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Abstract

The twin-arginine translocation (Tat) pathway exports fully folded proteins out of the cytoplasm of Gram-negative and
Gram-positive bacteria. Although much progress has been made in unraveling the molecular mechanism and biochemical
characterization of the Tat system, little is known concerning its functionality and biological role to confer adaptive skills,
symbiosis or pathogenesis in the a-proteobacteria class. A comparative genomic analysis in the a-proteobacteria class
confirmed the presence of tatA, tatB, and tatC genes in almost all genomes, but significant variations in gene synteny and
rearrangements were found in the order Rickettsiales with respect to the typically described operon organization.
Transcription of tat genes was confirmed for Anaplasma marginale str. St. Maries and Brucella abortus 2308, two a-
proteobacteria with full and partial intracellular lifestyles, respectively. The tat genes of A. marginale are scattered
throughout the genome, in contrast to the more generalized operon organization. Particularly, tatA showed an
approximately 20-fold increase in mRNA levels relative to tatB and tatC. We showed Tat functionality in B. abortus 2308 for
the first time, and confirmed conservation of functionality in A. marginale. We present the first experimental description of
the Tat system in the Anaplasmataceae and Brucellaceae families. In particular, in A. marginale Tat functionality is conserved
despite operon splitting as a consequence of genome rearrangements. Further studies will be required to understand how
the proper stoichiometry of the Tat protein complex and its biological role are achieved. In addition, the predicted
substrates might be the evidence of role of the Tat translocation system in the transition process from a free-living to a
parasitic lifestyle in these a-proteobacteria.
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Introduction

Bacterial protein secretion systems are crucial for the interaction

with both the environment and host cells, frequently targeting

virulence determinants. Protein translocation across the bacterial

cytoplasmic membranes and protein insertion in the membrane is

achieved by one of two general pathways: the Sec protein-

translocation system, which is the main route and exports unfolded

proteins [1], and the twin-arginine translocation (Tat) pathway,

which exports fully folded proteins [2]. Although much progress

has been made in understanding the Tat system transport

mechanism at a molecular level and in characterizing it

biochemically, little has been learned about its biological role in

bacteria, since it was discovered more than ten years ago.

The a-subdivision of Proteobacteria is a large and diverse group

of Gram-negative microorganisms that show great variability in

genome sizes and lifestyles and inhabit diverse ecological niches.

Through multiple strategies, they establish both extra- and

intracellular infection or associations with eukaryotes, yet many

can also exist as free-living organisms [3]. Many plant and animal

pathogens within this class use specialized secretion systems as

molecular mechanisms to establish interactions with their host cells

[3]. The ubiquity of these protein secretion systems correlates with

highly variable composition and genome organizations that could

compromise their functionality. Reduced genomes in Rickettsiales

pathogens usually show the absence of orthologs genes or

anomalous gene organization in gene clusters involved in the

same biological pathway or protein complexes; in these cases,

evidence of functional conservation is less conclusive or poorly

known [4–7].

The Tat system is found in most bacteria, some archaea and

thylakoid membranes of plant plastids [8]. Three functionally

distinct components have been identified, namely TatA, TatB and

TatC; however, their genomic organization is diverse. Gram-

negative bacteria usually present these three components [9,10]

forming a heteromultimeric protein complex located in the inner

membrane [2]. In contrast, TatB is absent in most Gram-positive

bacteria and archaea, forming a minimal Tat Translocase

(TatAC). The three genes are usually arranged in an operon

(tatABC) in almost all the organisms with functional Tat systems

described so far, while a few have their tat genes organized as

individual transcriptional units [11]. The stoichiometry of the
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expression of the Tat subunits expression is critical for the activity

of the Tat translocase [12]. The TatA protein is the most

abundant component of the Tat system, present at an approxi-

mately 20-fold molar excess over the TatB and TatC components

[2], thus, requiring higher expression levels than the other Tat

proteins [13].

The TatA- and TatB-type proteins are sequence-related with a

probable common ancestor [2]. Both comprise an N-terminal

transmembrane a-helix followed by an adjacent amphipathic

helix, connected by an interdomain hinge region and an

unstructured C-terminal region of variable length [2,14]. In

organisms lacking tatB, it seems most likely that the TatA proteins

retain both biological activities [15,16]. Indeed, several bifunc-

tional Escherichia coli TatA proteins that can bypass the require-

ment for TatB have been isolated in a study using an in vivo genetic

screening for successful Tat transport [17]. TatC is the most

conserved of the Tat proteins and sequence conservation is

particularly strong within the six transmembrane (TM) domains

[2,18]. The signal peptides of the proteins exported by the Tat

system share similar overall structures with the Sec-dependent

signal peptides, but generally possess a twin-arginine (RR) motif in

the n-region, a weak hydrophobic h-region, and a positively

charged Sec avoidance signal just before the cleavage site. Recent

studies have shown that a naturally occurring Lys-Arg (KR) motif,

the R-N-R motif, or the variants KR, RK, and KK motifs in the

n-region preserve the ability to mediate Tat translocation [19,20].

