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Abstract 

Actinobacteria are characterized as the most prominent producer of natural products (NPs) with pharmaceutical 
importance. The production of NPs from these actinobacteria is associated with particular biosynthetic gene clusters 
(BGCs) in these microorganisms. The majority of these BGCs include polyketide synthase (PKS) or non-ribosomal pep-
tide synthase (NRPS) or a combination of both PKS and NRPS. Macrolides compounds contain a core macro-lactone 
ring (aglycone) decorated with diverse functional groups in their chemical structures. The aglycon is generated by 
megaenzyme polyketide synthases (PKSs) from diverse acyl-CoA as precursor substrates. Further, post-PKS enzymes 
are responsible for allocating the structural diversity and functional characteristics for their biological activities. Mac-
rolides are biologically important for their uses in therapeutics as antibiotics, anti-tumor agents, immunosuppressants, 
anti-parasites and many more. Thus, precise genetic/metabolic engineering of actinobacteria along with the applica-
tion of various chemical/biological approaches have made it plausible for production of macrolides in industrial scale 
or generation of their novel derivatives with more effective biological properties. In this review, we have discussed 
versatile approaches for generating a wide range of macrolide structures by engineering the PKS and post-PKS cas-
cades at either enzyme or cellular level in actinobacteria species, either the native or heterologous producer strains.
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Background
Natural products (NPs) from plants or microorganism, 
native or structurally modified have been utilized for 
the treatment of infections and ailment of disease condi-
tions [1, 2]. Among all microorganisms, actinobacteria 
isolated from terrestrial or marine sources are character-
ized prominent producer of such NPs of pharmaceutical 
values, such as antibacterial, anticancer agents, anti-par-
asite, and immunosuppressant [3–5]. Actinobacteria are 
Gram-positive filamentous bacteria containing a high 
G+C content. They generally produce mycelium and 
reproduce by sporulation similar to filamentous fungi. 
However, they possess prokaryotic nucleoid and pepti-
doglycan cell wall significantly different from fungi [6]. 

Hence, the name “actinobacteria” is derived from Greek 
whereas; “aktis or aktin” meaning “ray” and “mukes” 
meaning “fungi”. The production of NPs from these act-
inobacteria is associated with diverse biosynthetic gene 
clusters (BGCs) present in these microorganisms. Each 
BGC contain a defined set of genes sufficient for biosyn-
thesis of particular chemical structure. The majority of 
these BGC include polyketide synthase (PKS) or non-
ribosomal peptide synthase (NRPS) or combination of 
PKS and NRPS.

Macrolides include diversified chemical structures 
containing a core macro-lactone ring (aglycone) deco-
rated with diverse functional groups, most commonly 
deoxy-sugars and amino-sugars [7]. They are biologically 
important for their uses in therapeutics as antibiotics 
(erythromycin, pikromycin, nargenicin, oleandomycin), 
anti-tumor agents (epothilone), immunosuppressant 
(rapamycin, FK506) and anti-parasites (avermectin) 
(Fig.  1) [8, 9]. Macrolides are categorized into different 
groups according to the number of atoms in the lactone 
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ring, for example, 12-, 14-, 15-, 16-, 17-(ivorenolide B) or 
18-(tedanolide C) membered macrolides [10]. They are 
generally biosynthesized by type I polyketide synthase 
(PKS) and modified by tailoring enzymes such as glyco-
syltransferase (GT), methyltransferase (MT) and oxi-
dation enzymes as monooxygenase (MO), cytochrome 
P450 (CYP450) and oxidoreductase (OR).

The alarmingly increase in drug-resistant bugs or drug-
tolerant cancer conditions have vitalized the need for bio-
active molecules with new or improved pharmacological 
properties. Therefore, there is immersing interest on iso-
lation and characterization of novel macrolides. The clin-
ically useful macrolides have been traditionally derived 
from the screening of natural sources, and still the isola-
tion of novel macrolides and evaluating their bioactivities 

has been an active area of research [11]. Most of the NPs, 
including macrolides, exhibit a broad range of pharma-
cophore, but still, they need to be structurally modified 
to ameliorate their chemical and biological properties 
for clinical uses [5, 12]. The total synthesis of macrolide 
derivative or chemical modification to generate semi-
synthetic derivative have been an important tool for 
the development of novel molecules with enhanced 
pharmacological activities. However, such chemical 
approaches have limitations as many sites on the macro-
lactone ring and/or the sugar moiety are not amenable to 
desired chemical modifications [9, 13]. Another promis-
ing approach has been the biological engineering of the 
production hosts by rational metabolic engineering and 
synthetic biology tools. The major advantage of such 

Fig. 1  Structures of different macrocyclic compounds with their primary producer strain and potential use of these molecules
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biological process over chemical approach is cost-effec-
tiveness, environmental friendliness, and easy scale-up 
possibilities [14, 15].

In this review, the progress on engineering of actino-
mycetes for deriving novel macrolides by engineering of 
aglycon biosynthesis and post-PKS tailoring enzymes has 
been summarized. The front part of the review includes 
early approaches of precursor-directed biosynthesis and 
mutasynthesis. Finally, the application of the advanced 
synthetic biological tools assisted by different “–omics” 
based approaches for combinatorial biosynthesis of mac-
rolides have been discussed.

