraxane group (50%), indi-
cating the effectiveness ofMG@PM treatment against lungmetastases
(Fig. 7e). We found that although MIT, GA, and MG had a slight ther-
apeutic effect on orthotopic tumors, they did not significantly inhibit
tumor metastasis and did not show prolonged survival (Supplemen-
tary Figs. 36, 37). The therapeutic effect in orthotopic tumors sug-
gested thatMG@PMsignificantly induced tumor tissue pyroptosis and
provokedpotent immunotherapeutic effects,whichwere ineffective in
the MIT, GA, and MG groups. In orthotopic tumor tissues of the lung
metastasis model, the clinical therapeutic agent Anti-PD-1/Abraxane
caused a slight up-regulation of Cleaved-Caspase-3, which may be
caused by apoptosis (Supplementary Fig. 38). While only MG@PM
caused a significant up-regulation of GSDME-N, suggesting that a sig-
nificant pyroptosis effect occurred in the orthotopic tumor tissues of
the MG@PM group.

Considering our previously hypothesized adjuvant role of GZMB
on MG@PM-induced pyroptosis, we examined the immune micro-
environment in metastatic tumor tissues of the lungs and noticed a
distinct population of CD8+ T cells in MG@PM group (Supplementary
Fig. 39)58,59. The expressionofGSDME in themetastatic lung regionwas
significantly higher in theMG@PMgroup (Fig. 7f). In the present study
we applied the rechallenge model, where lung tumor elimination is
dependent on the systemic immune response induced by orthotopic
tumor pyroptosis, and the presence of GSDME in the lungs suggests
that MG@PM produced a durable and effective stimulatory response.
In addition, immunofluorescence staining of lung tissue sections
revealed enhanced expression and overlapping of GSDME and GZMB
in the MG@PM group (Fig. 7g). The above results suggested that
MG@PM induces an efficient pyroptosis within the orthotopic tumor,
leading to appreciable local exposure of tumor-associated antigens,
which ignites a broad tumor immune response like amatch, and a large
number of CD8+ T cells are recruited and release GZMB, which further
shears the GSDME protein of the tumor cells, thus amplifying the
pyroptosis effect. We defined this process as the MG@PM-triggered
cascade pyroptosis loop. This cascade pyroptosis loop also provides a
theoretical basis for tumor elimination by ultra-low doses of MG@PM.

Discussion
While recent studies have defined certain targets that may affect pyr-
optosis and developed corresponding targeted agents, they all failed
due to inefficient induction, poor safety, and lack of a holistic view of
tumor pyroptosis characteristics60,61. Here, we systematically identified
target omics of TNBC pyroptosis based on the genetic profile char-
acteristics of TNBC patients and established a collection of potential
pyroptosis inducers according to these genes. Screening for disease-
specific risk genes or molecular biomarkers based on a patient’s
unique molecular profile is consistent with the concept of precision
medicine3. Machine learning provides powerful support for rapidly
optimizing medication combinations from a pool of drugs62. In the
context of biomedical artificial intelligence, the importance of inter-
pretability is increasingly recognized, and BFReg-NN is biologically
relevant to accurately characterize the mapping between drug targets
and signature genes and efficacy while retaining the high accuracy of
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Fig. 7 | In vivo anti-metastasis efficacy of nanococrystals and the cascade pyr-
optosis effect. a Schematic illustration of dosing regimens in 4T1-luc metastatic
tumor models. b In vivo bioluminescence images of mice in different groups.
c Representative lung photographs and H&E staining images of lung slices in dif-
ferent groups. Scale bar = 500 μm. d Number of lung metastasis nodules in dif-
ferent groups (n = 5 mice). Anti-PD-1/Abraxane vs. MG@PM: P <0.001. Data are
analyzed with one-way ANOVA followed by multiple comparisons test. e Survival

curves of mice in different groups in 60 days (n = 6 mice). PBS vs. MG@PM:
P <0.001; Anti-PD-1/Abraxane vs. MG@PM: P =0.180. f Immunohistochemistry
analysis of GSMDE at the lung site after the indicated treatments. The dashed line
referred to themetastatic tumor area. Scale bar = 100μm.g Fluorescence imagesof
GSDME (red) and GZMB (green) distribution in metastatic lung tissues after the
indicated treatments. The nuclei were stained with DAPI (blue). Scale bar = 50 μm.
Datawere represented asmean ± SD. Sourcedata are provided as a SourceDatafile.
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the “black box” model. On the basis of rapid access to the compound
drug synergy scores, can also help researchers to explore combina-
tions with similar predictive mechanisms. In the subsequent experi-
ments, omics explored the regulatory mechanisms of the key targets
of the preferred drugsMIT andGA, closing the loop fromprediction to
theoretical validation. Due to non-negligible differences between cell
samples and tumor tissue samples, the detailed mechanism by which
MG@PM triggers pyroptosis of tumor cells requires further
clarification.

Based on the physicochemical properties of the preferred drug
pair MIT and GA, we customized the carrier-free bionic nanococrystal
with the optimal synergistic ratio. While significantly increasing the
drug loading, we attenuate the limited efficacy and systemic toxicity of
small-molecule drugs due to their different pharmacokinetic proper-
ties in vivo63,64. Based on AI target prediction and proteomics results,
we hypothesized that MIT increases the sensitivity of 4T1 to GA by
inducing cell cycle disruption. Meanwhile, GA disrupts cellular redox
homeostasis, regulates ROS content, and ultimately causes Casp3/
Gsdme-dependent pyroptosis. In addition, when the ratio ofMIT to GA
is 1:1.5, nanocrystals with the most suitable particle size and stability
can be prepared, which may have optimal cell membrane penetration.
All these potential mechanisms could affect their synergistic effect as
well as the effectiveness of inducing pyroptosis. Both in vitro and
in vivo experiments have demonstrated the superior antitumor effi-
cacy ofMG@PMeven at small doses, particularly inmetastatic tumors,
where the MG@PM activated cascade pyroptosis loop has shown the
potential to outperform the clinical treatment regimen Anti-PD-1/
Abraxane. This drug formulation strategy is reasonable and concise for
the in vivo application of compound drugs and facilitates clinical
translation. We will also continue to explore the efficacy and
mechanism of action of other predicted potent compound drugs on
the TNBC model.

This compound drug discovery technology platform we have
established, which integrated bioinformatics analysis, artificial intelli-
gence, dosage form development, and experimental validation, has
the potential to drive breakthrough innovations and enhance effi-
ciency in the drug development process. The target omics-based
intelligent drug discovery framework is not only applied to the gen-
ome but will provide medical treatments more compatible with dis-
ease requirements in the emerging assay technologies, prospectively
selecting personalized treatment options by modulating phenotypes
or biomarkers. Meanwhile, AI technology empowers rapid drug
development, providing interpretable biological meaning alongside
efficient precision. Having attempted pyroptosis therapy for TNBC,
our target omics-based intelligent drug discovery framework holds
promise for addressing a wider range of other refractory diseases in
the future. This proposedmethodologywill profoundly impact human
health by providing a paradigm for intelligent drug discovery concepts
while enhancing close interactions between multiple disciplines.