The main function described for TatC is the primary recognition

on the signal peptide and specifically for the RR motif [21].

Although the Tat system has been proved to be essential for

virulence and symbiosis in several bacteria that interact with both

plants and animals [22–29], few studies have addressed its role in

the a-proteobacteria [30–32]. The aim of the present work was to

explore the role of the Tat translocation system in a-proteobac-

teria by means of a genomic comparative analysis. In particular,

we focused on Brucella abortus and Anaplasma marginale, well-known

pathogenic a-proteobacteria, representative of facultatively and of

obligately intracellular organisms, respectively.

Materials and Methods

Phylogenetic analysis and genome organization of
tatABC genes

The amino acid sequences of 11 conserved proteins (RNA Pol ß

and ß9, alanyl-tRNA synthetase, phenylalanyl-tRNA synthetase,

arginyl-tRNA synthetase, EF-Tu, EF-G, RecA, GyrA, Gyrß and

Hsp70) from 53 a-proteobacteria (Table S2) were downloaded

from the RefSeq database of the NCBI and their identity

confirmed using BLASTP (E-value = 1025; Query coverage

.70%). Protein sequences were aligned using ClustalW [33].

Poorly aligned positions of protein sequences were trimmed using

Gblocks [34]. A phylogenetic tree was inferred from the

concatenated alignments using the neighbor-joining method as

implemented in the MEGA 4 software (JTT Model, 1000

bootstrap steps) [35]. For analyzing the presence of the Tat genes

in the 53 a-proteobacteria genomes, the putative tatA, tatB and tatC

genes were identified using BLASTP against well-documented tat

genes. The genome organization of the Tat genes was visualized

using NCBI’s Mapviewer (http://www.ncbi.nlm.nih.gov/projects/

mapview/) or KEGG (http://www.genome.jp/kegg/). The A.

marginale str. St. Maries tatA (missing in the annotated genome,

flanked by AM392 and AM394), tatB (AM476) and tatC (AM740)

genes and the Brucella melitensis biovar abortus 2308 tatA

(BAB1_0901), tatB (BAB1_0902) and tatC (BAB1_0903) genes,

were displayed with the Circular Genome Viewer (CGView) [36].

The GenBank accession number for the nucleotide sequence of

tatA from A. marginale str. Salta is JQ409478 (100% sequence

identity with tatA from A. marginale str. St. Maries). The A. marginale

str. St. Maries gene AM476 (tatB) was annotated as hypothetical

protein.

RNA isolation and reverse transcription RT-PCR
Total RNA from A. marginale str. Salta [37] was obtained from 2-

ml frozen whole blood stabilate of an infected bovine whereas total

RNA from B. melitensis biovar abortus 2308 was obtained from a 3-

day culture in TBS medium (BD, USA) at 37uC and 200 rpm.

The RNAeasy kit (Qiagen, CA, USA) was used according to the

manufacturer’s instructions for mRNA extraction. The concen-

tration and purity of the RNA were determined by measuring the

A260/A280 ratio with a Nanodrop ND-1000 (NanoDrop

Technologies Inc, USA). Then, 1 mg of the extracted RNA was

treated with 1 U of DNase I amplification grade (Invitrogen, USA)

at room temperature for 30 min. DNase I was then inactivated by

addition of 1 ml of 25 mM EDTA and subsequent heating at 65uC
for 10 min, and 1 ml (3 mg/ml) Random primers (Invitrogen,

USA), 1 ml DNTPs 10 mM (Promega, USA) and MilliQ water

(Millipore) up to 13 ml was added to the DNase I-treated RNA.

The mixture was heated for 5 min at 65uC and then chilled for

5 min in ice-water. After addition of 1 ml SuperScript III Reverse

Transcriptase together with 4 ml First strand Buffer (Invitrogen,

USA) and 1 ml 0.1 M DTT, the reaction mixture was incubated

for 5 min at room temperature, followed by 60 min at 50uC. The

reaction was terminated by heating at 70uC for 15 min. To

monitor DNA contamination, an identical reaction mixture was

prepared without RT Super Script III.