Outline of biosynthesis of macrolides
The type I PKS generally consist of multifunctional, 
multi-modular enzymes with non-iterative catalysis of 
one cycle of polyketide chain elongation. These enzymes 
are responsible for successive condensation of acti-
vated coenzyme A (CoA) thioesters (most commonly 
acetyl-, propionyl-, malonyl- or methylmalonyl-CoA) 
for such polyketide chain elongation. Each module con-
tains a set of functional domains of acyl carrier protein 

(ACP), acyltransferase (AT), and, β-ketoacyl synthase 
(KS), which are essential for polyketide elongation [16, 
17]. The CoAs used as substrate is selected and acti-
vated by an acyl transferase (AT) domain and trans-
ferred to the 4′-phosphopantetheinylated acyl carrier 
protein (ACP) domain. The ketosynthase (KS) domain 
catalyzes the decarboxylative Claisen-like condensa-
tion between the substrate and the growing polyke-
tide, to form a carbon–carbon bond between the alpha 
carbon of the extender unit and the thioester carbonyl 
of the ACP-bound acyl chain [9, 18, 19]. Besides these 
minimal domains, additionally, there are β-keto pro-
cessing domains, ketoreductase (KR), dehydratase (DH), 
and enoyl reductase (ER) that act sequentially to reduce 
the β-keto group into a fully saturated acyl chain [20]. 
The synthesized polyketide is off-loaded by thioester-
ase (TE) domain [21, 22]. Figure 2 shows the schematic 
organization of modular PKS as exemplified by tylosin 
(Tyl) PKS, which is 16-membered macrolide produced 
by Streptomyces fradiae. The tylosin PKS includes one 
loading module and seven extension modules terminat-
ing in thioesterase (TE) domain to generate tylactone 

Fig. 2  Biosynthetic gene assembly of tylosin biosynthesis gene cluster illustrating condensation and modification of different extender units to 
form tylactone aglycone which is further decorated with different post-modification enzymes to form tylosin
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[23–25]. The aglycone is produced by the cordial action 
of the megasynthase enzymes encoded by five different 
genes (TylGI-TylGV). Four different thioester-CoAs are 
selected by AT domains of each module. Each selected 
extender units are modified to a certain degree by respec-
tive reducing enzymes, except the module 4 in which KR 
domain is null functional. In the end, the PKS product 
is off-loaded by the action of TE domain present in the 
last module 7, encoded by TylGV gene. Once the PKS 
product is released, the biosynthesis is further extended 
by post-PKS tailoring enzymes such as cytochrome P450 
monooxygenase (CYP450), glycosyltransferases (GTs) 
and methyltransferases (MTs) [26].

Despite the numerous reports on the “canonical” 
organization and co-linearity in most of the type I PKSs, 
non-canonical examples of type I PKS are popular [27]. 
The skipping over of  the extraneous functional domains 
or modules leading to the formation of unusual inter-
mediates or final compounds have been reported [28, 
29]. Similarly trans-acting domains have been uncov-
ered from various polyketide biosynthesis. These trans-
enzymes are usually physically separate from the usual 
modifying domains in the modular PKSs, but they act at 
specific points during the processing of the nascent acyl 
chains. One of the prominent examples is trans-AT or 
AT-less biosynthesis of polyketides whereas AT activity is 
provided at each elongation step in trans by free-standing 
AT usually encoded in the biosynthetic gene clusters [30]. 
Trans-ER has been characterized from lovastatin polyke-
tide biosynthesis [31] and switchable ER domain has been 
reported in azalomycin F biosynthesis [32]. Similarly, 
some trans-acting thioesterases (TE type II) are responsi-
ble for editing function by hydrolytic removal of aberrant 
residues blocking the megasynthase, participation in sub-
strate selection, intermediate, and product release [33]. 
Similarly broadly selective acyltransferase has been char-
acterized from the polyketide synthase of splenocin [34]. 
The detailed information on extended unit promiscuity 
and orthogonal protein interaction of ACP and trans-
AT has been also availed [35, 36]. So, these type of new 
information are not only providing novel insight on the 
biosynthetic mechanism of polyketides but also provid-
ing opportunities for plausible bio-engineering of these 
macrolides. Basically, the diversification of macrolides 
can be tuned at four major steps throughout biosynthesis 
through (1) choice of the building block and chain length, 
(2) reduction and stereochemical arrangement of β-keto 
intermediates, (3) rearrangements and secondary cycliza-
tions and (4) post-PKS tailoring [37]. Recent information 
on the protein structure of the enzymes and advanced 
genetic manipulation techniques provides enormous 
opportunity for fine tuning the post-PKS steps to gener-
ate novel or structurally diversified macrolides [38, 39]. 

Figure  3 depicts the plausible modification centers in 
macrolide that can be altered by utilizing different engi-
neering aspects in the actinobacteria either by rational 
modification on PKS or post-PKS steps.

Precursor‑directed biogenesis of novel antibiotics
The prolific generation of mutant bugs to the many pre-
existing drugs has caused pitfall in efficiency of enhance-
ment approach as a panacea for addressing the issues of 
drug resistance. Nevertheless, precursor directed bio-
genesis can still substantiate as a promising technique 
by providing a fertile platform for structurally diversi-
fying the antibiotics, whereas the altered natural prod-
uct precursors are subjected to the microorganisms and 
subsequently incorporated to reconstitute the product of 
interest [40]. The alternative precursor-directed biosyn-
thesis can be utilized as an approach where the chemi-
cal and biological inputs are assembled for generation 
of novel natural products. For example, an orally active 
β-lactam antibiotic, penicillin V (phenoxymethylpenicil-
lin), was produced by adding phenoxyacetic acid to fer-
mentations of Penicillium chrysogenum [41].