Methods
Ethical statement
All the animal experiments were performed in accordance with the
guidelines evaluated and approved by Institutional Animal Care and
Use Committee (IACUC), Fudan University School of Pharmacy
(Shanghai, China).

Materials
All chemical agents were of analytical grade. Mitoxantrone (MIT) was
purchased from Meilunbio, Co., Ltd (Dalian, China). Gambogic acid
(GA), Indocyanine green (ICG), andHoechst 33258were obtained from
Aladdin Reagent Co. Ltd. (Shanghai, China). Cell counting kit-8 (CCK-
8), Calcein-AM/PI, Annexin-V-FITC/PI, JC-1, andDAPIwere fromKeyGen
Biotech (Nanjing, China). DCFH-DA was acquired from Sigma-Aldrich
(St. Louis, MO, USA). Abraxane (nanoparticle albumin-bound

paclitaxel) was purchased from Celgene Co. Ltd. (New Jersey, USA).
Anti-CD47 antibody (ab108415), anti-CD41 antibody (ab134131), and
anti-CD62P (ab255822) were purchased from Abcam (Cambridge, UK).
Anti-PD-1 antibodywas purchased fromBio X Cell Biotechnology (New
Hampshire, USA). Dulbecco’s modified eagle medium (DMEM), certi-
fied fetal bovine serum (FBS), phosphate Buffered Saline (PBS),
penicillin-streptomycin stock solutions, and trypsin-EDTA (0.25%)
were obtained from Invitrogen Co., (Carlsbad, CA, USA). All the other
chemical solvents and agentswere acquired fromSinopharmChemical
Reagent Co., Ltd (Shanghai, China).

Cell culture
The tumor cell lineMDA-MB-231, 4T1, and 4T1-Luc were obtained from
the Cell Bank of the Chinese Academy of Sciences (Shanghai, China)
and cultured in DMEM with the addition of 10% FBS (v/v), 100mg/mL
of streptomycin, and 100U/mL of penicillin. Cells were incubated at
37°C in a humidified environment with 5% CO2. Cells were tested
monthly and found to be negative for mycoplasma contamination.

Experimental animals
Female Balb/C mice of 7-week-old (20 ± 1 g) and female Sprague-
Dawley (SD) rats of 10-week-old (200 ± 10 g) were both obtained from
SLACAnimal Ltd. (Shanghai, China) and raised under standardhousing
conditions in the Department of Experimental Animals, Fudan Uni-
versity (Shanghai, China). Female mice were chosen because the
majority of breast cancers is seen in female patients. According to the
guidelines of the ethics committee, the maximal tumor size permitted
was 1500mm3. Mice were euthanized when the tumor burden excee-
ded this threshold. Due to the blood volume requirements, female SD
rats were used for the LC-MS/MS analysis.

Exploration of the drug candidates
The gene expression of 360 TNBC patients and 88 normal breast tis-
sues was pre-processed by Transcripts Per Million (TPM) normal-
ization. Given 45 pyroptosis genes, we used the R package “survival” to
analyze the survival of TNBCpatients according to the gene expression
of these genes. Then we selected the key nine pyroptosis genes as
target omics associated with TNBC with the highest Akaike Informa-
tionCriterion (AIC), indicating the best trade-off between the survival’s
goodness of fit and the model’s simplicity65. According to the nine key
pyroptosis genes, we identified 3804 drug candidates by
chemical–gene interactions in the Comparative Toxicogenomics
Database (http://ctdbase.org/downloads/). To filter these drug candi-
dates, we obtained the RNA composite expression of the pyroptosis
regulators and the corresponding compound activity data (DTP NCI-
60) from the CellMiner database (https://discover.nci.nih.gov/
cellminer/home.do). We conducted a correlation analysis between
the average z-score of compound activity and the RNA composite
expression of the pyroptosis regulators. Then we identified 133 drug
candidates significantly related to at least one pyroptosis gene
(P < 0.05). To further narrow down the list of drug candidates, we
analyzed the targets of these compounds using the Swis-
sTargetPrediction database (http://www.swisstargetprediction.ch/)
and PPI networks obtained from the STRING database (https://string-
db.org/)66. We qualified 35 drug candidates with at least one target
associated with pyroptosis genes whose distance was smaller than or
equal to 2 of the PPI value.

Introduction of BFReg-NN
BFReg-NN could define the neural network architecture by existing
biological knowledge. For example, we divided biological factors into
distinct levels, L = {Gene, Protein, Pathway,…}. The modulatory rela-
tionships of internal factors were presented as a matrix set A = {AGene,
AProtein, APathway,…,AL}. AGene could be a genetic relationship deter-
mined by the Gene Regulatory Network (GRN), while AProtein was

Article https://doi.org/10.1038/s41467-024-51980-9

Nature Communications |         (2024) 15:7560 14

http://ctdbase.org/downloads/
https://discover.nci.nih.gov/cellminer/home.do
https://discover.nci.nih.gov/cellminer/home.do
http://www.swisstargetprediction.ch/
https://string-db.org/
https://string-db.org/
www.nature.com/naturecommunications


defined by PPI. Since APathway was a hypergraph, every edge could link
over two nodes, called hyperedges. The factors in a hyperedge pro-
pagated the information to directly affect others. Values in Al were
binary, representing the presence of relations. We also identified the
binarymappingmatrixesM= {M1,M2,…, ML−1} from level l to its upper-
level l+1 as the interaction between levels. We programmed M1 as a
mapping from genes to proteins and M2 to be a straightforward
mapping across levels of proteins and pathways. Both A and M
determined the structure of the neural network, which included neu-
rons and connections between neurons.

BFReg-NNused gene expressiondata x as input.We encoded each

gene individually using the embedded layer, where H0,0
i = embðxiÞ. At

the intra-level l, we aimed to help each biological factor interact with
others by Al . Thus, we used graph neural networks and message-

passing mechanisms to update the embedding Hl , where

bH
l

i =updateð
P

j2Al ðiÞmeassageðHl
i ,H

l
j Þ,Hl

iÞ. The message function was to

produce messages from factor j to factor i, where AlðiÞ decided which
factors were neighbors for factor i. The updating function was to
renew the embedding of factor i with the acquired message and the
prior hidden embedding. The embeddingwas learned level by level. As
Ml was inter-layer relationship between l and l + 1, we utilized the
shielded deep neural network at the next layer to update the original

expression Hl + 1,0
i , where Hl + 1 = activationððMl �WlÞbHl,

+blÞ. The

element-wise multiplication Ml �Wl ensured that absent relations

were not applied to update. Wl and bl were parameters that can be
learned in deep neural networks.

