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Abstract: The view that satellite RNAs (satRNAs) and satellite viruses are purely molecular 

parasites of their cognate helper viruses has changed. The molecular mechanisms underlying 

the synergistic and/or antagonistic interactions among satRNAs/satellite viruses, helper 

viruses, and host plants are beginning to be comprehended. This review aims to summarize 

the recent achievements in basic and practical research, with special emphasis on the 

involvement of RNA silencing mechanisms in the pathogenicity, population dynamics, and, 

possibly, the origin(s) of these subviral agents. With further research following current trends, 

the comprehensive understanding of satRNAs and satellite viruses could lead to new insights 

into the trilateral interactions among host plants, viruses, and satellites. 
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1. Introduction 

Several viruses, as obligate parasites to the host plants, are associated with even smaller molecular 

parasites, sometimes being commensal or even beneficial, and are among the simplest life forms, 

namely, satellite RNAs (satRNAs) and satellite viruses. These satRNAs are short RNA molecules, 

usually <1,500 nt, that depend on cognate helper viruses for replication, encapsidation, movement, and 

transmission, but most share little or no sequence homology to the helper viruses [1]. In contrast, 

satellite viruses are satRNAs that encode and are encapsidated in their own capsid proteins (CPs). 
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Certain satRNAs code for nonstructural proteins, but most satRNAs do not encode any functional 

protein products and are therefore thought to exert their biological functions through direct RNA 

interactions. Recent advances in research into satRNAs and satellite viruses have resulted in deeper 

insights into the molecular biology of these small replicating entities and to certain practical applications 

in modern biotechnology. 

Satellite viruses and satRNAs have attracted much interest over the past decades, mainly for the 

following reasons [2-5]: (1) they can modulate − attenuate or exacerbate − the symptoms caused by their 

cognate helper viruses [6-8]; (2) they do not encode their own RNA-dependent RNA polymerases 

(RdRps) for their own replication and apparently use replication machineries similar to those of the 

helper viruses and thus have great potential as surrogate systems for the study of the replication 

mechanisms of their cognate helper viruses; (3) they can alter − usually reduce − the accumulation of 

their cognate helper viral RNAs and are thus considered the molecular parasites of the helper viruses; 

and (4) they can accumulate to high levels in host plants and thus in some cases can be developed into 

high-level expression vectors for foreign genes [9,10]. Because of these features, satRNAs and satellite 

viruses are good biological systems for the study of the molecular biology of viruses. Indeed, current 

studies of satRNAs and satellite viruses have provided further insights into several key subjects in 

molecular virology. In addition, recent studies have revealed the roles of an antiviral defense system of 

host plants, RNA silencing or posttranscriptional gene silencing (PTGS) in the pathogenicity and 

molecular biology of satRNAs. This information has altered our views of satRNAs and satellite viruses 

as being purely parasitic to the helper viruses (e.g., [5,11,12]). 

This review focuses on current achievements in several important topics concerning satRNAs and 

satellite viruses, namely replication mechanisms, pathogenicity, and molecular evolution. 

Comprehensive information for all satRNAs and satellite viruses characterized previously has been 

provided in several reviews [1,3,5,13,14]. By understanding satRNAs and satellite viruses, we may gain 

further knowledge of the molecular biology of their cognate helper viruses and host plants, which might 

be useful in effectively managing viral diseases of plants and developing satRNA/satellite virus-based 

vector systems. 

2. General classification of satRNAs and satellite viruses 

To assist in distinguishing the different categories of sub-viral RNAs, an illustrated key is provided 

in Figure 1. Each category of subviral RNA can be identified according to the salient features listed in 

the key by the detection of additional RNAs from the purified virus particles (virions) or from virions 

with different morphology and/or density. The satellites, which are categorized at a status equivalence 

of “family” (NCBI Taxonomy ID: 12877), can be classified into the following types: single-stranded 

RNA satellite viruses, single-stranded satellite DNAs, double-stranded satRNAs, and single-stranded 

satRNAs [15,16]. Of note, satellites do not constitute a homogeneous taxonomic group [15] and are 

classified mainly according to the nature of the genetic materials. Satellite DNAs are usually circular 

DNAs of about 1.3 kb that encode a nonstructural protein known as C1. The satellite DNAs, also 

known as DNA components, are associated with monopartite begomoviruses [15]. These DNA 

components play important roles in the pathogenicity of begomoviruses [e.g., 17].  
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Figure 1. A key illustrating the hierarchical classification of subviral RNAs. Blue boxes 

describe salient features distinguishing different categories of subviral RNAs, pink boxes 

show satellite viruses and satRNAs, and green boxes show the other types of RNAs. 

Abbreviations: ss, single-stranded; ds, double-stranded; vRNA, viral genomic RNA; CP, 

coat protein. 
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Another shorter, noncoding form of satellite DNAs, of about 680 nt, has been found associated with 

Tomato leaf curl virus [18]. Furthermore, a nanovirus-like DNA component, termed DNA1, which 

encodes its own Rep protein, is also associated with begomovirus diseases [19]. The focus of this 

review is on subviral RNAs; thus in the following sections we restrict the discussion of satellites to 

members belonging to single-stranded RNA satellite viruses and single-stranded satRNAs associated 

with plant viruses. For further discussions of single-stranded satellite DNAs, please refer to the recent 

reviews [20,21]. 

By definition, all satellites share the following features: they depend on helper viruses, at least for 

replication; they are not part of the helper viral genome and are not required for the infection cycle of 

their helper viruses (with at least one exception: the satRNA associated with Groundnut rosette virus, 

GRV, [22]); and they share little or no nucleotide sequence similarity with their cognate helper viruses, 

which distinguishes them from subgenomic or defective RNAs (D-RNAs).  