But the major drawbacks of this approach can be inher-
ent competition between alternative precursors and nat-
ural precursors, rendering the yield of novel derivatives 
to be low. However, this shortcoming can be overruled 
by blocking the synthesis of natural precursors, either 
by mutating key genes in the respective bio-synthetic 
pathway or by adding specific inhibitors of biosynthetic 
enzymes [42]. This approach in which the biosynthetic 
pathway is coupled with the feeding of synthetic starter 
precursors, where the precursors are reorganized in the 
biosynthetic pathway to remold the final compound can 
be otherwise be termed “chemosynthetic biogenesis”. 
Hence utilizing the benefits of this approach, various 
novel analogs of erythromycin and other polyketides are 
generated [43–47].

Fundamentally for generating diversities of analogs 
of erythromycin, a designed mutant of a modular PKS 
by inactivation were generated, that lacked early-stage 
enzyme activities. DEBS (KS10), a mutant of DEBS that 
was inactivated by site-directed mutagenesis of the 
β-ketoacyl-ACP synthase domain of module 1 (KS1) was 
used for precursor mediated structural diversification 
strategy [42]. The native KS1 domain catalyzes the first 
condensation step of 6-deoxyerythronolide B (6-dEB) 
biosynthesis (Fig.  4a) but the DEBS (KS10) mutant is 
incapable of carrying out the first round of polyketide 
chain elongation from the propionyl-CoA and meth-
ylmalonyl-CoA causing incapability for the formation 
of the macrolide 6-dEB. In turn, by the introduction of 
synthetic diketide and triketide such as the N-acetyl 
cysteamine (SNAC) thioester, which are analogs of the 
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natural diketide intermediate to Streptomyces coelicolor 
CH999/pJRJ2, an engineered strain harboring DEBS 
(KS10), various novel analogs of erythromycin were gen-
erated (Fig. 4b) [48].

Mutasynthesis
The precursor directed biogenesis has been utilized 
and still remains as a promising strategy for structurally 
diversifying and generating versatile chemical identi-
ties with superior properties or activities. But, the major 
drawback clinging to these approaches, most important 
being that mixture of natural and nonnatural products 
with similar physical properties are often produced, lead-
ing to complex downstream purification procedures; 
high concentrations of synthetic precursor are often 
required to compete with the preferred natural precursor 
and; a limited range of intermediates are efficiently incor-
porated into the final product. So, the precursor-directed 
biosynthesis has been complemented with mutasynthe-
sis approach whereas the naturally occurring precursor 
pathways are inactivated by mutation to remove the com-
petition with natural precursors.

Streptomyces avermitilis mutant (S. avermitilis Δbkd) 
was generated wherein the enzymes, branched chain 
fatty acid dehydrogenase complex Bkd required for 

generating the precursors 2-methylbutyryl-CoA and 
isobutyryl-CoA were inactivated. Different precursor 
analogs were fed to the mutant and a cyclohexyl-contain-
ing avermectin derivative (later named doramectin) was 
generated with increased antiparasitic activity [49]. Simi-
larly, the deletion of 5-chlorodeoxyadenosine (a precur-
sor for chloroethylmalonyl-CoA) biosynthetic genes in 
Salinispora tropica [50] and exogenous supplementation 
of 5-fluorodeoxyadenosine resulted in the generation of 
fluorosalinosporamide.

Combinatorial biosynthesis for diversification 
of antibiotics
“Combinatorial biosynthesis” is one of the promising 
strategies for the genesis of novel analogs of predomi-
nant antibiotics or modifying their structural aspects for 
better pharmacological properties. This approach inter-
venes with the strategies for the genetic engineering of 
natural product biosynthesis to obtain new molecules, 
including the use of genetics in medicinal chemistry [51]. 
It has been an important approach to generate chemi-
cal diversity by precise genetic manipulations and thus 
implies with the possibility of generation of large libraries 
of complex compounds to feed a modern high-through-
put screening operation [51, 52]. Thus, combinatorial 

Fig. 3  Structure of tylosin showing possible modification/engineering sites for engineering/diversification of tylosin and related molecules
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a

b

Fig. 4  a Biosynthesis pathway assembly of erythromycin. b Biosynthesis of diverse erythromycin derivatives using Streptomyces coelicolor deficient 
in KS10. Different activated synthetic diketides and triketides were supplemented to the culture
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biosynthesis is a recent addition to the metabolic engi-
neering toolbox by which genes responsible for individual 
metabolic reactions from different organisms are com-
bined to generate the metabolic pathways to biosynthe-
size the desired products [53]. Fundamentally, it can be 
distinguished from mutasynthesis approach on the bases 
that a mutasynthesis is an approach where there is inacti-
vation of some key functional genes, thus perturbing the 
biosynthesis pathway to new products by supplementa-
tion of feasible precursors or chemical entities; whereas 
combinatorial biosynthesis rely on additional gene func-
tions by heterologous expression of functionally similar 
or diverse genes so that the pathway is tuned for crafting 
novel analogs. It has been widely applied to achieve new 
derivatives related to polyketides, coumarins, indolocar-
bazoles and other types of antibiotics [53–55].

Among the compounds that have been developed into 
medicines, including the antimicrobials and antibiotics, 
the polyketides occupy significant part. The polyketides 
are produced as a diverse array of products manifested by 
the bacterial megaenzyme polyketide synthases (PKSs). 
The distinct modularity in the genetic architecture of 
these PKSs provides sufficient ground for expecting feasi-
bility for engineering the enzymes to produce novel drug 
candidates, by ‘combinatorial biosynthesis’ [56].