We further enhanced BFReg-NN by adding extra edges in A. The
available biological knowledge reflected the hidden relationships
between factors detected by biotechnology. Nevertheless, owing to
technical limitations, certain knowledge remained challenging to be
detected. Hence, we set up the interaction in two ways. One was gen-
eralized conditioning sustained by available knowledge A. The other
was a partial interaction concealed at the non-existent edge of A,
predicting fresh biological knowledge. We used Al to restrain the
learnable matrix A0

l rather than the binary matrix Al employed in the
basic model to find fresh knowledge. For non-existent edges, we
reweighed it by a small value α =0:005 due to it being less convincing.
As a result, the edge intensities depending onboth types of knowledge
were revised as follows:

A0
l =

βl
i,j, universal regulation that already exists inAl

αβl
i,j, local interaction that is ignored inAl

,

8

<

:

ð1Þ

The parameter βl
i,j was learned by a Multilayer Perceptron based

on the embeddingsHl
i andHl

j . Thus,we learned the factor embeddings
while using these embeddings and transitions to deduce the strength
of implicit interactions among factors. Finally, we used some down-
stream tasks to train BFReg-NN and obtain the weights in BFReg-NN.
For example, we could train it to classify the cell types based on gene
expression if we know the labels of cells. By analyzing the weights, we
obtained the important genes and how these genes led to the cell type.

We compared our proposed BFReg-NN model with various types
of methods on three different tasks. These methods include: (1) tra-
ditional methods (MLP, LSTM, Random Forest, XGBoost, Transfor-
mer), (2) two GNN methods (GCN and GAT), and (3) two classical
medical models (DCell and P-NET)67,68. For both the GNN and medical
models, we provided gene expression data and graph topology as
inputs. The graph topology included gene regulatory networks,
protein-protein interaction networks, and Gene Ontology (GO) term
hierarchy, etc. Therefore, we ensured a fair evaluation of its perfor-
mance. The detailed experimental procedure can be found at this link
(https://arxiv.org/pdf/2304.04982.pdf).

Utilization of BFReg-NN to predict the drug effects
Recall the four layers are (1) relations among drug targets, (2) links
between drug targets and pyroptosis genes, (3) relations among pyr-
optosis genes (4) the survival layer. In the first and third layers, we use
GNN-based equations to obtain the overall situation among drug tar-
gets or pyroptosis genes. In the second layer, we use a DNN-based
equation to transform the overall situation reflected fromdrug targets
into the individual situationof eachpyroptosis gene. The final layer is a
CoxPH model to transform the overall situation reflected from the
pyroptosis gene into patient survival time. Here we limited the neural
network architecture of BFReg-NN by drug targets and pyroptosis
genes. We defined A1 as the relationship between drug targets, A2 as
the relationship between pyroptosis genes, and M1 as the association
between drug targets and pyroptosis genes. All the relationships were
extracted by PPI networks (https://string-db.org/). We set the com-
bined score of an edge as larger than0.6 inA1,A2 andM1. To enrich the
association in M1, factors were also connected if they are 2-hop
neighbors. The downstream task was a survival task to predict
recurrence-free survival (RFS) of TNBC patients. For all possible drug
combinations, we trained the corresponding BFReg-NNs by different
architectures decided by different input drug targets. If the drug tar-
gets can accurately predict the survival of TNBC patients, it indicates
that these two drugs have highly relevant targets for TNBC patient
survival. The c-index was used as an indicator to evaluate the fitness of
the model69. It quantifies the level of concordance between predicted
and observed survival times, with 1 indicating perfect concordance,
and 0.5 suggesting no better than random chance. The c-index of the
final selected drug pairs is larger than 0.9, which indicates the high
association of drug pairs and the survival of TNBC patients. We also
implemented Integrated Gradient to analyze BFReg-NN after it was
well-trained. We obtained the important score of each drug target
through different pyroptosis genes to influence TNBC RFS.

Preparation and characterization of nanococrystals
Preparation of platelet membrane-derived vesicles. Platelets were
separated from the entire blood of female Balb/C mice of 7-week-old
(20 ± 1 g) by centrifugation to separate erythrocytes and leukocytes
and suspended in PBS with protease inhibitor tablets35. The purified
platelet-rich plasma was subsequently placed in ice-cold PBS contain-
ing EDTA and prostaglandin E1 (PGE1, Sigma Aldrich, USA) to prevent
platelet activation and then centrifuged at 800 × g for 20min at room
temperature to collect platelet precipitates. Platelet membranes were
obtained via a repeat freeze-thaw cycle. Briefly, platelet suspensions
were frozen in liquid nitrogen, thawed at 37°C, and centrifuged at
4000 × g for 5min. After washing three times, it was resuspended in
water and set aside.

Preparation of MG andMG@PM. MG nanococrystals were prepared
by a one-step self-assembly method. The dimethyl sulfoxide (DMSO)
solution containing 5mg/mL of MIT and the ethanol solution con-
taining 3mg/mL of GA were mixed in equal volumes, and 100 µL of
the mixture was added dropwise to 2mL of ddH2O. Then stirred at
room temperature for 5 h, and MG gradually appeared. After cen-
trifugation (15,000 × g), the precipitate was collected and repeatedly
rinsed in water three times to remove DMSO and unassembled drug.
After the last centrifugation, MG was resuspended with 1mL of
sterile PBS and stored at 4°C for subsequent use. To prepare
MG@PM, 100 μL of MG suspension (3.5mg/mL) was mixed with
150 µL of platelet membrane suspension (1mg/mL of membrane
proteins) and then successively squeezed through 1 µm, 400 nm,
and 200 nm polycarbonate porous membranes (Avanti Polar Lipids
Inc, GE Healthcare, USA). ICG-labeled MG or MG@PMwere obtained
by the same procedure as MG and MG@PM, except that 1mg/mL of
ICG was added to the ethanol solution during the self-assembly
process of MG.
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Nanococrystal characterization. The morphology of MG and
MG@PM was characterized by using transmission electron micro-
scopy (TEM) (TEM-1400 Plus electron microscope, Leica, Germany).
The diameter, polydispersity index, and zeta potential of nanoco-
crystals were measured by a dynamic light scattering detector (Zeta-
sizer, Malvern, UK). To examine the stability of MG and MG@PM in
PBS, the Z-average diameterwasmeasured for seven consecutive days,
while the steady state ofMG@PM in differentmedia was observed and
photographed. The loading capability (LC) and encapsulation effi-
ciency (EE) of MIT and GA in MG@PM were measured by the UV-vis
spectrophotometer (PerkinElmer Lambda 750). The characteristic
absorption peaks of MIT and GA were 610 nm and 370 nm,
respectively.

EE (%) = (Amount of drugs in nanococrystals)/(Total amount of
drugs input) × 100%

LC (%) = (Amount of drugs in nanococrystals)/(Nanococrystals
weight) × 100%

We performed drug release of MG@PM with a dialysis method.
Briefly, 2mL of MG@PM suspension (containing 1mg of MIT and
1.5mg of GA) was put in dialysis bags (ThermoFisher, MWCO= 3 kDa)
and incubatedwithin 50mLof releasemedium (0.01MPBS, pH=5.5 or
7.4) at 37 °C at 100 rpm for 24 h. The release profiles of MIT and GA
from MG@PM was tested.