2.1. Single-Stranded RNA Satellite Viruses 

There are two subgroups in this type [15,23]: subgroup 1, Chronic bee-paralysis virus-associated 

satellite virus, which contains a single member, Chronic bee-paralysis satellite virus [24]; and subgroup 

2, Tobacco necrosis satellite viruses, which include the four members Maize white-line mosaic satellite 

virus [25], Panicum mosaic satellite virus [26], Tobacco mosaic satellite virus [27], and Tobacco 

necrosis satellite virus [28,29]. With respect to conventions, in the following section, these satellite 

viruses are referred to by names or acronyms traditionally used among plant virologists; for example, 

Panicum mosaic satellite virus is referred to as Satellite panicum mosaic virus (SPMV) in recent 

publications [30]. The four species of satellite viruses in subgroup 2 are associated with helper viruses in 

the genera Aureusvirus, Panicovirus, Tobamovirus, and Necrovirus. These satellite viruses share no 

sequence similarities with each other, which suggests that they might have originated from independent 

events in evolutionary history. Among them, only Satellite tobacco mosaic virus (STMV) has a 

rod-shaped virus as the helper [31]. Of note, deletion of nucleotides A and G at positions 1 and 61, 

respectively, of STMV, which is naturally adapted to Tobacco mild green mosaic virus, is required for 

adaptation to other helper viruses, namely Tobacco mosaic virus (TMV), Tomato mosaic virus or Green 

tomato atypical mosaic virus [32]. Satellite viruses can co-evolve with the helper viruses whenever they 

encounter each other. The recent advances concerning satellite viruses are discussed in section 4. 

2.2. Single-stranded satRNAs 

Single-stranded satRNAs are classified into three subgroups: subgroup 1, large satRNAs; subgroup 2, 

small linear satRNAs; and subgroup 3, circular satRNAs. Subgroup 1 contains large satRNAs of about 

0.7 to 1.5 kb that encode at least one nonstructural protein. Thus, satRNAs in this subgroup are usually 

referred to as messenger-type satRNAs. Species in subgroup 1 recognized by the International 

Committee on Taxonomy of Viruses include Arabis mosaic virus large satRNA (satArMV), Bamboo 

mosaic virus satRNA (satBaMV), Chicory yellow mottle virus large satRNA, Grapevine Bulgarian 

latent virus satRNA, Grapevine fanleaf virus satRNA (satGFLV), Myrobalan latent ringspot virus 

satRNA, Strawberry latent ringspot virus satRNA, Tomato black ring virus (TBRV) satRNA, TBRV G 

serotype satRNA, and Beet ringspot virus satRNA [15,33]. Although the actual biological functions of 
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many nonstructural proteins encoded by satRNAs are unknown, the protein encoded by TBRV satRNA 

has been detected in vivo and is involved in its replication [34]. The P3 protein encoded by a large 

satRNA, designated RNA3, of 1,114 nt, and associated with GFLV-F13, is also involved in satRNA 

replication [35]. In addition, the protein encoded by the satArMV is required for the in planta replication 

of the satRNA [36]. In contrast, the P20 protein encoded by satBaMV RNA [37] is not essential for 

replication but is involved in the systemic movement of satBaMV RNA [38,39]. It preferentially binds to 

5’ and 3’ untranslated regions (UTRs) of satBaMV RNA [40] and interacts with the CP, a movement 

protein of its helper virus [triple gene block protein 1 (TGBp1)] and P20 itself [39]. The subcellular 

localization and expression kinetics of P20 have recently been investigated in detail [41], which further 

suggests its involvement in long-distance movement of satBaMV RNA. In addition to the 

satRNA-encoded proteins with reported functions, Blackcurrant reversion virus in the genus Nepovirus 

of the family Comoviridae also contains a satRNA, which is 1,432 nt and encodes a single protein of 402 

amino acids and has unknown function [42]., 

Species in subgroup 2 of single-stranded satRNAs include Cucumber mosaic virus (CMV) satRNA, 

Cymbidium ringspot virus (CymRSV) satRNA, Pea enation mosaic virus satRNA, GRV satRNA, 

Panicum mosaic virus small satRNA, Peanut stunt virus (PSV) satRNA, Turnip crinkle virus (TCV) 

satRNA, and Tomato bushy stunt virus (TBSV) satRNA B10, and TBSV B1 [15,33]. Tobacco necrosis 

virus small satRNA and Robinia mosaic virus satRNA are listed as tentative species in this subgroup. 

The satRNAs in this subgroup are short (usually less than 700 nt), linear RNA molecules that do not 

exhibit any biologically significant messenger activity. Among the short linear satRNAs, those 

associated with TCV, CMV, and PSV are the most thoroughly characterized (for reviews, see [3-5,43]). 

Strictly speaking, one of the satRNAs associated with TCV, namely satC, does not fit the definition of 

satRNAs, because satC is a hybrid molecule composed of a true satRNA, satD, and two fragments from 

the 3’ terminus of TCV genomic RNA [44]. However, studies of the satC have revealed many important 

factors and mechanisms involved in the infection cycle of both TCV and satC, which will be discussed in 

detail in the following sections.  

Subgroup 3 includes the following species: ArMV small satRNA, Cereal yellow dwarf virus-RPV 

satRNA (previously Barley yellow dwarf virus satellite RNA), Chicory yellow mottle virus satRNA, 

Lucerne transient streak virus satRNA, Solanum nodiflorum mottle virus satRNA, Subterranean clover 

mottle virus satRNA (2 types), Tobacco ringspot virus satRNA, and Velvet tobacco mottle virus satRNA 

[15,33]. Species in this subgroup are characterized by a small (shorter than 400 nt), circular RNA 

genome without biologically significant messenger activity. These circular satRNAs, previously 

referred to as virusoids, replicate through a rolling-circle mechanism and self-cleave into monomers by 

use of endogenous hammerhead ribozyme activity (e.g., [45-47]).  

3. Newly identified satRNAs or satellite viruses 

Despite great technical advances in molecular virology, only a few new satRNA species have been 

identified over the past five years. These newly identified satRNAs are all associated with helper viruses 

in genera previously known to harbor satellites. These new satRNAs include the following. 1) A new 

satRNA was associated with the disease carrot motley dwarf (CMD), which is caused by a mixed 

infection of two viruses - the polerovirus Carrot red leaf virus and one of the umbraviruses, Carrot 
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mottle mimic virus or Carrot mottle virus [48]. 2) A new satRNA associated with CMV emerged after 

serial passages of one strain of CMV, CMV-Fny, in Nicotiana tabacum cv. Ky 14, in an attempt to 

identify the origins of satRNAs [49]; no new satRNAs were observed in the same serial-passage 

experiment with the other strain, CMV-LS. Through nucleotide sequence analysis, the newly emerged 

satRNA was shown to be unique, which minimized the possibility of contamination. The observation is 

important because it indicates that satRNAs might be generated naturally during complex interactions 

among the invading viruses and host plants. 3) A novel satellite RNA associated with Beet black scorch 

virus, a necrovirus, was identified and molecularly characterized [50]; both mono- and dimeric forms of 

single- or double-stranded satRNAs were observed, which raised the possibility that the novel satRNAs 

replicate through multimeric intermediates.  

