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A straightforward, environmentally 
beneficial synthesis 
of spiro[diindeno[1,2‑b:2′,1′‑e]py
ridine‑11,3′‑indoline]‑2′,10,12‑tri
ones mediated by a nano‑ordered 
reusable catalyst
Mahsa Fathi1, M. Reza Naimi‑Jamal1*, Mohammad G. Dekamin1, Leila Panahi1 & 
Oleg M. Demchuk2

A library of new spiro[diindeno[1,2-b:2′,1′-e]pyridine-11,3′-indoline]-2′,10,12-trione derivatives 
has been prepared in an efficient, one-pot pseudo four-component method mediated by a reusable 
heterogeneous nano-ordered mesoporous SO3H functionalized-silica (MCM-41-SO3H) catalyst. 
Excellent yields, short reaction times, as well as convenient non-chromatographic purification of the 
products and environmental benefits such as green and metal-free conditions constitute the main 
advantages of the developed synthetic methodology. The obtained fused indole-indenone dyes would 
be of interest to pharmaceutical and medicinal chemistry. Furthermore, due to their sensitivity to pH 
changes, they could be used as novel pH indicators.

Multicomponent reactions are extensively used as an efficient tool to construct complex molecular motifs of 
important pharmaceutics, plant protection compounds, functional materials, and building blocks of a variety of 
fine chemicals. Such methodology usually satisfies rigid requirements of green chemistry and is characterized by 
atom-economy, synthetic convergency, simple purification protocols, and decreased usage of expensive solvents 
and reagents1–12. In recent years, the multicomponent reaction strategy has been applied for the synthesis of 
spirooxindoles and other privileged isatine derivatives13–20.

Many pharmaceutically important compounds possess a structural motif of merged indole and indenone 
cores21–26. The indenopyridine motif is found in many alkaloids and medicines, which exhibit anti-breast cancer27, 
cytotoxic28–30, calcium modulatory31, and other types of biological activities. At the same time, some such het-
erocycles are pH-indicators32, while others are used as building blocks in the synthesis of DNA inter-chelating 
drugs33 (Fig. 1).

A literature survey indicates a significantly small number of known methods for the synthesis of spiroindole 
core-based compounds. Several approaches to the synthesis of indenone-fused heterocycles from isatins, aromatic 
amines and 1,3-indanedione have been performed under various conditions, e.g. catalysis by p-toluenesulfonic 
acid34,35, sulfonated polyethylene glycol (PEG-OSO3H), N-methyl-2-pyrrolidonium dihydrogen phosphate ionic 
liquid36, oxalic acid dehydrate, a proline-based low transition temperature mixture37, and a zinc terephthalate 
metal–organic framework38. Despite some advantages, most of these methods have significant drawbacks, includ-
ing the application of toxic, expensive solvents and catalysts, as well as complicated purification procedures and 
waste management protocols. Instead, heterogeneous recoverable catalysts used in the chemical industry and 
research labs make these processes much more environmentally friendly39–43.

In this study, we have focused on a heterogeneous acidic catalyst, which is easily prepared and has excellent 
activity and chemical stability. It can also be separated from the product after the reaction and be reused. Such 
parameters provide additional cost efficiency and environmental safety to the developing procedures44–46.
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MCM-41 is a solid mesoporous nano-ordered silica with a large surface area and a regular structure. The 
diameter of the MCM-41 pores is distributed between 1.5 and 10 nm. It bears merely weak hydrogen bonding 
Si–OH sites and therefore at most only slightly acidic47,48. Its acidity could be improved, however, by substituting 
the Si atoms on its surface with Al49, B50, and Zn51, and or by functionalizing the MCM-41 surface with an alkyl 
sulfonic acid anchoring group52,53, succinamic acid54, or –SO3H55–57. Due to a large number of silanol groups, 
anchoring of inorganic –SO3H to the MCM-41 surface is very practical58. Such a readily accessible compound 
(MCM-41-SO3H) is non-toxic, recyclable, and reusable. Hence, MCM-41-SO3H is extensively applied in many 
chemical processes.

Figure 1.   Examples of bioactive indenopyridines.

Scheme 1.   Synthesis of spiro[diindeno[1,2-b:2′,1′-e]pyridine-11,3′-indoline]-2′,10,12-triones.
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Figure 2.   FT-IR spectra of nano-ordered MCM-41 (a), and MCM-41-SO3H (b).
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As an extension of our continuous studies on the application of heterogeneous catalytic systems to the syn-
thesis of different classes of pharmaceutically important compounds and to the development of green mul-
ticomponent reactions (MCRs)57,59–64, herein we report a straightforward approach leading to an effective, 
one-pot pseudo four-components synthesis of spiro[diindenopyridine-indoline]triones. The reaction between 
1,3-indandione (1), aromatic amines (2a-g), and isatins (3a-h) in DMF is catalyzed by MCM-41-SO3H affording 
spiro[diindenopyridine-indoline]triones with good to excellent yields (Scheme 1).