The supplementation of the shikimate-derived 
cyclohexyl-CoA biosynthetic pathway into S. avermiti-
lis Δbkd enabled the production of doramectin without 
cyclohexanoic acid supplementation [57]. Similarly, sup-
plementation of diverse carboxylic acid starter unit to 
spinosyn PKS containing loading modules of avermectin 
or erythromycin could generate diverse spinosyn analogs 
[58]. Similarly, multiple bioactive macrolides were gener-
ated by hybrid modular PKS from pikromycin gene clus-
ter, erythromycin gene cluster, and tylosin gene cluster, 
whereas rigorous interchange of modules is employed 
between the PKSs [59]. This work demonstrated the 
unique capacity of combinatorial biosynthesis for accel-
erating the creation of novel biologically active natural 
products.

By utilizing S. venezuelae based combinatorial biosyn-
thesis machinery, many novel analogs of various sec-
ondary metabolites with diverse structure and diverse 
activities have been generated [60–64]. S. venezue-
lae ATCC 15439 was engineered for deletion of genes 
responsible for biosynthesis and attachment of TDP-4-
keto-6-deoxy-d-glucose and the strain was designated 
as S. venezuelae YJ003. The sugar gene cassettes encod-
ing for deoxysugar biosynthesis and glycosylation were 
expressed in the engineered strain to generate olivosyl 
and quinovosyl derivative of various macrolides [60]. S. 
venezuelae was genetically engineered for deletion of the 
entire biosynthetic gene cluster encoding the pikromycin 

PKS and desosamine biosynthetic enzyme [61]. After 
crafting the amenable host for combinatorial biosynthe-
sis, it was used multifarious for generation of different 
analogs of targeted polyketides. The engineered deox-
ysugar biosynthetic pathways for biosynthesis of thymi-
dine diphosphate (TDP)-d-quinovose or TDP-d-olivose 
along with substrate flexible glycosyltransferase–aux-
iliary protein pair DesVII/DesVIII from S. venezuelae 
were expressed in the mutant strain to which 12-, 14-, 
and 16-membered ring macrolactones i.e. 10-deoxym-
ethynolide, narbonolide, and tylactone, respectively were 
feed to generate corresponding quinovose- and olivose-
glycosylated macrolides. The conversion of 12-, 14-, and 
16-membered ring macrolactones including 10-deoxym-
ethylnolide, narbonolide, and tylactone were achieved in 
engineered S. venezuelae strain with deoxysugar biosyn-
thetic pathways (TDP-d-quinovose or TDP-d-olivose) 
together with glycosyltransferase-auxiliary protein (Des-
VII/DesVIII) and produce their glycosylated scaffolds as 
quinovosyl and olivosyl macrolactones. The synthesized 
compounds were YC-17 and narbomycin. Similarly, 
while replacing the DesVII/DesVIII by substrate-flexible 
glycosyltransferase TylMII coupled with partner pro-
tein TylMIII derived from S. fradiae, a mycaminosyl 
derivative of tylactone (5-O-mycaminosyl tylactone) was 
produced [61]. Similarly, expression of complete bio-
synthetic pathways for the biosynthesis of TDP-3-de-
methyl-d-chalcose or TDP l-rhamnose together with 
the glycosyltransferase-auxiliary protein pair DesVII/
DesVIII along with subsequent feeding of 16-membered 
ring macrolactone tylactone was fed to this engineered 
host, which in turn successfully produced 3-O-demethyl-
d-chalcosyl, l-rhamnosyl, and d-quinovosyl derivatives 
[62]. Similarly, using S. venezuelae YJ003 and expression 
of complete biosynthetic pathways for the biosynthe-
sis of TDP-3-dimethyl-d-chalcose or TDP-l-rhamnose 
together with DesVII/DesVIII, novel narbomycin deriva-
tive decorated with l-rhamnose or 3-O-demethyl-d-chal-
cose were generated. These novel analogs exhibited 
greater antibacterial activity than narbomycin and the 
clinically relevant erythromycin [62]. In another instance, 
for another aglycone YC-17, the native d-desosamine 
was replaced by d-quinovose, l-olivose, l-rhamnose, 
and d-boivinose to generate YC-17 glycoside analogs as 
d-quinovosyl-10-deoxymethynolide, l-olivosyl-10-de-
oxymethynolide, l-rhamnosyl-10-deoxymethynolide, 
and d-boivinosyl-10-deoxymethynolide respectively by 
expression of gene cassette responsible for biosynthe-
sis of respective deoxysugars (Fig. 5). The assessment of 
biological activity indicated that l-rhamnosyl-10-deox-
ymethynolide exhibited better activities against clini-
cally isolated erythromycin-resistant pathogenic strains, 
as well as erythromycin-susceptible strains relative to 
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Fig. 5  Structures of different sugars conjugated macrolides produced using TDP-sugars biosynthesis pathway engineered Streptomyces 
recombinant strains
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YC-17 and its other analogs [64]. These all studies indi-
cate that the combinatorial biosynthesis mediated struc-
tural diversification can be one of the efficient techniques 
for modifying the structure and thus rendering enhance-
ment in activity mediated by the structure–activity rela-
tionship as par distinct structural scaffold contributing 
for a particular range of activity.

The large multifunctional PKS enzymes synthesize 
macrolides [65]; which undergoes multiple modifications 
by post-PKS enzymes mediated reactions such as oxida-
tion, methylation, glycosylation, hydroxylation and many 
more giving rise to chemically distinct structures. The 
functional and structural diversity of these compounds 
is controlled by these post-modifications and most often 
these modifications are critical for biological activities 
[38]. The hydroxylation or other modifications contrib-
uted by cytochrome P450 monooxygenases are the key 
steps leading to structural diversity and biological activi-
ties to macrolide antibiotics [66]. Hence, by utilizing the 
substrate flexible cytochromes for combinatorial bio-
synthesis novel analogs were generated. An engineered 
S. venezuelae HK954 mutant strain (with deletion of 
the last module of pikromycin PKS (pikAIV) but intact 
substrate flexible cytochrome P450, pikC) was used for 
generating novel hydroxylated analogs of oleandomycin 
[67]. Similarly, S. venezuelae mutant strain YJ003 blocked 
in desosamine biosynthesis pathway was used for the 
expression of substrate flexible cytochrome P450s, EryF 
from erythromycin gene cluster and OleP from olean-
domycin gene cluster to generate novel analogs of 12 and 
14 membered macrolactones inherently produced by the 
host strain (Fig. 6) [67].