Membrane protein characterization. The membrane proteins of
MG@PM nanococrystals were characterized by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). MG@PM
nanococrystals were lysed with the RIPA lysate, and protein con-
centrations were quantified, with platelet membranes and MG serving
as controls. The presence of specific proteinmarkers was identified by
Western blot analysis. In brief, the resulting gels were shifted onto
polyvinylidene difluoride (PVDF) membranes and hatched with anti-
bodies (anti-CD47, anti-CD41, and anti-P-selectin) overnight at 4 °C.
The membranes were then incubated with horseradish peroxidase-
labeled goat anti-rabbit lgG H&L (HRP) antibody (G-21234,
InvitrogenTM, USA) at room temperature for 1 h. GAPDH antibody
(MA5-15738, InvitrogenTM, USA) was used as a control. The resulting
bands were tested with an ECL developer (Beyotime, China) and
quantified using ImageJ software.

Cellular uptake
To determine the cellular uptake of MG and MG@PM, 4T1 cells were
seeded into confocal dishes (2×104 cells per dish) and cultured for
24 hours. Then ICG-labeled MG and MG@PM (50ng/mL of ICG) were
added to cells and incubated for 1 h and 4 h. To acquire fluorescence
signals, cells were fixed with 4% paraformaldehyde before nuclei
staining with Hoechst 33258 for 8min. Photos were subsequently
taken with a confocal laser scanning microscope (CLSM) (Leica,
Germany).

Cytotoxicity assay
A total of 5 × 103 4T1 cells per well were seeded overnight in 96-well
plates, which were subsequently subjected to various treatments for
24 h. Afterward, the CCK-8 reagent was applied to the cell and hatched
for 1.5 h. Then the absorbance at 490 nm of each well was determined
using the microplate reader (Multiskan MK3, Thermos, USA).

Besides, the live/dead cell staining experiment was carried out
using CLSM. Briefly, 4T1 cells were seeded into confocal dishes (2 × 104

cells/dish) and incubated for 24 h. Then cells were cocultured with
various formulations for 24h, staining with Calcein-AM and PI
according to the protocol, followed by imaging with the CLSM.

Synergistic effect evaluation
4T1 cellswere treatedwith compounddrugs ofMITandGAatdifferent
mass ratios, and cell viability was examined as described above. The

combination index (CI) of various combinations was examined using
the Chou-Talalay method, and the results of the CompuSyn software
were classified as synergistic (CI < 1), additive (CI = 1), and antagonistic
(CI > 1)70. Fraction affected (Fa) between 0.2 and 0.8 was deemed to
be valid.

Flow cytometry
4T1 cells with different treatments (Control, MIT, GA, MG, MG@PM)
were harvested, stained with Annexin V-FITC/PI, and subjected to
flow cytometry for quantitative analysis of cell pyroptosis (CytoFLEX
S, Beckman, USA). For quantitative analysis of ROS production in
tumor cells, 4T1 cells were treated with different formulations for
6 h and stained with DCFH-DA (10 µM) for 30min, after which they
were washed with PBS several times and collected for flow
cytometry.

4T1 cells with different treatments (Control, MIT, GA, MG,
MG@PM) were fixed, permeabilized, and blocked. The samples were
hatched with anti-GSDME-N antibody overnight at 4 °C, then stained
with anti-FITC-IgG (H + L) antibody at room temperature. After that,
the cells were collected and washed with PBS several times and ana-
lyzed with flow cytometry.

Pyroptosis assay
To observe cell morphological changes, 4T1 cells were seeded into
6-well plates, after which they were cultured for 24 h in different pre-
parations respectively. The cell morphology was visualized under a
phase contrast microscope (Olympus, Japan). Cellular LDH and ATP
levels were tested using a firefly luciferase-based ATP assay kit (Beyo-
time, China) and LDH cytotoxicity assay kit (Beyotime, China)
according to both manufacturers’ instructions. The luminescent value
and absorbance were measured using a microplate reader (Multiskan
MK3, Thermos, USA).

Western blotting analysis
The cell or tissue samples were lysed with the RIPA lysate, and protein
concentrations were quantified. The presence of specific protein
markers was identified by Western blot analysis. The resulting gels
were shifted onto PVDF membranes and hatched with antibodies
overnight at 4 °C. Primaryantibody againstGSDMB (ab215729, 1:1000),
GSDMD (ab209845, 1:1000), and GSDME (ab215191, 1:1000) was
obtained from Abcam. Caspase-3 (#9662, 1:1000) and GAPDH anti-
body (#2118, 1:1000) were purchased from Cell Signaling Technology.
The resulting bands were incubated with goat anti-rabbit lgG H&L
(HRP) antibody and tested with an ECL developer (Beyotime, China)
and quantified using ImageJ software.

siRNA-mediated knockdown
4T1 cells were seeded into 6-well plates (1 × 105/well) for siRNA-
mediated knockdown. After 24h in culture, 3μL of siCasp3 or siGsdme
(RiboBio, Guangzhou, China) was transfected with Lipo3000 accord-
ing to themanufacturer’s instructions. After 72 h, transfected 4T1 cells
were treated with PBS, MIT, GA, MG, or MG@PM for subsequent
experiments.

Consumption of intracellular GSH
Cells after different treatments were collected and subjected to two
freeze-thaw circles to release intracellular content, and the super-
natant was removed after centrifugation and processed according to
the kit instructions. Intracellular GSH concentrations were measured
by the GSH assay kit (Keygen Biotech, China).

TMT-based proteomics analysis
Proteomics features of 4T1 cells treated with MG@PM were analyzed
by liquid chromatography-mass spectrometry (RIGOL L-3000, RIGOL
TECHNOLOGIES, Beijing, China)35. The 4T1 cells without any treatment
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were taken as control. Protein samples were electrophoresed by SDS-
PAGE to examine the concordance of each group. Protein samples
(100 µg) were reduced, alkylated, and digested overnight with trypsin
at 37°C. Then, each sample solution was tagged with TMT labeling
reagent. After mixing and labeling, the samples were dissolved with
100 µL of mobile phase A (water containing 10mM ammonium for-
mate), centrifuged at 14000 × g for 20min, and the supernatant was
extracted and graded using a high-performance liquid chromato-
graphy phase. The solubilized powder was dissolved in 10 µL of liquid
A, centrifuged at 14000 × g for 20min at 4°C, and 1 µg of the super-
natant was injected into the sampler for liquidmass detection using an
Orbitrap Fusion Lumos mass spectrometer. The NSI source was
operated in positive mode. Other ionization source parameters are
listed as follows, spray voltage: 2000V, capillary temperature: 320 °C.
The scan ranges of full scan mode were set at m/z 407–1500. The raw
data of mass spectrometry detection was analyzed using the Mus
musculus UniProt database71. The parameters for peptide identifica-
tionusing ProteomeDiscoverer 2.4 software (ThermoFisher Scientific)
were set as follows: Carbamidomethyl(C) as static modification; The
was M Oxidation (15.995Da), TMT-6plex (K, N-terminal), Acetyl (Pro-
tein N-terminal) as dynamic modification；Precursor ion mass toler-
ance was ± 15 ppm; Fragment ion mass tolerance was ± 0.02Da; Max
missed cleavageswas 2. Peptide- andprotein-level false discovery rates
(FDRs) were filtered to 1%. Statistical analysis of the identification and
quantization results was done using Perseus 1.6.7.0 software. Themass
spectrometry proteomics data have been deposited to the Proteo-
meXchange Consortium via the PRIDE72 partner repository with the
dataset identifier PXD053939.