Plasmid constructions
Genomic DNA from A. marginale str. St. Maries was kindly

provided by Dr. Guy Palmer (Department of Veterinary

Microbiology and Pathology, Washington State University,

Pullman, Washington). DNA from B. abortus 2308 was prepared

from pure cultures by three cycles of freeze-thawing [38] from

heat-inactivated biomass (bacteria were heated at 99uC for 10 min

and centrifuged for 2 min at 13,000 g). Then, 5 ml of the

supernatant were used for PCR assays. Specific primers were

designed (Table S1), and standard protocols were used for PCR

using DNA extracted from both organisms to amplify the tatA, tatB

and tatC genomic sequences. The PCR fragments were cloned into

pTOPO2.1 (Invitrogen, USA) prior to subcloning in the

pUNIPROM plasmid [39] under the control of the E. coli tat

promoter [40] and sequenced to confirm integrity. A list of

pUNIPROM plasmids used in this study is shown in Table 1.

During all cloning steps, E. coli strains were grown aerobically in

LB medium using standard concentrations of antibiotics.

Bacterial strains and growth conditions
Plasmid constructions were used to transform competent E. coli

tat mutants (MC4100-P, JARVI6-P, BOD-P, BILK0-P and

DADE-P; Table 1) [10,40] for complementation assays. The E.

coli mutant strains JARVI6-P (DtatA), BOD-P (DtatB) and BILK0-P

(DtatC) [40] were complemented with pUNIPROM vectors

containing tatA, tatB and tatC from A. marginale str. St. Maries and

B. abortus 2308, respectively, using standard transformation

protocols. The mutant strains complemented with the pUNI-

PROM empty vector and the DADE-P strain (DtatABC) were used

as negative controls. Wild type MC4100-P and E. coli tat mutants

complemented with pUNIPROM containing native E. coli tatA,

tatB and tatC, pFAT415, 416 and 417 [10], respectively, were used

as positive controls. To assess functionality of the heterologous tat

Tat Pathway in a-Proteobacteria
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genes, the control and complemented strains were grown under

different selective conditions: (i) 2% SDS: cells were grown in

liquid LB medium overnight at 37uC and then tested in LB agar

plates supplemented with 2% SDS [41], or in liquid medium plus

2% SDS, measuring growth by optical density at 600 nm for

several hours [40]; (ii) anaerobic conditions: cells were grown

overnight at 37uC and tested in M9 minimal medium agar plates

supplemented with 0.5% glycerol and 0.4% trimethylamine-N-

oxide (TMAO) and incubated in a gas jar under a hydrogen/

carbon dioxide atmosphere [40]; (iii) TMAO reductase assay:

subcellular fractions for TMAO reductase activity measurements

were prepared from small (30 ml) cultures incubated overnight

without shaking at 37uC in liquid LB TMAO/glycerol medium

supplemented with 50% glycerol and 20% TMAO under

anaerobic conditions. Periplasmic fractions were obtained by

using the cold osmotic shock method [40,42]. Protein concen-

tration in the periplasmic fraction was measured after the

enzymatic assay (Pierce, Thermo Scientific, USA). TMAO

benzyl viologen oxidoreductase activity was measured as

described previously (Thermo MultiSkan Spectrum, Thermo

Scientific, USA) [43].

Microscopy
Overnight cultures of complemented E. coli mutant and control

strains were diluted 1:100 in LB and grown at 37uC until a

600 nm optical density of 0.6–0.8 was reached [44]. The cells were

examined with phase-contrast microscopy using a Leica TCS-SP5

(Leica Microsystems GmbH, Wetzlar, Germany) spectral laser

confocal microscope using a 636 objective (HCX PL APO CS

63.061.20 WATER UV).

RT-PCR and Quantitative real-time PCR
Primers were designed using Primer Express Version 2.0

(Applied Biosystems) (Table S1). The internal control genes tested

were groEL for A. marginale and rpll for B. abortus 2308. Ten-fold

serial dilutions of the cDNA were used in the real-time PCR to

construct the standard curve and calculate the efficiency for each

set of primers. Assays with a correlation coefficient (r) value of

.0.99 were considered acceptable. Quantitative PCR was

performed with a real-time instrument (ABI PRISMH, 7000,

Sequence Detection System, Applied Biosystems) using a Quanti-

tect SYBR green (QIAGEN). Results were analyzed using the

relative expression software tool (REST) for group-wise compar-

isons for the tatA, tatB and tatC genes and statistical analysis of the

relative tatA, tatB and tatC expression rates [45].