Metabolic engineering approaches 
in actinomycetes for macrolide biosynthesis
The major constraint for biosynthesis of macrolides in 
the producer-host has been abundant availability of pre-
cursors and cofactors, the lower expression level of bio-
synthetic genes and regulation of the biosynthetic gene/
genes. Generally, the bottlenecks in biosynthetic path-
ways restrict the substantial production of the natural 
product in desired titers. This is significantly associated 
with the limitations of the flux of key precursors from 
primary metabolism to secondary metabolic pathways 
[68, 69]. Generally, the precursors/cofactors are derived 
from primary metabolism including glycolysis, pentose 
phosphate pathway, tricarboxylic acid cycle and amino 
acid/nucleic acid metabolism [70]. Thus these types of 
limitations can be overcomed by amplifying the gene or 
genes that encode enzymes associated with such bot-
tlenecks resulting in increased enzyme levels to dimin-
ish the bottleneck effects and hence, improved titers 
can be achieved [71, 72]. Fundamentally, regulation and 

correlation of precursor supply for improving natural 
product amounts are focused on carbohydrate metabo-
lism, fatty acid precursors, and intracellular cofactor sup-
plies [73, 74]. There are ample of examples illustrating the 
genetic circuit guided pathway engineering approaches 
for enhancing the secondary metabolites of importance 
[75], such as heterologous overexpression of the S -aden-
osyl-L -methionine (SAM) synthetase metK, improved 
production of different antibiotics, such as actinorho-
din, avermectin, and pikromycin [76, 77]. For exam-
ple, the engineering of methylmalonyl-CoA biogenesis 
pathway by generating MCM gene, methylmalonyl-CoA 
mutase (mutB) knock out mutant of S. erythraea, there 
was an enhanced level of erythromycin in the carbohy-
drate-based medium. However, there was an elevated 
level of erythromycin in S. erythraea recombinant con-
taining MCM operon (meaA, mutB, meaB, mutR) in the 
oil-based medium [78]. Similarly by supplementation of 
cheap primary sources which subsequently contribute for 
specific fatty acid precursors viz. acetyl-CoA, malonyl-
CoA, methyl malonyl-CoA and ethyl malonyl-CoA along 
with precursor redirecting enzyme complexes such as 
acetyl CoA carboxylase, and propionyl CoA carboxylase 
different antibiotics such as nargenicin A1, pikromycin, 
and erythromycin were elevated to significant level [79–
82]. Hence, metabolic engineering combined with redi-
rection of specific precursors can be a rational approach 
for enhancing the secondary metabolites of importance. 
Similarly, such approaches for enriching the acyl-CoA 
precursors have been used for an elevated level of diverse 
macrolides (Table 1). Recently, various engineering strat-
egies for directing the catabolism of branched-chain 
amino acids (BCAA) into various acyl-CoA compounds 
has extended the opportunities for metabolic engineer-
ing of acyl-CoA pathways and yield improvement of mac-
rolides [83].

Similarly, the expression of regulatory genes has been 
promising strategies to enhance the production titer or 
activation of novel macrolides in diverse actinomycetes. 
Generally, the introduction of synthetic or natural pro-
moter has been effective for triggering either overpro-
duction or activation of silent/cryptic gene clusters with 
low or no expression [84–89]. The metabolic engineering 
approaches utilizing overexpression/deletion of various 
global regulators or pathway-specific positive regulators 
are utilized for either enhancing the production yield or 
obtaining novel macrolides from native hosts/heterolo-
gous hosts (Table 1).

The availability of the crystal structure of complete 
module of PKS [16, 90] or its constituent domains as ACP 
[91], dehydratase [92], thioesterase [93, 94] has provided 
a better understanding on the mechanism of macrolac-
tone biosynthesis. In case of polyketide biosynthesis, the 
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Fig. 6  Generation of different macrolactones using selected enzymes such as PikC, EryF and OleP
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AT domain is crucial for controlling the recognition of 
the extender unit. Thus, there is a possibility of chang-
ing the building block specificity and the basic backbone 
of the polyketide by altering the AT domain. Such valu-
able information has been utilized for rational engineer-
ing of macrolactones. The site-directed mutagenesis of 
the domains or intact domain exchange to change their 
substrate specificities has been widely used for generat-
ing diverse analogs of the macrolides, which have been 
reviewed elsewhere [13]. The exchange of AT domain 
by domain swapping can cause impaired protein folding 
[95]. However, Yuzawa et  al. identified the highly con-
served boundaries and exhibited the feasibility of AT 
domain replacement in macrolides [96]. But the direct 
engineering of innate AT domain can be a more reli-
able alternative for varying the substrate ranges [97]. For 
example, the site-directed mutagenesis of AT domain 
and feeding of 2-propagylmalonyl-SNAC to S. erythraea 
(containing AT6 of DEBS mutated with Val295 to Ala) to 
generate 2-propargyl erythromycin [98]. The mutation 
is not only capable of extending the substrate specific-
ity to natural extender units but also alter the specific-
ity non-natural extender units. For example, the selected 

mutation at Tyr189 in DEBS3 AT6 domain resulted in the 
dramatic changes in product distribution by accepting 
diverse non-natural extender units [99].