Protein activity assay
4T1 cells were seeded in 12-well plates at a density of 1 × 105 cells per
well and cultured overnight. Afterward, cells were treated with differ-
ent formulations for 12 h. After that, cellswere collected, lysed in an ice
bath, and spun down. The concentration of Txn, Mcl1, Top2a, and
Erbb2 in the supernatant was analyzed by using the ELISA assay kits
(Jianglai Biology, China) according to the manufacturer’s instructions.
Then optical density (OD) value at 450nmof eachwellwas determined
using the microplate reader.

NADH and NAD+ measurement
4T1 cells were cultured in 12-well plates (5 × 104 cells per well). After
being treated with PBS, MIT, GA, MG, or MG@PM for 12 h, the cells
were washed with PBS three times. NADH and NAD+ levels were
assessed using the NAD+/NADH assay kit (WST-8) (Beyotime, China)
according to the manufacturer’s instructions. Then optical density
(OD) value at 450 nm of each sample was determined using the
microplate reader.

Mitochondrial Membrane Potential Monitor
4T1 cells were seeded into 12-well plates (1 × 105/well) for 24 h at 37 °C
and incubatedwith different formulations. Finally, cells weredyedwith
JC-1 dyestuff for 30min and the fluorescence signal was obtained by
flow cytometry. The change of the JC-1 indicator from red to green can
facilely detect the decrease of cell membrane potential.

Pharmacokinetics and biodistribution study
To confirm that the platelet membrane modification could endow the
nanococrystal with prolonged blood circulation, six female Balb/C
mice of 7-week-old (20 ± 1 g) were intravenously injectedwith IMG and
IMG@PM (1mg/kg of ICG) separately. At the indicated time points
(0.017, 0.25, 0.5, 1, 2, 4, 8, 12, and 24 hours after injection), blood
samples (50μL) were taken from the fundic venous plexus and placed
into heparin-preprepared polyethylene tubes. Plasmawas collected by
centrifugation and then subjected to fluorescence analysis of ICG on a
microplate reader (Ex = 785 nm, Em = 810 nm). The major

pharmacokinetic parameters were analyzed with Drug and Statistics
(DAS) software.

The orthotopic breast tumor model was established by inoculat-
ing 3 × 106 4T1 cells into onemammary fatpadof femaleBalb/Cmiceof
7-week-old (20 ± 1 g). To identify the tumor-targeting efficiency of
nanococrystals, IMG and IMG@PM (1mg/kg of ICG) were intrave-
nously injected in tumor-bearing mice, respectively. Fluorescence
imaging of mice was performed with the IVIS Spectrum imaging sys-
tem (PerkinElmer, USA) at pre-designed time points (1, 2, 4, 8, 12, and
24 h) post-injection. After 24 h, tumors and major organs (heart, liver,
spleen, lung, and kidneys) were isolated from the mice and subjected
to ex vivo fluorescence imaging using the IVIS Spectrum imaging
system.

LC-MS/MS analysis
Six SD rats were randomly divided into 2 groups (n = 3 rats) and i.v.
injected with MG and MG@PM (3mg/kg of MIT, 4.5mg/kg of GA),
respectively. Blood samples (200μL) were collected at0.017, 0.25, 0.5,
1, 2, 4, 8, 12, and 24 h after injection and then centrifuged at 5000 × g
for 10min immediately. The supernatant plasma samples were stored
at −20 °C until analysis. To detect the concentrations ofMIT and GA in
plasma, 150μL of methanol was added to 50μL of plasma samples in
order to precipitate proteins. Then, the samples were vortexed for
1min and centrifuged at 14,000 × g for 10min. The supernatant was
subsequently subjected to liquid chromatography–tandem mass
spectrometry (LC-MS/MS, SCIEX TripleQuad™ 5500, USA) for analysis.
Chromatographic separation was carried out on an Acquity UPLC
column (2.1 × 100mm, 1.8 µm). The mobile phase A was ultrapure
water containing 2mM FA, and the mobile phase B was ACN. Quanti-
fication of the ions was achieved by the multiple reaction monitoring
(MRM) mode, in positive mode for mitoxantrone (monitoring the
transition of the m/z 445 precursor ion to the m/z 88) and gambogic
acid (monitoring the transition of the m/z 629.4 precursor ion to the
m/z 545). The major pharmacokinetic parameters were analyzed with
Drug and Statistics (DAS) software.

Drug distribution in various organ tissues was examined in the
orthotopic breast tumormodel. Tumors andmajor organs (heart, liver,
spleen, lungs, and kidneys) were isolated from the Balb/C mice after
tail vein injection of MG and MG@PM (3mg/kg of MIT, 4.5mg/kg of
GA) for 24h. The tissues were homogenized by a homogenizer in PBS
and precipitated with methanol. After centrifugation at 12,000 × g for
10min, the supernatant was taken and then the levels ofMIT andGA in
the respective tissues were detected by LC-MS/MS following the above
method.

Anti-tumor efficacy
On day 10 after tumor implantation, murine orthotopic tumor models
were assigned randomly to 5 groups, and then PBS, MIT, GA, MG, and
MG@PM (3mg/kg of MIT, 4.5mg/kg of GA) were injected intrave-
nously once two days for 3 times. Tumor volume was measured with
calipers every two days during the period. After 15 days, tumors were
isolated for photographing and weighing. The stripped tumors were
soaked in 4% paraformaldehyde for 48 h, and paraffin sections were
prepared to study the destruction of tumor cells induced by different
treatments. Moreover, the sections were evaluated through terminal
deoxynucleotidyl transferase-mediated dUTP nick-end labeling
(TUNEL) and hematoxylin-eosin staining (H&E) and observed by an
Inverted fluorescence Microscope (Nikon, Japan).

In vivo immunostimulation experiment
For in vivo immunostimulation studies, the lymph nodes, spleens, and
tumor tissues of murine orthotopic tumor-bearing models were col-
lected on day 7, cut into pieces, and incubated in DMEM containing
collagenase type I (Sigma, USA), collagenase type IV (Biosharp, China),
hyaluronidase (Sigma, USA), and of DNase (Biosharp, Germany) at
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37°C for 40min. Then the sample was passed through 200mesh nylon
strainers to prepare single-cell suspensions and analyzed by flow
cytometry. For the analysis of T cells, the single-cell suspensions were
stained with anti-CD3-PerCP, anti-CD4-FITC, and anti-CD8-APC anti-
bodies. For the analysis of regulatory T cells (Treg), the single-cell
suspensionswere stainedwith anti-CD25-APC, anti-CD4-FITC, and anti-
Foxp3-PE antibodies. To assess the maturity of DCs, the single-cell
suspensions were dyed with anti-CD11c-FITC, anti-CD86-APC, and anti-
CD80-PE antibodies and analyzed by flow cytometry. In addition, sera
from different groups of mice were collected on days 6, 7, and 8,
respectively. The secreted cytokines in the serum, including TNF-α,
IFN-γ, and GZMB were determined by ELISA kits (Absin, Shanghai).