The apparent lack of new satRNAs or satellite viruses identified in other new genera of plant viruses 

may reflect at least two scenarios: 1) satellites associated with other genera of plant viruses cause very 

mild symptoms or do not cause differences in symptoms inflicted by their cognate helpers because of 

long-term co-evolution and thus did not attract much research attention; or 2) viruses of the other genera 

have developed resistance through long-term co-evolution with satRNAs. Although previous studies 

have provided evidence for the existence of mutual beneficial relationships between satellites and helper 

viruses [5,22,51,52], most satellites may exert negative effects on their helper viruses, an observation 

that might eventually lead to the extinction of such satellite/helper-virus combinations. The latter 

scenario is further supported by the recent finding that CymRSV may direct the RNA silencing 

mechanism of the host plants to control the accumulation of the associated satRNA [12]. This 

observation may explain why satRNAs and satellite viruses are rarely observed in natural settings and 

why these satellites are found associated with only certain genera of viruses or certain species within the 

same genus of viruses. 

4. Recent advances regarding satellite viruses 

Several novel findings regarding SPMV in recent years have provided insights into how satellite 

viruses may cause symptoms. In addition to forming the protective shell for RNAs and facilitating 

systemic invasion, the CP of SPMV was demonstrated to elicit symptoms on a nonhost plant Nicotiana 

benthamiana [53]. When expressed by the Potato virus X (PVX)-based vector, the SPMV CP alone 

could cause necrosis symptoms on N. benthamiana. Omarov et al. [54] further demonstrated that in 

addition to the full-length, 17-kDa SPMV CP, a 9.4-kDa C-terminal protein, which exclusively 

co-fractionated with the cell wall- and membrane-enriched fractions, could also be translated from the 

third in-frame start codon of SPMV RNA. The expression of this 9.4-kDa C-terminal protein was 

linked to the severe symptoms caused by SPMV, possibly by interfering with the host membranes. As 

well, SPMV CP has multiple functions, including facilitating efficient satellite virus infection and 

movement in millet plants. In accordance with its multifunctional role, SPMV CP was recently found to 

be localized to cytoplasm, nucleus, cell membranes and cell walls. Although the biological significance 

of this complex subcellular distribution was not fully elucidated, the phenomenon suggests that SPMV 

CP is involved in both cell-to-cell transport and nuclear localization, which might affect the 

host-defense responses [30] and might help explain why SPMV CP could enhance the accumulation 

and the spreading speed of PMV in millets [55]. Most recently, the ability of SPMV CP to increase the 
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stability of homologous and heterologous RNAs has been applied in the development of plant 

virus-based vectors [56]. SPMV CP expressed from a PVX-based vector could function in trans to 

protect the RNAs transcribed from a Tomato bushy stunt virus-based vector harboring a GFP gene and 

facilitate the systemic expression of GFP, further demonstrating the multifunctional nature of SPMV 

CP. On the other hand, the multiple biological activities of SPMV CP are regulated separately by the N- 

and C-terminal regions [57]. The results indicated that the CP of satellite viruses serves as the structural 

unit of virion assembly and has multiple biological functions involved in intra- and intercellular and 

long-distance movement. Thus, various protein products may be expressed from different initiation 

codons of the same open reading frame (ORF) on the satellite virus genome, and different subcellular 

localizations of the CP are possibly associated with multiple biological functions. 

Considerable research advances have also been achieved for another well studied satellite virus 

system, the Satellite tobacco necrosis virus (STNV). The RNA of STNV does not contain a cap 

structure and poly(A) tail at the 5’- and 3’-termini, which is required for efficient translational 

initiation by interacting with eIF4E and poly(A)-binding protein, respectively. However, the RNA of 

STNV can still be efficiently translated by use of the translational enhancer domain (TED), which 

locates within the 122-nt region in the 3’ untranslated region of STNV RNA, to recruit the translational 

machinery [58,59]. Thus, STNV provides a useful system for understanding the molecular interactions 

between RNA structures and translation factors during the translational initiation events.  

Use of the STNV system to study the early translational processes revealed that the first 38 nt at the 

5’-terminal region of STNV RNA could function synergistically with the 3’ TED to enhance the 

translational efficiency [60]. Later, the 3’-TED was revealed to interact with either of two protein 

factors, p28 or p30, in the wheat germ in vitro translation system to recruit translation machinery [61]. 

The boarder sequences of the 3’-TED were further identified through the analyses of the translational 

stimulation effects in wheat germ extracts (in vitro) and tobacco protoplasts (in vivo) using serial 

deletion mutants as templates [62]. The results revealed that STNV TED might contain at least two 

functional domains that might interact with different translational factors. Van Lipzig et al. [62] 

established an alternative secondary structure model of 3’-TED involving the base-pairing of 

functional sequences of the 5’- and 3’-termini. This model elegantly shows the presence of two 

possible domains with different translational stimulation effect in vitro and in vivo and supports the 

possibility that RNAs might adopt different structures for different functions, e.g., replication and 

translation. In addition, STNV TED was later shown to specifically interact with the eukaryotic 

initiation factors eIF4E and eIF(iso)4E [63]. Interestingly, the genomic RNA of the helper virus TNV 

was found to contain a Barley yellow dwarf virus-like cap-independent translation element (TE) at the 

3’-terminal region. Although all known members of the genus Necrovirus contain similar TE 

structures, the TE structure was not present in STNV [64], which suggests that the helper viruses and 

the satellites might have different evolutionary origins or might have adopted different strategies for 

survival. 