Similarly, novel derivatives of NPP have been generated 
by site-directed mutagenesis in enoyl reductase domain 
in module 5 of the NPP A1 polyketide synthase NppC. 
The compound exhibited comparable antifungal activ-
ity against Candida albicans with lesser toxicity than 
antifungal, amphotericin B [100]. However, such kind 
of domain modification may create inactive proteins or 
change the chemistry of inter-domain interactions. So 
entire domain exchange has been a superior option and 
several analogs of erythromycin have been generated by 
replacing methylmalonyl-specific acyltransferase (AT) 
domains of the 6-deoxyerythronolide B synthase (DEBS) 
with malonyl-, ethylmalonyl-, or methoxymalonyl-spe-
cific domains [101].

Similarly, metabolic engineering approach has been 
performed for complete exchange of the module. For 
example, the loading module from the rifamycin biosyn-
thetic pathway as a substitution for the original loading 
domain was incorporated in the PKS so that the altered 
PKS was amenable for accepting benzoate as starter unit 

Table 1  Metabolic engineering approaches used for enhancing the production of diverse macrolides

Compound Strain Approach References

Native host

 Epothilone Sorangium cellulosum Expression of propionyl-CoA synthetase, which converts propionate into 
propionyl-CoA, the precursor of methylmalonyl-CoA

[148]

 Nargenicin A1 Nocardia sp. CS682 Over-expression of ACCase complex for enhancement of production [82]

 Natamycin S. chattanoogensis L10 Overexpression of the endogenous PPTase SchPPT for enhancement of pro-
duction

[149]

 Tylosin S. fradiae Different approaches for enhancement of production titer: SARP regulators tylS 
and tylR are overexpressed

Inactivation of a transcriptional repressor (tylQ)
Diruption of tylP encoding a γ-butyrolactone receptor

[150–152]

 Spiramycin S. ambofaciens Overexpression of pathway-specific regulator srm22 or srm40 increased 
spiramycin production

[153]

 Milbemycin S. bingchenggensis Enhancement by overexpression of pathway-specific regulator milR [154]

 Pikromycin S. venezuelae Enhancement of production by overexpressing genes of branched chain 
amino acids catabolism

[83]

 Stambomycins  S. ambofaciens Overexpression of pathway-specific regulator samR0484 triggers production of 
cryptic BGC

[155]

Heterologous hosts

 FK 506 S. clavuligerus CKD1119 Expression of mutB from S. erythraea [156]

 Methoxym-
alonate-plate-
nolide analog

S. fradiae Introducing the biosynthetic pathway for methoxycarbonyl-ACP [112]

 Midecamycin S. fradiae Enhancement of production by introducing the biosynthetic pathway for 
methoxylmalonyl-ACP from the FK520 producer S. hygroscopicus

[112]

 Pikromycin S. venezuelae Enhancement of production by expression of two global regulators, metK1-sp 
and afsR-sp, from Streptomyces peucetius

[157]

 Tylosin S. venezuelae Overexpression of pikD, a pathway-specific regulator from pikromycin biosyn-
thetic pathway

[158]
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instead of the propionyl-CoA used in native. By this strat-
egy, a novel benzyl-erythromycin analog was generated 
and by utilizing further precursor flux enhancement and 
pathway engineering approaches the titer of the novel 
derivative was substantially increased (Fig. 7). The novel 
derivative was capable to show comparable activity to the 
parent compound whereas showing pronounced efficacy 
against the erythromycin resistant pathogens [102]. Simi-
larly, the domain swapping of pikromycin thioesterase to 
linear polyketide tautomycetin (TMC) was able to gener-
ate the cyclized form of macrolactones [103].

In general, most of the actinomycetes strain is capable 
of generating profuse secondary metabolites with differ-
ent structures or activities. Most often these chemical 
entities share common scaffold and thus similar precur-
sor régimes. Thus, the precise and efficient manipula-
tion of modular PKSs is often hindered by biological 

constraints posed by organisms (principally actinomy-
cetes) due to their intricate biological pathways and com-
plex distribution of precursor flux for the constitution 
of different secondary metabolites. To address this con-
straint, an heterologous expression host as Escherichia 
coli was engineered with the introduction of the three 
DEBS genes from S. erythraea, the sfp phosphopanteth-
einyl transferase gene from Bacillus subtilis, and the 
genes encoding a heterodimeric propionyl-CoA car-
boxylase from S. coelicolor [104]. This engineered E. 
coli BAP1 strain was utilized for fortifying generation 
of novel analogs of erythromycin (Fig.  7), as described 
previously. Further, the production was fine-tuned by 
reducing the total number of plasmids [105] and utiliz-
ing the BAC vector [106]. The metabolic engineering 
approach by eliminating competitive native pathway for 
nucleotide-activated sugar biosynthesis pathways (vioA/

Fig. 7  Biosynthesis of benzyoyl erythromycin by replacing loading module of erythromycin from loading module of rifamycin biosynthesis 
pathway
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vioB/wzx, wecD/wecE, and rmID) substantially increased 
the production titer [106]. The metabolic engineering 
approach was employed for expanding the formation 
of novel erythromycin analogs by altering the tailoring 
enzymes involved in sugar biosynthesis. Among them 
few of the novel analogs exhibited promising activity 
against the erythromycin-resistant strain of B. subtilis, 
which provided a rationale of this diversification strategy 
for increasing the therapeutic potential of erythromycin 
[107].