Results and discussion
Characterization of the MCM‑41‑SO3H.  The MCM-41-SO3H was prepared according to our previous 
reports57,59,60 and characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron micros-
copy (SEM), and Brunauer–Emmett–Teller analysis (BET). The FTIR spectrum of the catalyst has been shown 

Figure 3.   The SEM images of the MCM-41-SO3H: the fresh catalyst (left), and the recovered one (right).

Figure 4.   The EDX analysis of the fresh MCM-41-SO3H.
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in Fig. 2. The bands at 1325 and 1288 cm−1 correspond to the asymmetric and symmetric stretching vibrations 
of the SO3H group. A wide band in the area of 3400–3200  cm−1 is related to the O–H stretching vibration 
of the hydroxyl groups. Moreover, stretching vibrations of Si–O–Si are indicated by sharp bands at 1170 and 
850 cm−165,66.

The SEM images of the fresh and recovered MCM-41-SO3H have been shown in Fig. 3 and confirm the 
nanoscale size of the synthesized particles. The size of most particles was in the range of 50–90 nm. As can be 
seen, the particles are aggregated, due to the strong hydrogen bonding between the acidic moieties. The EDX 
analysis of the fresh catalyst proved the presence of O, Si, and S atoms in the MCM-41-SO3H structure with a 
uniform distribution of the sulfonic acid groups (Fig. 4).

Figure 5.   The N2 adsorption–desorption isotherms of the MCM-41-SO3H.

Table 1.   The evaluation of activity of different catalysts in the model reaction. Reaction conditions: isatin 
(1 mmol), 1,3-indanedione (2 mmol), aniline (1 mmol) and DMF (1 mL) at 100 °C.

Entry Catalyst (mg) Time, h Isolated yield, %

1 – 24 < 30

2 Al-MCM-41 (20) 24 37

3 Fe-MCM-41 (20) 24 52

4 MCM-41-NH2 (20) 24 < 30

5 MCM-41 (20) 24 57

6 MCM-41-SO3H (20) 1/3 94

7 Cellulose-SO3H (20) 1 78

8 Pectin (20) 24 47

9 Carboxymethyl cellulose (20) 24 < 30

10 Hydroxyapatite (20) 24 < 30

11 MCM-41-SO3H (5) 2 64

12 MCM-41-SO3H (10) 2 89
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According to the obtained results from the N2 adsorption–desorption diagram (Fig. 5), the BET and the 
Langmuir surface area of the MCM-41-SO3H were 223 and 303 m2 g−1, respectively. The BET adsorption average 
pore width (4 V/A) was measured to be 7.2 nm. The catalyst surface area and porosity properties are in good 
agreement with a typical mesoporous material.

Synthesis of spiro[diindeno[1,2‑b:2′,1′‑e]pyridine‑11,3′‑indoline]‑2′,10,12‑triones: an optimi‑
zation of the reaction conditions.  As it was mentioned above, our study aimed to discover an environ-
mentally benign protocol for the synthesis of diversified spiro[diindeno[1,2-b:2′,1′-e]pyridine-11,3′-indoline]-
2′,10,12-triones, which would satisfy the requirements of green chemistry67,68. Desired products were obtained 
in one-pot multicomponent reactions between 1,3-indanedione (1), anilines (2), and isatins (3). To find optimal 
conditions, several variables affecting the reaction yield were assessed.

Assessment of the effect of the catalyst used.  The catalytic efficiency of various members of the 
MCM-41 family (Al-MCM-41, Fe-MCM-41, MCM-41-NH2, and MCM-41-SO3H), as well as several other 
solid acid catalysts such as cellulose-SO3H, pectin, carboxymethyl cellulose, and hydroxyapatite were compared. 

Table 2.   The evaluation of different solvents and reaction temperatures in the model reaction. Reaction 
conditions: isatin (1 mmol), 1,3-indanedione (2 mmol), aniline (1 mmol) and solvent (1 mL).

Entry Solvent Catalyst (mg) Time, h Temperature, °C Isolated yield, %

1 DMF MCM-41-SO3H (20) 1/3 100 94

2 DMF MCM-41-SO3H (20) 2 60 74

3 DMF MCM-41-SO3H (20) 1/2 80 90

4 n-hexane MCM-41-SO3H (20) 12 Reflux < 30

5 EtOAc MCM-41-SO3H (20) 12 Reflux < 30

6 CH3CN MCM-41-SO3H (20) 4 Reflux 84

7 DMSO MCM-41-SO3H (20) 1/3 100 94

8 EtOH MCM-41-SO3H (20) 12 Reflux 65

9 Ball milling (solvent-Free) MCM-41-SO3H (20) 10 RT 42

Table 3.   The efficiency of MCM-41-SO3H as compared to other reported catalysts in the model reaction.