5. Recent advances regarding satRNAs 

Research on satRNAs has been a very active area in virology and has led to great insights into the 

molecular biology of their helper viruses and host plants. Recent advances include the following. 



Viruses 2009, 1                            

 

 

1332

5.1. Replication mechanisms 

As mentioned previously, satRNAs may serve as model systems for the study of biological 

functions, namely replication and translation. As the non-messenger-type satRNA, satC, associated 

with TCV, is among the best-characterized satRNAs, both for structure and function. Although 

satRNAs depend on the replicases of the cognate helper viruses for replication, the required sequence or 

structural elements were not always found to be functionally interchangeable between the satRNAs and 

cognate helper viruses [65,66]. Despite the high similar sequence and structure in the 3’-terminal 150 nt 

of both RNAs, the 3’- terminal regions of satC and TCV are not fully interchangeable. The 

accumulation of recombinant satC or TCV containing reciprocal exchanges of the 3’-terminal regions 

was greatly reduced to only 15% or 1%, respectively, that of the wild types [67]. The results suggest a 

dependence on cognate promoter regions for efficient RNA accumulation. Recent studies have revealed 

that the 3’ terminal structures of both TCV and satC are dynamic, being able to switch between 

structures for translation or replication depending on the interaction of RdRp in the case of TCV [68] 

or between the pre-active and active structures for replication of satC [66,69]. The observations reflect 

the difference in the requirement for functions: satC is a non-messenger-type RNA that does not need 

the presence of translational signals. The structural plasticity and the rapid evolutionary adaptation to 

certain structures with high “fitness” by satC variants were further demonstrated by in vivo genetic 

selection experiments (SELEX) [70]. Furthermore, a 3’ proximal translational enhancer in TCV 

genomic RNA was able to bind to 60S ribosomal subunits [71]. The results support that the access of 

RdRp to multiple elements, including the 3’ end of TCV, causes structural changes that potentiate the 

shift between translation and replication [68]. Together, these results convey the concept that viral and 

satellite RNA conformations may undergo switches by the regulation of viral or host factors depending 

on required biological functions [for a thorough review, see 72]. 

The notion that satRNAs may adopt different replication signals and use replicase complexes 

different from those used by their helper viruses is also true for the messenger-type satRNAs. 

Annamalai et al. [73] and Huang et al. [74] analyzed the structural and sequence requirements on the 5’- 

and 3’-UTRs of satBaMV RNA, which encodes a non-structural protein, P20, by enzymatic probing 

and mutational studies, respectively. The evolutionarily conserved secondary structures, as well as 

certain nucleotides, in both the 5’- and 3’-UTRs were found essential for the efficient replication of 

satBaMV RNAs. Huang et al. [74] further demonstrated partial similarities in structures and functions in 

the 3’-UTRs of BaMV and satBaMV RNA. However, differences between the 3’-UTRs of BaMV and 

satBaMV RNA were identified: 1) satBaMV RNA does not contain the 3′-terminal pseudoknot 

structure, and replacing the 3’-terminal portion of satBaMV with the pseudoknot structure of BaMV had 

a lethal effect on satBaMV RNA; 2) the requirement for the hexanucleotides, ACCUAA [75,76], 

conserved in all known potexviruses, in the loop region of stem-loop C (SLC) of satBaMV is not as strict 

for satBaMV RNA; and 3) regardless of the high degree of structural similarity, the 5’- and 3’-UTRs of 

BaMV and satBaMV RNA were not interchangeable. These results suggest that satRNAs might have 

adopted a 3’ UTR with structural features similar to but distinct from those of the cognate helper viruses 

for their own efficient replication. 

Comparable phenomena were observed for satellite viruses. Rubino et al. [77] demonstrated that 

co-expressing the replication proteins of Carnation Italian ringspot virus (CIRV) in yeast cells could 
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support the replication of several defective interfering RNAs derived from the genome of CIRV or the 

related CymRSV but not that of a satRNA originally associated with CymRSV. Taken together, the 

results suggest that satRNAs have adopted a system similar to but distinct from their cognate helper 

viruses for their replication and thus are not strong competitors of their helper viruses. This suggestion 

may explain why satRNAs share only limited or no sequence similarities to their cognate helper viruses. 

5.2. RNA silencing mechanisms of the host plants are involved in the pathogenicity of satRNAs and their 

co-evolution with their helper viruses 

Three types of symptom modulation are associated with satRNAs: attenuation, exacerbation, and no 

significant effect. Symptom attenuation is the most commonly observed effect. In most plant species, 

most satRNAs reduce the replication and accumulation of their helper viruses, which results in the 

amelioration of symptoms. In some cases, the satRNAs that attenuate the symptoms in several host 

plants may cause exacerbated symptoms in certain other hosts, such as lethal necrosis in tomato [6] and 

strong systemic chlorosis in tobacco, pepper, and tomato [78-80]. 

Accumulating evidence in recent years supports that RNA-silencing mechanisms of the host plants 

play important roles in the pathogenicity and evolution of satRNAs. RNA silencing, also referred to as 

PTGS or RNA interference (RNAi), is a double-stranded, RNA-induced, sequence-specific RNA 

degradation process, considered one of the important anti-viral mechanisms of plants [81,82]. To 

counter the defense system of host plants, RNA viruses usually encode proteins that function as 

suppressors of RNA silencing. The CP of TCV suppresses RNA silencing in N. benthamiana by 

obstructing the Dicer-like protein DCL2/DCL4 silencing pathway [52,83,84]. TCV CP is a weak 

suppressor of RNA silencing when assembled into the intact virions but a strong suppressor when 

expressed freely in the cytosol. The satC associated with TCV can reduce the accumulation of virions, 

thereby increasing the level of free CP, which leads to the suppression of RNA silencing and subsequent 

exacerbation in symptom severity [5,51]. Thus satC may actually contribute to the fitness of TCV. In 

another virus/subviral RNA system, Wang et al. [11] showed that the RNA silencing mechanism is 

involved in the pathogenicity of satRNA and viroids. The transgenic expression of a potent silencing 

suppressor of a potyvirus, helper component-protease (HC-Pro), in N. tabacum, greatly attenuated the 

severe yellowing symptoms caused by the Y satellite of CMV. The expression of self-complementary 

hairpin RNAs derived from the Potato spindle tuber viroid (PSTVd) in tomato plants resulted in 

symptoms similar to PSTVd infection. These results provide strong evidence that an RNA silencing 

mechanism is involved in the pathogenicity of satRNAs, whereby satRNAs direct RNA silencing against 

biologically important host genes. Furthermore, Wang et al. [11] demonstrated that viroid and satRNAs 

are significantly resistant to RNA silencing-mediated RNA degradation, which indicates that RNA 

silencing may be the driving force for the evolution of these subviral RNAs.  