Thus heterologous expression has been an efficient 
approach of metabolic engineering where a single gene, 
or a set of genes, or entire biosynthetic pathway genes 
are introduced in the microbial host to identify and engi-
neer the corresponding natural products [108]. When if 
the native producer strains are not genetically tractable 
or not amenable to metabolic engineering approaches, 
the heterologous hosts provide an efficient approach for 
gaining access to secondary metabolites encoded by the 
particular BGCs. In addition, the generation of metabolic 
engineering by removing the competing biosynthetic 
pathways to generate clean hosts provides a suitable plat-
form for isolation, characterization, and production of 
various macrolides [109, 110]. The generation of cluster 
free clean hosts provides new avenues for redirecting the 
flow of precursor pathways directly to the target second-
ary metabolite heterologously expressed [111]. Diverse 
macrolide biosynthesized through heterologous hosts 
are presented in Table 2. In some cases, the heterologous 

expression of the BGCs needs to be tuned by expres-
sion of the regulatory genes. For example, the heterolo-
gous expression of a tylosin gene cluster in S. venezuelae 
was enhanced by expression of pikD, a positive regulator 
from pikromycin biosynthetic pathway of S. venezuelae. 
In other cases, the tuning of heterologous expression by 
an engineered precursor pathway can enhance the pro-
duction titer or generate novel derivatives in heterolo-
gous expression systems [112]. The introduction of the 
biosynthetic pathway for methoxymalonyl-ACP into an 
S. fradiae strain heterologously expressing the mideca-
mycin pathway led to enhancement of midecamycin and 
generation of a novel compound as an analog of methox-
ymalonate-platenolide [112].

Recently, the biocatalytic/chemo-biocatalytic approach 
employing a heterologous expression of the partial PKS 
and substantial modification has been employed as an 
effective approach for generating novel macrolides [113]. 
For example, the Pik pentaketide precursor was sup-
plemented to the expressed protein of PikAIII-TE or 
PIKAIII-PikAV to generate the macrolactones, 10-deoxy-
methynolide, and narbonolide. Further biotransforma-
tion with engineered S. venezuelae could generate diverse 
derivatives related to pikromycin and methymycin. Simi-
larly, activated synthetic hexaketide was further extended 
with a methyl malonyl and malonyl units followed by 
lactonization to form tylactone aglycon by in vitro cataly-
sis using tylosin biosynthesis complementary modules 
(module 6 and 7 encoded by JuvEIV and JuvEV genes) 

Table 2  Diverse macrolide biosynthesized through heterologous hosts

Compound Producer-host Heterologous host References

Avermectin S. avermitilis S. lividans [159]

Chalcomycin S. bikiniensis S. fradiae [160]

Epothilone Sorangium cellulosum S. coelicolor, M. xanthus, E. coli, S. venezuelae; Myxo-
coccus xanthus Burkholderiales strain DSM 7029

[117, 161–166]

Erythromycin Saccharopolyspora erythraea S. coelicolor, E. coli [167, 168]

Megalomycin Micromonospora megalomicea Saccharopolyspora erythraea, S. lividans [169]

Spinosyn Saccharopolyspora spinosa S. albus [118]

Tylosin S. fradiae S. venezuelae [170]

Midecamycin S. hygroscopicus S. fradiae [112]

Pikromycin S. venezuelae S. coelicolor, S. lividans [171, 172]

Oleandomycin S. antibiticus S. coelicolor, [171]

Versipelostatin S. versipellis 4083 S. albus [173]

Galbonolide B Streptomyces sp. LZ35 S. coelicolor [174]

FK506 S. tsukubaensis S. coelicolor [175]

Streptoseomycin S. seoulensis S. chartreusis [176]

Nemadectin S. cyaneogriseus S. avermitilis [110]

bafilomycin B1 Kitasatospora setae KM-6054 S. avermitilis [110]

Quinolidomicin Micromonospora sp. JY16 S. lividans [173]
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from juvenimicin BGC. The tylactone was further bio-
transformed to M-4365 G1 using S. fradiae DHS 316 
which is deficient of tylactone BGC. This intermediate 
was modified into ten different macrolide derivatives 
using CYP450 and chemical oxidation methods [114, 
115] (Fig.  8). This approach advanced the use of type I 
PKS enzymes in vitro for generation of novel antibiotics.

However, this method suffers from the limitations of 
scalability whereas the starting materials need to be sup-
plied in sufficient amounts for sustainable production. 
In addition, there is a requirement of strict control in 
unwanted reactive centers but enough reaction in desired 
reaction centers, which makes these synthesis processes 
tedious and expensive. Thus, biological engineering 
of macrolides by using sustainable metabolism in the 

Fig. 8  Chemoenzymatic and biocatalytic synthesis of structurally diverse tylactone-based macrolides antibiotics
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microbial hosts may always remain superior. Recently, 
synthetic biology approach which utilizes the artificial 
synthesis of genetic parts in revolutionizing such bio-
logical engineering aspects. For example, the promoter 
engineering by utilizing the regulatory sequences in the 
promoters can be an effective approach for tuning the 
production titer of macrolides [116]. The biosynthesis 
of epothilone was successfully accomplished by modu-
lar construction of artificial macrolide pathway [117]. 
The availability of detailed knowledge of diverse –omics 
related information can be successfully employed for fine 
tuning the heterologous expression of such macrolide 
compounds [118].