Entry Reaction conditions Time, min Yield, % References

1 PTSA/62 mg/grinding/ 3–4 85 34

2 PTSA/30 mol%/CH3CN/reflux 60 82 35

3 PEG-OSO3H/30 mol%/80 °C 10 94 36

4 [NMP]H2PO4/30 mol%/80 °C 15 92 36

5 LTTM/excess/80 °C 20 94 37

6 Zn (BDC) MOF/5 g/80 °C 25 96 38

7 MCM-41-SO3H/20 mg/100 °C 20 95 Present work
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The results presented in Table 1 indicate that a higher yield of the benchmark reaction between 1, 2a, and 3a, 
which furnished 5-(phenyl)-5H-spiro[diindeno[1,2-b:2′,1′-e]pyridine-11,3′-indoline]-2′,10,12-trione (4a) was 
observed, when MCM-41-SO3H was used. The effectiveness of this catalyst could be rationalized taking the high 
Brönsted acidity of the catalyst used and its appropriate pore size into consideration. The loading of MCM-41-
SO3H was also optimized. The yields of 64% and 89% 4a were obtained when 5 and 10 mg of MCM-41-SO3H 
catalyst were used in a 1 mmol scale of the reaction at 100 °C for 2 h (Table 1, entries 11 and 12); whereas a 94% 
yield was achieved after the first 20 min of the reaction in the presence of 20 mg of the catalyst (Table 1, entry 6).

Assessment of the effect of the solvent and temperature.  The effect of various polar and non-polar, 
protic and aprotic solvents (EtOAc, n-hexane, EtOH, CH3CN, DMF, and DMSO) on the yield of the model reac-
tion was also evaluated (Table 2, entries 1 and 4–8).

The polar aprotic solvent DMF was found to be a solvent of choice in this reaction (Table 2, entry 1). The 
solvent-free reaction ran in identical conditions -but without any solvent- with a poor yield, event after a long 

Table 4.   Synthesis of spiro[diindeno[1,2-b:2′,1′-e]pyridine-11,3′-indoline]-2′,10,12-triones. Reaction 
conditions: isatin (1, 1 mmol), 1,3-indanedione (2, 2 mmol) and aniline (3, 1 mmol), MCM-41-SO3H (20 mg), 
DMF (1 mL), 100 °C.

Entry R1 R2 R3 R4 Product Time, min Yield, % Melting point, °C

1 H H H H 4a 20 95  > 300

2 OMe H H H 4b 15 97  > 300

3 NO2 H H H 4c 25 90  > 300

4 Cl H H H 4d 20 92  > 300

5 Me H H H 4e 18 95  > 300

6 Br H H H 4f 20 92  > 300

7 H H Cl H 4g 20 92  > 300

8 OMe H Cl H 4h 15 94  > 300

9 Me H Cl H 4i 18 93  > 300

10 Cl H Cl H 4j 20 91  > 300

11 H H Br H 4k 25 90  > 300

12 OMe H Br H 4l 18 94  > 300

13 Me H Br H 4m 20 93  > 300

14 Cl H Br H 4n 22 92  > 300

15 H H NO2 H 4o 30 89  > 300

16 OMe H NO2 H 4p 20 90  > 300

17 Me H NO2 H 4q 20 90  > 300

18 Cl H NO2 H 4r 25 88  > 300

19 H H H Me 4s 22 89  > 300

20 OMe H H Me 4t 20 92  > 300

21 Me H H Me 4u 20 90  > 300

22 Cl H H 4-Tol 4v 25 89  > 300

23 OMe H H Bn 4w 30 85  > 300

24 OMe H H 4-BrC6H4CH2 4x 35 80  > 300

25 H OMe H H 4y 15 94  > 300
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reaction time (Table 2, entry 9). On the other hand, the evaluation of the temperature influence on the yield of 4a 
indicated that higher temperature resulted in an improved yield in a shorter reaction time (Table 2, entries 1–3).

In comparison with other catalysts used in the similar reaction reported previously (Table 3), the heterogene-
ous MCM-41-SO3H was beneficial, offering higher sustainability and better efficiency in the synthesis of 4a. In 
addition, the atom economy of the protocol proposed herein and the waste exclusion proved its greenness as well.

Assessment of the substrate scope.  In general, high to excellent yields of spiro[diindeno[1,2-b:2′,1′-e]
pyridine-11,3′-indoline]-2′,10,12-triones 4a-y with a broad range of substituents were achieved in a short reac-
tion time (Table 4).

In comparison with the EWG-substituted substrates (Table 4, entries 3, 15–18), higher yields and shorter 
reaction times were observed for EDG-substituted isatins and aromatic amines (Table 4, entries 2, 5, 8, 12, 16).