5.2.1. The pathogenicity of satRNAs is determined by a complex competition among host plants, helper 

viruses, and satRNAs in the targetting of the RNA silencing mechanism 

In the past, the pathogenicity of satRNAs has been thought to be a direct interaction among the 

satRNAs, helper viruses and host factors by an unknown mechanism(s). Taking cucumoviruses and 

associated satRNAs as examples, a satRNA of CMV was originally reported to be the causal agent of 
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lethal necrosis disease of tomato in France [6]. Since then, many satRNAs with different symptom 

modulation effects have been reported. The pathogenic effects of cucumovirus satRNAs were suggested 

to result from a trilateral interaction among the host plant, the helper virus strain, and specific sequences 

of the satRNA [85-92]. Most PSV satRNAs do not have an apparent effect on their helper viruses or host 

plants. However, one satRNA of PSV, G-sat, was found to suppress viral RNA replication in 

noninoculated leaves of PSV-ER–infected tobacco plants [93]. At that time, no information was 

available on the involvement of RNA silencing pathways in satRNA pathogenicity, yet a hint of the 

interaction of specific regions of satRNA, helper viral RNA or host factors was apparent. 

The determination of nucleotide sequences of a large number of biologically distinct satRNAs has 

facilitated the identification of specific sequences responsible for differential modulation of symptoms. 

For example, by inoculating tobacco plants with mutant forms of satCMV, Jaegle et al. [87] 

demonstrated that the yellow mosaic symptom determinant of the satCMV Y strain lies in nucleotide 

position 185/186. In addition, early studies of several laboratories have mapped the necrogenic ability 

of satCMV RNAs on tomato to a 15-nt region near the 3’ termini [94-97]. For PSV systems, a U and a 

C residue at nucleotides 226 and 362, respectively, contribute to the symptom attenuation of PSV 

G-sat RNA [98]. However, the focus of these previous researches was mainly on the nucleotide 

sequences as the symptom determinants of satRNAs. It is now becoming clearer that host factors or 

mechanisms are the key determinants of the pathogenicity of viruses and satRNAs. Indeed, the 

involvement of ethylene in the induced defense responses has been recently demonstrated in a 

large-scale transcriptome study analyzing systemic programmed cell death caused by CMV and 

associated D satRNA as a model system [99]. With the increasing number of plant genomes being 

completely sequenced [100], it is expected that more host genes or regulatory sequences involved in 

symptom development will be revealed soon. 

In the aforementioned scenarios (section 5.2.), the plant antiviral defense systems have been turned 

against the plants themselves by the invading virus/satRNA combinations. In response, plants have 

adapted mechanisms of defense. For example, one of the key proteins in the antiviral RNA silencing 

pathway, DCL4, can target the satRNAs of CMV at novel secondary structures, preferably T-shaped 

hairpins, instead of the classic double-stranded hairpins, to produce small interfering RNAs (siRNAs) 

against satRNAs [101]. The results suggest that RNAs of diverse structures can be potent stimuli to 

activate antiviral RNA silencing mechanisms in plants. 

Furthermore, helper viruses may also exploit the RNA silencing mechanisms of host plants to control 

the accumulation of parasitic satRNAs. The accumulation of a parasitic satRNA of CymRSV strongly 

depends on the presence of the RNA silencing suppressor P19 of the helper virus, which suggests the 

involvement of an RNA silencing mechanism in the competition of CymRSV and satRNA. As well, 

siRNAs derived from CymRSV targeted satRNA with higher efficiency than did the siRNA derived 

from a distantly related helper virus, CIRV [12]. Thus, CymRSV apparently had adapted well to the host 

plant so that it could harness the RNA silencing activity of the host plants against satRNA to control its 

accumulation. Many classic examples exist of satRNAs reducing the concentration of the helper viruses 

and thereby attenuating the symptoms elicited by the helper viruses. Recently, satRNA was found to 

possibly cause the reduction in accumulation of the genomic RNAs of CMV-Fny in N. tabacum [102]. 

The reduction in accumulation of helper viral RNAs was possibly related to the 2b gene of CMV, 

encoding a silencing suppressor, which suggests the involvement of an RNA silencing mechanism. 
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Furthermore, Hsu et al. [103] and Chen et al. [104] reported that the specific conserved 5’ structure, an 

apical hairpin stem-loop (AHSL), and sequences in the internal loops of satBaMV RNA play an essential 

role in downregulating the expression of helper viral RNAs. The conserved AHSL structure could be 

used as a potent determinant of the ability to downregulate the expression of BaMV. Although the 

underlying mechanism remains to be elucidated, the results support satRNAs modulating the 

pathogenicity of the helper viruses through the specific structures and sequences in the untranslated 

regions, possibly by tweaking the RNA silencing pathways of the hosts. Obviously, RNA silencing 

mechanisms of host plants are among the key determinants of the pathogenicity of satRNAs and helper 

viruses. However, further studies are required to identify the actual target(s) of RNA silencing that 

result in different types of symptoms. 

5.2.2. A simplified model illustrating trilateral competition for the targeting of RNA silencing 

mechanisms 

Recent studies indicating the involvement of RNA silencing pathways in the pathogenicity of 

satRNAs have provided new insights into the underlying mechanisms of satRNA-mediated symptom 

modulations. Clearly, the pathogenicity of satRNAs is the result of a complex interaction among 

satRNAs, helper viruses, RNA silencing mechanisms, and the physiologically important genes of the 

host plants (Figure 2 A), which could be regarded as a competition for the use, or targeting, of the RNA 

silencing systems of the host plants. Example scenarios depicting the consequences of the trilateral 

competition are in Figure 2 B. If the host plants activate the RNA silencing system against the invading 

virus and satRNAs, the system can be considered an antiviral and anti-satRNA defense system. 