In vivo antimetastatic studies
Ten days after the orthotopic breast tumor model was established,
mice received different treatments on days 0, 2, 4, 6, and 8: 1) PBS, 2)
Anti-PD-1 (200 µg/kg), 3) Abraxane (20mg/kg) + Anti-PD-1 (200 µg/
kg), 4) MG@PM (3mg/kg of MIT, 4.5mg/kg of GA). 1 × 106 4T1-Luc
cells were injected intravenously on day 9 to construct a lung
metastasis model. Bioluminescence imaging ofmice was recorded by
the IVIS Spectrum imaging system every five days. Each mouse
received an intraperitoneal injection of D-luciferin sodium solution
(150mg/kg) 20min before bioluminescence imaging. Mice were
executed on day 29. Pulmonary tissues were captured, colored with
Bouin’s solution (Servicebio, China), and imaged to calculate lung
metastases. Lung tissue sections were also stained with H&E and
observed with Olympus Slide View VS200 (Tokyo, Japan). As for
survival analysis, the lifespan of the murine tumor-bearing model
adopted with the same administration schedule was recorded during
the treatment period.

Statistics and reproducibility
No statistical method was used to predetermine sample sizes. For
in vitro studies, treatment groups were randomly assigned and were
not changed when treatment was given on the culture day indicated.
These experiments were completed in replicates and independent
experiments. For animal studies, mice were randomly assigned to
treatment groups after tumor inoculation. The starting tumor bur-
den in the treatment and control groups was similar before treat-
ment. The investigators were blinded to allocation during
experiments and outcome assessment. Overall survival was esti-
mated by Kaplan–Meier methods and compared with log-rank tests.
Cox proportional hazard models were used for multivariate survival
analysis. Multivariate logistic regression models were used to assess
binary outcomes of response to treatment. Pearson’s correlation
coefficient was used to assess linear correlations between variables.
Two-group was compared using unpaired student’s t-test, and
multiple-group analysis was performed using one-way ANOVA fol-
lowed by multiple comparisons test. In vitro experiments were car-
ried out at least triplicate independent experiments as indicated. All
in vivo studies included a minimum of five mice per group for drug
therapy studies. All statistical analyses were performed using
GraphPad Prism 9 software.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Gene expressions of these genes on TNBC and normal breast tissues
were obtained from Fudan University Shanghai Cancer Center TNBC
datasets (FUSCCTNBC, http://www.biosino.org/; OEP000155 node;
GEO: GSE118527; SRA: SRP157974; figshare: https://doi.org/10.6084/
m9.figshare.19783498.v5). Gene Ontology (GO) was performed using
the Metascape database (http://metascape.org/). A protein-protein

interaction (PPI) network was constructed based on relationship data
obtained from the STRING database (https://cn.string-db.org/). The
proteomics data have been deposited to the ProteomeXchange with
the dataset identifier PXD053939. Source data are provided with this
paper. All remaining data can be found in the Article, Supplementary
and Source Data files. Source data are provided with this paper.

Code availability
The work informed BFReg-NN developments, which are available
from GitHub (https://github.com/BoshuOuyang/BFregNN-Cox-for-
pyroptosis-in-TNBC/).

References
1. Nass, S. J. et al. Accelerating anticancer drug development —

opportunities and trade-offs. Nat. Rev. Clin. Oncol. 15,
777–786 (2018).

2. Ocaña, A., García-Alonso, S., Amir, E. & Pandiella, A. Refining early
antitumoral drug development. Trends Pharmacol. Sci. 39,
922–925 (2018).

3. Vincent, F. et al. Phenotypic drug discovery: recent successes,
lessons learned and new directions. Nat. Rev. Drug Discov. 21,
899–914 (2022).

4. Gandomi, A. & Haider, M. Beyond the hype: big data concepts,
methods, and analytics. Int. J. Inf. Manag. 35, 137–144 (2015).

5. Edgar, R., Domrachev, M. & Lash, A. E. Gene expression omnibus:
NCBI gene expression and hybridization array data repository.
Nucleic Acids Res. 30, 207–210 (2002).

6. Parkinson, H. et al. ArrayExpress-a public database of microarray
experiments and gene expression profiles. Nucleic Acids Res 35,
D747–D750 (2007).

7. Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Oppor-
tunities and challenges in phenotypic drug discovery: an industry
perspective. Nat. Rev. Drug Discov. 16, 531–543 (2017).

8. Yang, F. et al. Ferroptosis heterogeneity in triple-negative breast
cancer reveals an innovative immunotherapy combination strategy.
Cell Metab. 35, 84–100.e108 (2023).

9. Al-Lazikani, B., Banerji, U. & Workman, P. Combinatorial drug ther-
apy for cancer in the post-genomic era. Nat. Biotechnol. 30,
679–692 (2012).

10. Chen, Y., Pal, S. & Hu, Q. Cell-based relay delivery strategy in bio-
medical applications. Adv. Drug Deliv. Rev. 198, 114871 (2023).

11. Holbeck, S. L. et al. The National Cancer Institute ALMANAC: a
comprehensive screening resource for the detection of anticancer
drug pairs with enhanced therapeutic activity. Cancer Res 77,
3564–3576 (2017).

12. Lavecchia, A. Machine-learning approaches in drug discovery:
methods and applications. Drug Discov. Today 20, 318–331 (2015).

13. Guvenc Paltun, B., Mamitsuka, H. & Kaski, S. Improving drug
response prediction by integrating multiple data sources: matrix
factorization, kernel and network-based approaches. Brief. Bioin-
form 22, 346–359 (2021).

14. Reker, D. et al. Computationally guided high-throughput design of
self-assembling drug nanoparticles. Nat. Nanotechnol. 16,
725–733 (2021).

15. Sadybekov, A. A. et al. Synthon-based ligand discovery in virtual
libraries of over 11 billion compounds. Nature 601, 452–459 (2022).

16. Lutz, I. D. et al. Top-down design of protein architectures with
reinforcement learning. Science 380, 266–273 (2023).

17. Menden, M. P. et al. Community assessment to advance compu-
tational prediction of cancer drug combinations in a pharmacoge-
nomic screen. Nat. Commun. 10, 2674 (2019).

18. Preuer, K. et al. DeepSynergy: predicting anti-cancer drug synergy
with Deep Learning. Bioinformatics 34, 1538–1546 (2018).

19. Waks, A. G. & Winer, E. P. Breast cancer treatment: a review. JAMA
321, 288–300 (2019).

Article https://doi.org/10.1038/s41467-024-51980-9

Nature Communications |         (2024) 15:7560 18

http://www.biosino.org/
https://doi.org/10.6084/m9.figshare.19783498.v5
https://doi.org/10.6084/m9.figshare.19783498.v5
http://metascape.org/
https://cn.string-db.org/
https://www.ebi.ac.uk/pride/archive/projects/PXD053939
https://github.com/BoshuOuyang/BFregNN-Cox-for-pyroptosis-in-TNBC/
https://github.com/BoshuOuyang/BFregNN-Cox-for-pyroptosis-in-TNBC/
www.nature.com/naturecommunications


20. Broz, P., Pelegrin, P. & Shao, F. The gasdermins, a protein family
executing cell death and inflammation. Nat. Rev. Immunol. 20,
143–157 (2020).