The study on catalyst stability and reusability.  The possibility of recovering and reusing the catalyst 
was assessed in four consecutive runs for the benchmark reaction leading to 4a. After each run, the catalyst was 
filtered off and washed with n-hexane and acetone. Next, it was dried at 60 °C for 0.5 h. The recycled catalyst was 
then subjected to the next run of the model reaction. A significant maintaining of the catalytic activity of MCM-
41-SO3H in each run of the reaction was observed (Fig. 6).

The FT-IR spectra of the fresh and the recovered MCM-41-SO3H catalyst after the fourth run indicated that 
its structure remained unchanged (Fig. 7).
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Figure 6.   Reusability of the MCM-41-SO3H catalyst in four consecutive runs.

Figure 7.   The FT-IR spectra of the fresh MCM-41-SO3H (a), and the recovered one (b).
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Possible mechanism.  A plausible mechanism of the reaction leading to spiro[diindenopyridine-indoline]
triones is outlined in Scheme 2.

According to the proposed mechanism, acidic SO3H groups located on the surface of MCM-41-SO3H activate 
the carbonyl group of isatin (3a) to facilitate initial nucleophilic addition of the enolic form of 1,3-indanedione 
(1) affording the intermediate I. The addition of 2a to the intermediate I, followed by a cyclization reaction, 
furnishes the product 4a.

Study of the spectral properties of the obtained products 4a–4y.

Scheme 2.   Proposed catalytic role of the MCM-41-SO3H in the multicomponent condensation leading to the 
spirodiindenopyridine indoline 4a.

Table 5.   Spectral properties of the obtained products 4a–4y. Recorded in methanol solution.

Compound λmax, nm ε, 105 L mol−1 cm−1 Entry λmax, nm ε, 105 L mol−1 cm−1

4a 435 1.76 4n 424 1.79

4b 437 1.08 4o 429 2.76

4c 425 1.08 4p 432 2.99

4d 430 1.74 4q 424 2.08

4e 432 1.31 4r 435 2.65

4f 431 1.87 4s 432 2.11

4g 428 1.42 4t 426 2.55

4h 432 1.52 4u 428 2.84

4i 429 1.15 4v 438 2.93

4j 424 1.76 4w 435 2.84

4k 425 1.91 4x 426 2.69

4l 427 2.86 4y 434 2.54

4m 422 2.05
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The UV–Vis spectra of 4a–4y were obtained in methanol and reported in Table 5. They showed a maxi-
mum absorption wavelength (λmax) in the range of 422–435 nm and a molar extinction coefficient (ɛ) of 
(1.08–2.99) × 105 L mol−1 cm−1.

The Spiro[diindenopyridine indoline]triones with a hydrogen atom at indoline nitrogen may undergo revers-
ible deprotonation and can be used as pH chemo-sensors. The product 4a was examined as a pH indicator and 
showed a visible color change at pH ca. 11, from red (in the acidic media) to deep blue (in the basic conditions) 
(Fig. 8). However, the solution of N-substituted isatins (e.g. 4w) showed no remarkable color change in an alkali 
solution.

The UV–Vis absorption of the compound 4a was measured in the pH range from 3 to 12.5. As shown in 
Fig. 8, beginning from ca. pH 9, a second absorption peak around 530 nm appears. The spectral data is given 
in Table 6. Whereas the N–H isatins solution displayed similar behavior, N-substituted isatins showed no color 

Figure 8.   Spectral changes of the 5-(phenyl)-5H-spiro[diindeno[1,2-b:2′,1′-e]pyridine-11,3′-indoline]-2′,10,12-
trione (4a) (Metanol, 100 ppm) at different pH values.

Table 6.   Influence of pH on the UV–Vis absorption of the dye 4a.

pH λmax1 (nm) λmax2 (nm)

3 430 –

7 435 –

9 425 –

11 415 530

11.5 415 530

12 420 530

12.5 420 535
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change in a wide range of pH. It seems that the color change in dye 4a is due to the deprotonation of the NH 
group in the indoline unit (Scheme 3).

Conclusions
To summarize, we have herein reported a straightforward atom-economical method of synthesis of 
spiro[diindenopyridine indoline]triones mediated by a safe heterogeneous recyclable catalyst MCM-41-SO3H, 
which could be used for at least 4 runs without any significant loss of its activity. Among other advantages of 
the current protocol, we could emphasize excellent yields, short reaction times, high atom economy as well as 
simple isolation and purification procedures for both the catalyst and products. The presented approach lead-
ing to spiro[diindenopyridine-indoline]triones can be of interest to medicinal and pharmaceutical chemistry. 
Furthermore, some products exhibit a pH indicator activity proven by a visible color change in the basic pH 
ranges (Supplementary Information S1).
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