However, if the RNA silencing systems are programmed by satRNAs against mRNAs of host plants, 

the system can be considered as using the pathogenic factors of the satRNA to target the mRNAs of the 

physiologically important gene for degradation. In rare cases (e.g., [51,52]), the satRNAs may assist the 

helper viruses (the curved arrow in Figure 2 A) in counter-defending the RNA silencing pathways in 

plants. In contrast, viruses may express proteins as suppressors of RNA silencing (for reviews, see 

[105-108]) to inhibit the innate defense systems of host plants and elicit symptoms or even “harness” the 

RNA silencing mechanism against satRNAs to downregulate their expression, as was shown for 

CymRSV and the associated satRNA [12]. 

5.3. Possible Origin(s) of satRNAs 

A long-standing question regarding satRNAs is the origin of these small RNAs. Considering the 

infection cycle of satRNAs, at least three natural sources are the origin of satRNA segments: the 

genomes of the helper viruses or other co-infecting viruses/satellites, the host organisms, and 

transmission vectors. Although many reports claimed the “spontaneous” occurrence of satRNAs under 

experimental conditions, previous attempts to locate the sequences with significant similarity to satRNA 

in the genomes of hosts, helper viruses and vectors have in general been unsuccessful [109,110]. 

However, one cannot rule out that the source sequences of satRNAs exist as separate fragments in these 

genomes but, after being transcribed, can be recognized by the replicase complexes of the invading 

viruses and reassemble into functional RNA molecules. These molecules are further selected under 

various host or environment conditions to emerge as satRNAs [5].  
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Previous research found that 3’-terminal deletions of an satRNA of TCV, satD, could be repaired in 

vivo [111]. The satD transcripts with different 3’-terminal deletions were repaired to either a wild-type 

satD sequence or to other recombinant forms containing additional deletions joined to an internal TCV 

genomic RNA (or host) sequence, then replacement of the terminal motif [112]. The authors presented 

an elegant repair mechanism involving primer-mediated abortive synthesis of oligoribonucleotides by 

the viral RdRp, with internal regions of TCV genomic RNA used as templates, then the 

recombinational repair of the 3’-terminal deletions of satD. The results suggested that satD may have 

evolved by the repeated recombination of the TCV genomic RNA-derived oligoribonucleotides 

generated by TCV RdRp in these abortive synthesis events, then replication and encapsidation by TCV. 

In addition, Nagy et al. [113] extended the mechanism of 3’-end repair to another satRNA, satC. With 

TCV viral RNA used as a template, the authors demonstrated that TCV replicase could synthesize a 

pool of oligoribonucleotides that could be used as primers for the subsequent RNA synthesis in 

repairing the damaged 3’ ends of satC. Together, these results support that satRNAs might have 

originated from the genomes of the helper viruses. 

In the natural plantation, sometimes more than one species of viruses/satellites may infect the same 

plant. Thus, the genomes of other co-infecting viruses or satellites have also been suggested to be 

another possible origin of satRNAs. For example, the sequence of the nonstructural protein P20 of 

satBaMV was found to share 46% identity with the CP of SPMV and could be folded into a similar 

“jelly-roll” structure [114,115]. On the basis of sequence similarity, satBaMV RNA and SPMV might 

share a common evolutionary origin.  

The genome of Arabidopsis thaliana contains stretches of nucleotide sequences with significant 

similarity to satCMVs [5]. The possibility that host genomes might serve as the sources of satRNAs is 

further supported by the recent identification of many siRNAs or microRNAs (miRNAs) generated or 

transcribed by various mechanisms in plants [116,117]. These small regulatory RNA molecules might 

be produced in response to viral infections and could possibly be assembled into satRNAs by viral 

replicases. Furthermore, the genomes or extra-chromosomal genetic materials of other microorganisms 

residing inside the host cells might be sources of recombination that eventually lead to the generation of 

satRNAs. Accordingly, sequence segments with significant similarities to satRNAs could be identified 

in the genomes of hosts and the microorganisms, and the constituents of the satRNA population could 

differ in various hosts from diverse geographical distributions. Modern advances in whole-genome 

sequencing projects and bioinformatics techniques have yielded great resources of data and tools to test 

these hypotheses.  

Recently, a novel satRNA of CMV was reported to have emerged naturally following serial passages 

of CMV-Fny [49]. Great efforts were made to eliminate the possible sources of contamination. The 

finding raised the intriguing possibility that the novel satRNA may have been generated de novo from 

the genomes of CMV and host plants after the activation of RNA silencing mechanisms, which would 

generate a large quantity of small RNA fragments for assembly into the initial form of satRNAs. That 

satRNAs were not detected when CMV-LS was used for serial passages suggested the main involvement 

of viral genomes in the emergence of satRNAs. Although the experimental conditions did not 

completely eliminate the possibility of contamination, as with performing the whole experiments in a 

new laboratory environment never exposed to satRNAs [5], as acknowledged by the authors [49], this 
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work pointed to the importance of the influence of invading viruses on host innate immunity, the RNA 

silencing pathway, as an alternative underlying mechanism for the generation of satRNAs [5,52]. 

Figure 2. A Schematic representation of the complex interaction among host plants, helper 

viruses, satRNAs and satellite viruses, and the RNA silencing mechanism of the host. 