Microbial biotransformation for modification 
of antibiotics
Besides the precise genetic engineering approaches, 
microbial biotransformation strategies have attracted 
considerable interest for the post-modification of sec-
ondary metabolites in terms of their structural and func-
tional characteristics [119–121]. Any changes in parental 
compounds in a later stage can refer to as post-modifica-
tion in terms of structure and biotransformation is one 
of the well-studied and precise approaches to achieve 
such modifications with an optimal regio- and enantio-
selectivity [122, 123]. However, the major modification 
includes cofactor-dependent hydroxylation/oxidation, 
dehydrogenation, methylation, glycosylation (O/C/N-gly-
cosylation, deglycosylation), epoxidation, cyclization etc. 
[124–127], whereas the intracellular cofactors/enzymes 
present in the biotransformation host is responsible for 
desired modification of the supplemented substrate. Such 
whole-cell biotransformation can be achieved using vari-
ous microbial species (Streptomyces, Myxobacterium, 
Bacillus, Corynebacterium, Pseudomonas, etc.) as a host.

A series of erythromycin D analogs conjugated with 
different sugar scaffolds were produced feeding 6-deox-
yerythronolide B or 3-α-mycarosyl-erythronolide B in 
E. coli overexpressing the specific TDP-L-mycarose and 
TDP-desosamine sugar biosynthetic pathway [128]. 
Same biotransformation set-up was used for modifica-
tion of erythromycin C, 3-α-mycarosyl-erythronolide 
B, azithromycin, and erythromycin D to modify them 
into megosamine conjugated products using reconstitu-
tive TDP-l-megosamine biosynthetic pathway in E. coli 
[129, 130] (Fig.  9a). This experiment also suggested the 
possible routes for the production of diverse therapeuti-
cally important (antiparasitic, antiviral and antibacterial) 
compound megalomicin A including 12-deoxynucleo-
side triphosphate megalomicin A [130]. Importantly, 
sugar appendages present in macrolide antibiotics gov-
erns their biological properties and changes in them have 
a substantial effect [131]. So, deoxy sugar biosynthetic 

pathways are usually focused in terms of antibiotic 
modifications. 6-O-megosaminyl-erythromycin A, 
6-O-megosaminyl-azithromycin, 6-O-epidigitoxosyl-
erythromycin A and 6-O-daunosaminyl-erythromycin A 
were produced through the whole cell biotransformation. 
Their evaluation against several clinical isolates; standard 
and drug-resistant strains of human malarial parasites 
(Plasmodium falciparum) and liver stages of the rodent 
malaria parasite (Plasmodium berghei) were found more 
effective than parental compound [130].

Rosamicin, macrolide antibiotics isolated from the 
culture of soil bacterium was bio-transformed into 10, 
11-dihydrorosamicin using S. venezuelae which showed 
enhanced in  vitro antibacterial activity against MRSA 
[132]. Likewise, natural oligomycin A and semi-synthetic 
tilmicosin are considered and bio-hydrogenated using 
S. venezuelae and structurally modify into 2, 3-dihydro-
oligomycin A and 10, 11-dihydro-tilmicosin (Fig.  9b). 
This changes in natural scaffold oligomycin and tilmico-
sin brought increased activity against S. cerevisiae and 
Bacillus subtilis respectively [133]. Similarly, macrocyclic 
lactone antibiotic streptogramin A namely 5, 6-dihydro-
virginiamycin M1 was created by feeding virginiamycin 
M1 into a culture of recombinant S. venezuelae through 
the mechanism of bio-dehydrogenation catalysis [134]. 
The generated analog showed enhanced anti-MRSA 
activity compared to the parent compound.

Conclusions and future perspectives
Actinobacteria have been already established as the 
promising platform for the production of macrolides 
and their novel derivatives. Moreover, the recent 
advances in various “–omics” provides new paths for 
uncovering the genomic information and their expres-
sion levels. Moreover, the availability of various bio-
informatics tools for classifying the genome to BGCs 
and analysis of the products by versatile metabolome 
analyzing tools helps in connecting the genome to a 
particular molecule, which is also otherwise called as 
“genome mining” approach [135–139]. In addition, the 
current success of enzyme/host engineering has nar-
rowed down the gap between the understanding of PKS 
biosynthetic logic and its propensity for PKS diversifi-
cation. The advances in genome sequencing, protein 
crystallography, and gene-synthesis system have made 
it feasible for designing, building and testing chimeric 
PKSs. The advancement in the analytical methods by 
mass spectrometry and molecular networking have 
increased our capacity for detecting the products [140]. 
The feasibility of the optimization of production hosts 
either native or heterologous by computational and 
systems biological tools [141] provides an effective or 
alternative route for fluxing the precursors toward the 
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biosynthesis from such chimeric PKS. Various genome 
engineering techniques such as Multiplex Automated 
Genome Engineering (MAGE) [142, 143] and Clus-
tered Regularly Interspaced Short Palindromic Repeats 
(CRISPRs)/CRISPR associated enzyme (Cas) [144, 145] 
provides ample of opportunities for precise metabolic 
engineering of the PKS and post-PKS biosynthetic steps 
in the native/heterologous hosts. Additionally, diverse 
BGCs cloning techniques as Bacterial artificial chromo-
some (BAC) cloning, Gibson assembly, Linear–linear 

homologous recombination (LLHR), Golden Gate 
assembly and Transformation-associated recombina-
tion (TAR) have played pivotal role in unlocking diverse 
NP resources [146, 147] The availability of detailed 
genomic information of producer strains and precise 
analysis facilitated by efficient cloning methods and 
utilizing the metabolically engineered host system can 
be next generation approach for isolation of novel mac-
rolides or enhanced production of existing macrolides 
with pharmaceutical values.

a

Fig. 9  a Biosynthesis of glycosylated macrolides from different TDP-sugars (TDP-L-mycarose, TDP-desosamine, TDP-megosamine) biosynthesis 
pathway overexpressed recombinant E. coli strains supplemented with corresponding macrolactone/macrolides. b Biotransformation of macrolides 
using Streptomyces venezuelae strain
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b

Fig. 9  continued
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