21. Chen, Y. et al. Small-molecule ferritin degrader as a pyroptosis
inducer. J. Am. Chem. Soc. 145, 9815–9824 (2023).

22. Jiang, Y. Z. et al. Genomic and transcriptomic landscape of triple-
negative breast cancers: subtypes and treatment strategies.Cancer
Cell 35, 428–440.e425 (2019).

23. Zhang, Z., Zhang, Y. & Lieberman, J. Lighting a fire: can we harness
pyroptosis to ignite antitumor immunity? Cancer Immunol. Res. 9,
2–7 (2021).

24. Wang, Y. et al. Chemotherapy drugs induce pyroptosis through
caspase-3 cleavage of a gasdermin. Nature 547, 99–103 (2017).

25. Ouyang, B. et al. Albumin-based formononetin nanomedicines for
lung injury and fibrosis therapy via blocking macrophage pyr-
optosis. Mater. Today Bio 20, 100643 (2023).

26. Yoshihara, K. et al. Inferring tumour purity and stromal and immune
cell admixture from expression data. Nat. Commun. 4, 2612 (2013).

27. Xinnan, D., Caihua, S., Jie, Z., Xiaoxiao, L. &Dongsheng, L. Biological
FactorRegulatoryNeuralNetwork. arXiv e-prints. https://doi.org/10.
48550/arXiv.42304.04982 (2023).

28. Paciucci, P. A. Sklarin, N.T. Mitoxantrone and hepatic toxicity. Ann.
Intern Med. 105, 805–806 (1986).

29. Xia, G. et al. Gambogic acid sensitizes gemcitabine efficacy in
pancreatic cancer by reducing the expression of ribonucleotide
reductase subunit-M2 (RRM2). J. Exp. Clin. Cancer Res. 36,
107 (2017).

30. Su, X. et al. Localized disruption of redox homeostasis boosting
ferroptosis of tumor by hydrogel delivery system. Mater. Today Bio
12, 100154 (2021).

31. Sundararajan, M., Taly, A. & Yan, Q. Axiomatic attribution for deep
networks. International conference on machine learning. PMLR. 70,
3319–3328 (2017).

32. Xiao, Y. et al. Microenvironment-Responsive Prodrug-Induced Pyr-
optosis Boosts Cancer Immunotherapy. Adv. Sci. 8,
e2101840 (2021).

33. Guo, J., Yu, Z., Das, M. & Huang, L. Nano codelivery of oxaliplatin
and folinic acid achieves synergistic chemo-immunotherapy with
5-fluorouracil for colorectal cancer and livermetastasis. ACSNano.
14, 5075–5089 (2020).

34. Zhuang, J. et al. Targeted gene silencing in vivo by platelet
membrane-coated metal-organic framework nanoparticles. Sci.
Adv. 6, eaaz6108 (2020).

35. Jiang, Q. et al. Platelet membrane-camouflaged magnetic nano-
particles for ferroptosis-enhanced cancer immunotherapy. Small
16, e2001704 (2020).

36. Hu, Q. et al. Engineered nanoplatelets for enhanced treatment of
multiple myeloma and thrombus. Adv. Mater. 28,
9573–9580 (2016).

37. Liu, Y. et al. Erythrocyte-platelet hybrid membranes coating poly-
pyrrol nanoparticles for enhanced delivery and photothermal
therapy. J. Mater. Chem. B. 6, 7033–7041 (2018).

38. Bertheloot, D., Latz, E. & Franklin, B. S. Necroptosis, pyroptosis and
apoptosis: an intricate game of cell death. Cell Mol. Immunol. 18,
1106–1121 (2021).

39. Kataoka, T. et al. Bcl-rambo, a novel Bcl-2 homologue that induces
apoptosis via its unique C-terminal extension. J. Biol. Chem. 276,
19548–19554 (2001).

40. Meng, F. et al. BCL2L13: physiological and pathological meanings.
Cell Mol. Life Sci. 78, 2419–2428 (2021).

41. Jia, Y. et al. Metformin protects against intestinal ischemia-
reperfusion injury and cell pyroptosis via TXNIP-NLRP3-GSDMD
pathway. Redox Biol. 32, 101534 (2020).

42. Chen, H., Peng, Y., Wang, L. & Wang, X. Sevoflurane attenuates
cognitive dysfunction and NLRP3-dependent caspase-1/11-GSDMD

pathway-mediated pyroptosis in the hippocampus via upregulation
of SIRT1 in a sepsis model. Arch. Physiol. Biochem 128,
1413–1420 (2022).

43. Orzalli, M. H. et al. Virus-mediated inactivation of anti-
apoptotic Bcl-2 family members promotes Gasdermin-E-
dependent pyroptosis in barrier epithelial cells. Immunity 54,
1447–1462 e1445 (2021).

44. Nielsen, K. V. et al. Aberrations of ERBB2 and TOP2Agenes in breast
cancer. Mol. Oncol. 4, 161–168 (2010).

45. Cruz-Lopez, O. et al. Design, synthesis, HER2 inhibition and antic-
ancer evaluation of new substituted 1,5-dihydro-4,1-benzox-
azepines. J. Enzym. Inhib. Med Chem. 36, 1553–1563 (2021).

46. Lee, H. Y., Nga, H. T., Tian, J. & Yi, H. S. Mitochondrial metabolic
signatures in hepatocellular carcinoma. Cells 10, 1901 (2021).

47. Yang, J., Chen, Z., Liu, N. & Chen, Y. Ribosomal protein L10 in
mitochondria serves as a regulator for ROS level in pancreatic
cancer cells. Redox Biol. 19, 158–165 (2018).

48. Pecoraro, A., Pagano, M., Russo, G. & Russo, A. Ribosome biogen-
esis and cancer: overview on ribosomal proteins. Int J. Mol. Sci. 22,
5496 (2021).

49. Robinson, K. S. et al. FL. ZAKα-driven ribotoxic stress response
activates the human NLRP1 inflammasome. Science 377,
328–335 (2022).

50. Kang, J. et al. Ribosomal proteins and human diseases: molecular
mechanisms and targeted therapy.Signal Transduct. Target Ther.6,
323 (2021).

51. Wu, J. et al. PHA-4/FoxA senses nucleolar stress to regulate lipid
accumulation in Caenorhabditis elegans. Nat. Commun. 9,
1195 (2018).

52. Murayama, A. et al. Epigenetic control of rDNA loci in response to
intracellular energy status. Cell 133, 627–639 (2008).

53. Chen, Y. et al. Proteolysis-targeting chimera (PROTAC) delivery
system: advancing protein degraders towards clinical translation.
Chem. Soc. Rev. 51, 5330–5350 (2022).

54. Chen, R., Kang, R. & Tang, D. The mechanism of HMGB1 secretion
and release. Exp. Mol. Med. 54, 91–102 (2022).

55. Wan, L., Pantel, K. & Kang, Y. Tumor metastasis: moving new bio-
logical insights into the clinic. Nat. Med. 19, 1450–1464 (2013).