T-shaped lines indicate inhibitory effect, whereas the solid arrows represent an enhancing 

effect. Arrows on dotted lines represent an “uncertainty state,” in which the three 

participating members (host plants, helper viruses, and satRNAs or satellite viruses) would 

have to compete for the targeting of host gene silencing mechanisms. B Example scenarios 

illustrating the consequences of competition among plants, viruses, and satellites for the 

activation and targeting of the RNA silencing mechanisms. The yellow box indicates the 

emergence of new satRNAs as a result of an RNA silencing mechanism.  
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In view of the above notion, the sequence similarities between satRNAs and viruses or host plants 

may reflect the genes targeted in the host or viral genomes by use of siRNAs derived from satRNAs. As 

mentioned previously, satRNAs and viroids may direct the RNA silencing mechanism against 

biologically important genes of the cognate host plants [11]. Similarly, as illustrated in Figure 2, viruses 

may also harness the RNA silencing mechanism against satRNA [12] or important host genes. The 

resulting small RNA fragments may be the origins of satRNAs in these systems. As predicted by the 

Red Queen Hypothesis [118], following the initial generation of fragments, the small RNA fragments 

may recombine and evolve rapidly to adapt to the replication and encapsidation systems of the helper 

viruses. The involvement of RNA silencing pathways in the generation of satRNAs may also be used 

to explain the intriguing phenomenon that satRNAs were mostly associated with plant hosts but rarely 

found in animal systems. In vertebrates, the active immune system involving antibodies may play 

major roles in defense against invading viruses, with the RNA silencing pathways serving as an innate 

defense system. Thus, it is less likely that siRNAs could be generated in large amounts to be 

recombined and evolved to the forms that could be replicated and encapsidated by the helper viruses. 

5.4. Molecular evolution: constraints on the structures of satRNAs; linear comparison of multiple 

secondary structures  

Because most satRNAs lack any significant coding capacity, they are expected to express their 

biological functions through direct interaction of the structure or nucleotide sequences of satRNAs with 

the respective host factors. Thus, the structures of satRNAs are under the constraint of their biological 
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functions in evolutionary history. In addition, the conservation of certain structural elements may 

contribute to the stability and/or efficient accumulation of satRNAs. 

Figure 3. Identification of conserved secondary structures among sequences sharing low 

similarity of satRNAs. The flow chart outlines the process for the linear comparison of 

multiple secondary structures. Only the relevant nucleotides participating in base-pairing are 

indicated. Nucleotides in single-stranded regions are represented by the letter “n”. For each 

sequence (Seq1–Seq4), secondary structures were predicted by the program Mfold [119], 

with constraints matching the structures determined by enzymatic or chemical probing 

experiments. The resulting connect file (“.ct file”) was converted to a linear format 

according to the rules [74] and subjected to multiple sequence alignment by use of Clustal W 

[120]. The base-paired regions are represented by letters in lower case, a, b, and c, with 

dotted lines connecting the corresponding regions. The conserved base-paired regions 

among different sequences are indicated by stars under the alignment. Consen, consensus 

secondary structure derived from the multiple alignments. 

Seq1   nnnnAAAAAnnnnTTTTTnnnnnAAAAnnnAAAAnnnnTTTTnnnnTTTTnnnn 
Seq2   nnnnCCCCCnnnnGGGGGnnnnnCCCCnnnCCCCnnnnGGGGnnnnGGGGnnnn 
Seq3   nnnnTTTTTnnnnAAAAAnnnnnTTTTnnnTTTTnnnnAAAAnnnnAAAAnnnn 
Seq4   nnnnCCCCCnnnnCCCCCnnnnnGGGGnnnGGGGnnnnCCCCnnnnCCCCnnnn 

Seq1   ----aaaaa----aaaaa-----bbbb---cccc----cccc----bbbb----
Seq2   ----aaaaa----aaaaa-----bbbb---cccc----cccc----bbbb----
Seq3   ----aaaaa----aaaaa-----bbbb---cccc----cccc----bbbb----
Seq4   ----aaaaa----aaaaa-----bbbb---cccc----cccc----bbbb----
Consen     *****    *****     ****   ****    ****    ****    

“Mfold” secondary structure prediction for each sequence, 
with constraints based on experimental probing

Conversion to linear format
Multiple alignment of secondary structures

a a b b

c c

 

SatRNAs and viroids have evolved and maintained secondary structures that are considerably more 

resistant to RNA silencing-mediated degradation [11]. Sun and Simon [121] provided evidence to 
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support that satC associated with TCV has evolved a core 3’-terminal promoter structure that is more 

efficient for RdRp binding than that of TCV. Several recent studies also revealed the crucial role of 

specific secondary structures of satBaMV RNAs in symptom determination and downregulation of the 

helper virus BaMV [73,103,104]. In addition, Huang et al. [74] performed structural and functional 

analyses of the 3’-UTR region of satBaMV RNA and revealed that satRNAs may have evolved a 

functionally similar but structurally distinct promoter element for efficient replication. This type of work 

requires comparing and contrasting the secondary structures of many satRNA molecules. However, use 

of the current 2-D graphical output for each satRNA does not allow for presenting many secondary 

structures in a small space (e.g., on one page) for easy viewing. Huang et al. [74] developed a simple 

method to convert many secondary structures into a linear format to easily identify highly conserved 

structural features among the different RNAs. The conceptual explanation of the process is given in 

Figure 3. By using this method, two stem-loop structures at the 3’-UTR (SLA and SLB) were found 

identical among more than 60 natural occurring satBaMV RNA variants. Another stem-loop structure, 

SLC, was also highly conserved although not identical among satBaMV RNAs. The observation 

supported that SLA, SLB, SLC play important roles in the survival of satBaMV RNA. The linear 

comparison of multiple secondary structures facilitated the easy identification of conserved structures 

among many sequence variants [74]. These results reinforced the importance of the conservation of 

certain structural elements in the fitness of satRNAs.. 

6. Practical applications of satRNAs 

Apart from the contribution of satRNAs in basic research into molecular virology, satRNAs have 

also been used in application-oriented studies. One of their potential applications lies in the 

development of satRNA-based vector systems for the expression of foreign genes in plants. In 

comparison with using other types of vectors for foreign gene expression, such as plasmids and viral 

vectors, using satRNAs and satellite viruses as vectors has the following advantages: i) ease of 

manipulation, ii) high in vivo stability, and iii) high expression level. First, because of the relatively 

small size of satRNAs and satellite viruses, they are simpler systems to use for cloning, sequencing, 

genetic modification, and regular maintenance. Second, most satRNAs are highly structured and thus 

significantly more resistant to degradation by nucleases in vivo than are other viral RNA-based vector 

systems. For instance, about 49% of the genome of one of the most thoroughly characterized satCMVs 

participates in the formation of base-paired structures [122], which increases the robustness of the 

satRNA in planta. And finally, most satRNAs and satellite viruses can accumulate to high levels in host 

plants, which leads to the increase in level of proteins translated from the messenger-type RNAs of the 

satellites. However, despite the aforementioned potentials, most attempts to develop vectors based on 

coding or non-coding satRNAs for applications in biotechnology have failed, probably because of the 

strict requirement for the maintenance of certain secondary structures, which severely limited the 

sequence alterations that could be introduced. The current applications of satRNAs are demonstrated 

only for the following rare cases: 
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1) As vectors for in planta expression of foreign genes: 

 

The practical application of satBaMV RNA was demonstrated more than ten years ago [38], 

and remains the sole example of such applications. Being a messenger-type satRNA, satBaMV 

RNA encodes a P20 gene, which, unlike all other large messenger-type satRNAs, was shown to 

be nonessential for the replication of satRNA. Therefore, P20 was replaced with a 

chloramphenicol acetyltransferase (CAT) gene, which resulted in high expression of the CAT 

protein in infected Chenopodium quinoa and demonstrated that satBaMV RNA could be useful as 

a satellite-based expression vector.  

 

2) As vectors for functional studies: 

 

satBaMV RNA has been used for the expression of individual TGBps in a complementary 

experiment for study of cell-to-cell movement of BaMV [123]. To dissect the functions of 

individual TGBps, single or multiple TGBps of BaMV, PVX and Foxtail mosaic virus were 

expressed by use of satBaMV RNA-based vectors to complement the functions of green 

fluorescent protein-tagged, movement-defective BaMV with mutation(s) in the matching gene(s). 

The results revealed the requirement for species-specific interactions among TGBps for 

cell-to-cell movement of BaMV and possibly other potexviruses. In addition, a satBaMV-based 

vector system has been used in analysis of promoter sequences to generate potexvirus 

subgenomic RNAs (sgRNAs) [124]. Insertion of subgenomic promoter-like sequences (SGPs) 

into the upstream of the start codon of the P20 gene gave rise to the synthesis of sgRNA of 

satBaMV in infected cells co-inoculated with helper BaMV RNA. By deletion and mutational 

analyses, one core promoter-like sequence, two upstream enhancers and one downstream 

enhancer were identified in the function of SGP in vivo. Such applications in functional analysis 

further demonstrated the additional advantages of satRNA-based vectors: i) Applicable for 

mutational studies of essential genes or regulatory sequences: satRNAs are physically separated 

from the viral genomes and are not essential for the infection cycle of the helper viruses; thus, 

they can be used in mutational or complementary assays of regulatory sequences. ii) Convenient 

for combinational studies on multiple genes: two or more satRNA-based vectors harboring 

different genes may co-exist in one plant and be supported by the same helper virus, although 

they might be not expressed at the same level.  

 

3) As vectors for gene silencing: 

 

Gossele and Metzlaff [9] described the use of STMV vectors for gene silencing. The work was 

an extension of their previous work with a satellite virus-induced silencing system (SVISS) 

[125]. The authors demonstrated the potential of STMV as a vector of gene silencing by 

knocking out (or knocking down) the expression in N. tabacum of a variety of genes involved in 

different biochemical pathways (e.g., phytoene desaturase, glutamine synthetase, chalcone 

synthase, and transketolase). Most of the silenced phenotypes could be observed 10-12 days 
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postinoculation, which indicates the efficiency of STMV-based vectors in the induction of gene 

silencing [125].  

In addition, the symptom-attenuation features of satRNAs have been successfully exploited in 

developing satRNA-based disease-management systems, either directly, with satRNAs used as 

biological control agents [2,126], or indirectly, by producing transgenic plants that express satRNA 

sequences [127-129]. The occurrence of some virus strains that do not support the replication of 

satRNAs in certain host plants may present an obstacle to satRNA-mediated disease management. 

However, satRNAs still provide us with experimental tools for understanding the complex trilateral 

interaction among satRNAs, helper viruses, and host plants. 

7. Concluding Remarks 

With significant advances in research into satRNAs and satellite viruses, our understanding of the 

pathogenicity, evolution, and molecular biology of satRNAs and satellite viruses is now gaining 

momentum. Further breakthroughs can be expected soon. Although the detailed mechanisms remain to 

be elucidated, clearly, RNA silencing mechanisms are involved in these processes: satRNAs may use 

RNA silencing mechanisms of the host plants to target biologically important genes to exacerbate 

symptoms [11], and viruses may harness similar RNA silencing mechanisms to target parasitic satRNAs 

to suppress their accumulation [12]. The sequence-specific nature of the RNA silencing mechanism 

may help explain why a minute alteration in the nucleotide sequences or the combination of satRNAs, 

helper viruses, or host plants could lead to significant differences in the outcome of interactions, causing 

attenuation or exacerbation of or even no effect on the accumulation and symptom expression of 

satRNAs and helper viruses. Even the origins of the satRNAs or satellite viruses may involve the RNA 

silencing mechanism, as was suggested by Simon et al. [5]. The authors proposed that satRNAs might 

have originated from small regulatory RNAs such as siRNAs and miRNAs generated from RNA 

silencing mechanisms induced by the infection of viruses.  

Considerable progress has been made in the comprehensive understanding of satRNAs and satellite 

viruses; however, several intriguing questions still remain. The following topics, for example, those 

concerning the involvement of RNA silencing mechanisms in the pathogenicity, population dynamics, 

and possibly the origin(s) of satRNAs and satellite viruses, are expected to continue to attract the 

attention of researchers in the coming years. (1) How do viruses, satellite viruses, or satRNAs actually 

“harness” the RNA silencing mechanism of their host plants for their own benefits? (2) What are the 

actual targets of RNA silencing mechanisms in host genomes directed by satRNAs and satellite viruses 

that eventually lead to the development of symptoms? (3) Given that satRNAs depend on helper viruses 

for major biological functions, why do certain satRNAs observed in laboratories or specific field 

conditions evolve to compete with or reduce the expression of their helper viruses, instead of evolving 

toward a mutually beneficial situation, as has been observed for TCV and satC [5,49]? Clearly, further 

experiments are needed to resolve these issues. The resulting knowledge will shed light on the molecular 

biology of satRNAs and satellite viruses, and provide insights into that of the cognate helper viruses and 

host plants. 
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