56. Gradishar, W. J. et al. Breast cancer, Version 3.2020, NCCN clinical
practice guidelines in oncology. J. Natl Compr. Canc Netw. 18,
452–478 (2020).

57. Schmid, P. et al. Atezolizumab plus nab-paclitaxel as first-line
treatment for unresectable, locally advanced or metastatic triple-
negative breast cancer (IMpassion130): updated efficacy results
froma randomised, double-blind, placebo-controlled, phase 3 trial.
Lancet Oncol. 21, 44–59 (2020).

58. Zhang, Z. et al. Gasdermin E suppresses tumour growth by acti-
vating anti-tumour immunity. Nature 579, 415–420 (2020).

59. Liu, Y. et al. Gasdermin E-mediated target cell pyroptosis by CAR
T cells triggers cytokine release syndrome. Sci. Immunol. 5,
eaax7969 (2020).

60. Yang, F., Bettadapura, S. N., Smeltzer, M. S., Zhu, H. & Wang, S.
Pyroptosis and pyroptosis-inducing cancer drugs. Acta Pharmaco-
logica Sin. 43, 2462–2473 (2022).

61. Su, X. et al. A Carbonic Anhydrase IX (CAIX)-Anchored Rhenium(I)
Photosensitizer Evokes Pyroptosis for Enhanced Anti-Tumor
Immunity. Angew. Chem. Int. Ed. Engl. 61, e202115800 (2021).

62. Xie, C. et al. Amelioration of Alzheimer’s disease pathology by
mitophagy inducers identified via machine learning and a cross-
species workflow. Nat. Biomed. Eng. 6, 76–93 (2022).

63. Da Silva, C. G., Rueda, F., Lowik, C. W., Ossendorp, F. & Cruz, L. J.
Combinatorial prospects of nano-targeted chemoimmunotherapy.
Biomaterials 83, 308–320 (2016).

64. Chen, Y. et al. Tailored chemodynamic nanomedicine improves
pancreatic cancer treatment via controllable damaging neoplastic

Article https://doi.org/10.1038/s41467-024-51980-9

Nature Communications |         (2024) 15:7560 19

https://doi.org/10.48550/arXiv.42304.04982
https://doi.org/10.48550/arXiv.42304.04982
www.nature.com/naturecommunications


cells and reprogramming tumor microenvironment. Nano Lett. 20,
6780–6790 (2020).

65. Tang, B. et al. Integrative analysis of the molecular mechanisms,
immunological features and immunotherapy response of ferrop-
tosis regulators across 33 cancer types. Int J. Biol. Sci. 18,
180–198 (2022).

66. Daina, A., Michielin, O. & Zoete, V. SwissTargetPrediction: updated
data and new features for efficient prediction of protein targets of
small molecules. Nucleic Acids Res 47, W357–W364 (2019).

67. Ma, J. et al. Using deep learning to model the hierarchical structure
and function of a cell. Nat. Methods 15, 290–298 (2018).

68. Elmarakeby, H. A. et al. Biologically informed deep neural network
for prostate cancer discovery. Nature 598, 348–352 (2021).

69. Steck, H., et al. In advances in neural information processing sys-
tems 20. 21st Annual Conference on Neural Information Processing
Systems (2008).

70. Chou, T. C. Theoretical basis, experimental design, and compu-
terized simulation of synergism and antagonism in drug combina-
tion studies. Pharm. Rev. 58, 621–681 (2006).

71. Gessulat, S. et al. Prosit: proteome-wide prediction of peptide
tandem mass spectra by deep learning. Nat. Methods 16,
509–518 (2019).

72. Perez-Riverol, Y. et al. The PRIDE database resources in 2022: A Hub
for mass spectrometry-based proteomics evidences. Nucleic Acids
Res. 50, 543–552 (2022).

Acknowledgements
The authors deeply thank Meigui Zhu and the teamwork (Bionovogene
Co., Ltd., Suzhou, China) for proteomics characterization. The authors
also thank Shiyanjia Lab (www.shiyanjia.com) for the TEM analysis. This
work was supported by the National Science Foundation of China
(82172073, 51933002, 8217070298), the National Key R&D Program of
China (2022YFF0708700), the Guangdong Basic and Applied Basic
Research Foundation (2021A1515220011), the Program of the Shanghai
Academic Research Leader (20XD1400400). This work was partially
funded by Microsoft Research Asia.

Author contributions
B.O. and S.S. designed the experiments. B.O. and C.S. performed the
experiments and collected the data. X.D., Q.C., W.Y., T.L., and L.S. pro-
vided equipment and technical support. X.S., Y.C., Y.H., S.W., X.Q., R.X.,
and R.H. assisted in the experimental validation. All authors provided
adequate support in writing themanuscript. J.Z. and S.P. gave guidance

in data analysis. Z.P., D.L., and J.W. guided in the conceptualization and
methodological part of this research. All authors gave their approval to
the final manuscript version.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-51980-9.

Correspondence and requests for materials should be addressed to
Shaojun Peng, Jun Zhang, Jianxin Wang, Dongsheng Li or Zhiqing Pang.

Peer review information Nature Communications thanks Jinyao Liu,
Xiaochen Bo and the other, anonymous, reviewer(s) for their contribu-
tion to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. Youdonot havepermissionunder this licence toshare adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-51980-9

Nature Communications |         (2024) 15:7560 20

http://www.shiyanjia.com
https://doi.org/10.1038/s41467-024-51980-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/naturecommunications

	AI-powered omics-based drug pair discovery for pyroptosis therapy targeting triple-negative breast cancer
	Results
	Identification of pyroptosis genes and drugs across TNBC cohorts
	Screening compound medications and predicting effects through machine learning
	Combination of MIT and GA synergistically induces pyroptosis
	Synthesis and characterization of nanococrystals
	In vitro cytotoxic and pyroptosis effects of nanococrystals
	Mechanism of nanococrystals-mediated pyroptosis
	In vivo antitumor effects of nanococrystals
	Nanococrystals-mediated pyroptosis for in vivo immune system activation
	In vivo anti-metastasis efficacy and the cascade pyroptosis effect

	Discussion
	Methods
	Ethical statement
	Materials
	Cell culture
	Experimental animals
	Exploration of the drug candidates
	Introduction of BFReg-NN
	Utilization of BFReg-NN to predict the drug effects
	Preparation and characterization of nanococrystals
	Preparation of platelet membrane-derived vesicles
	Preparation of MG and MG@PM
	Nanococrystal characterization
	Membrane protein characterization

	Cellular uptake
	Cytotoxicity assay
	Synergistic effect evaluation
	Flow cytometry
	Pyroptosis assay
	Western blotting analysis
	siRNA-mediated knockdown
	Consumption of intracellular GSH
	TMT-based proteomics analysis
	Protein activity assay
	NADH and NAD+ measurement
	Mitochondrial Membrane Potential Monitor
	Pharmacokinetics and biodistribution study
	LC-MS/MS analysis
	Anti-tumor efficacy
	In vivo immunostimulation experiment
	In vivo antimetastatic studies
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