In silico prediction of Tat substrates
Potential Tat substrates in the protein set coded by the

annotated genomes of Anaplasmataceae (12 species) and Brucellaceae

(10 species) families, available at NCBI, were searched using the

three existing programs for Tat signal prediction: TatP (http://

www.cbs.dtu.dk/services/TatP/; [46], TATFIND (http://signalfind.

org/tatfind.html; [47] and PRED-TAT (http://www.compgen.org/

tools/PRED-TAT/ [48]. The TatP program combines the search of

patterns of amino acid sequences with two neural networks one

trained to detect cleavage sites and the other to determine whether an

amino acid belongs to the Tat signal peptide or not. TATFIND

predicts Tat sites by searching patterns of amino acid sequences and

hydrophobicity. PRED-TAT applies Hidden Markov models to

predict and discriminate between Sec and Tat signal peptides. TatP

and TATFIND were run from their respective servers. The authors

of PRED-TAT provide a repository of pre-processed bacterial

genomes from which we extracted the predicted Tat targets for the

Anaplasmataceae and Brucellaceae proteins (http://www.compgen.org/

tools/PRED-TAT/supplement/genomes). We considered that a

protein contained a putative Tat signal if it was predicted by at

least two of the software programs.

Results

Organization and distribution of Tat genes among the a-
proteobacteria

To explore the genomic architecture of the Tat system in the a-

proteobacteria, we carried out a comparative analysis by selecting

53 genomes which represent all orders within the class. We

confirmed the presence of the tatA, tatB and tatC orthologs genes in

42 out of the 53 genomes studied, while in the remaining 11

genomes we only detected the tatA and tatC orthologs (Figure 1A).

Previous results from our laboratory using a phoA fusion system

for experimentally detecting signal peptides in A. marginale allowed

us to identify an open reading frame (ORF) of 171 nucleotides

flanked by the loci tags AM392 and AM394, omitted in the

annotation of the A. marginale str. St. Maries genome [49].

Translation of the ORF rendered a predicted protein of 53 amino

acids with a highly conserved N-terminal region identified as the

tatA gene (Figure S1). Likewise, the tatA gene is missing in Ehrlichia

ruminantium str. Gardel annotated genome [50]. Indeed, ORFs of

small size like tatA are prone to misidentification via standard

genome automation methods. In addition, using tblastn we

confirmed that species from the genera Rickettsia, Neorickettsia,

Orientia and Wolbachia lacked the tatB gene. The genomes were

sorted in three different groups according to operon structure

conservation and synteny (Figure 1A). The first group encom-

passes all the genomes analyzed from Rhizobiales (including B.

abortus), Caulobacterales, Rhodobacterales, Sphingomonadales

and two species from the order Rhodospirillaes, Rhodospirillum

rubrum ATCC 11170 and Magnetospirillum magenticum AMB-1. They

all have the commonly described organization with the three genes

as part of a single operon. The second group has a partially

dispersed organization, in which the tatA locus maps in a different

Table 1. Strains and plasmids used in this study.

Bacterial Strains Genotype Source

MC-4100-P Kmr T. Palmer Lab

JARVIG-P DtatADtatE; Kmr T. Palmer Lab

BOD-P DtatB; Kmr T. Palmer Lab

BILKO-P DtatC; Kmr T. Palmer Lab

DADE-P DtatABC; Kmr T. Palmer Lab

DH5a Promega

Plasmids

pUNIPROM AmpR T. Palmer Lab

pUNIPROM_AmTatA AmpR This work

pUNIPROM_AmTatB (AM476) AmpR This work

pUNIPROM_AmTatC (AM740) AmpR This work

pUNIPROM_BaTatA (BAB1_0901) AmpR This work

pUNIPROM_BaTatB (BAB1_0902) AmpR This work

pUNIPROM_BaTatC (BAB1_0903) AmpR This work

pFAT415 AmpR T. Palmer Lab

pFAT416 AmpR T. Palmer Lab

pFAT417 AmpR T. Palmer Lab

doi:10.1371/journal.pone.0033605.t001
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Figure 1. Phylogenetic analysis and genome organization of tatABC genes. (A) Left side panel: Phylogenetic tree construction using
neighbor-joining method (NJ-JTT, 1000 bootstrap) with MEGA.4 of 53 bacterial species based on the concatenated alignment of 11 conserved
proteins (RNA Pol ß and ß9, alanyl-tRNA synthetase, phenylalanyl-tRNA synthetase, arginyl-tRNA synthetase, EF-Tu, EF-G, RecA, GyrA, Gyrß, Hsp70).
Right side panel: Genome organization of tatABC genes. (B) tatA, tatB and tatC genes in Anaplasma marginale str. St. Maries, and Brucella melitensis
biovar abortus 2308 (Chr I) were displayed and visualized with the Circular Genome Viewer (CGView). Orthologs genes for tatA, tatB and tatC were
found in almost all the genomes studied, with the exception of species analyzed from the genera Rickettsia, Neorickettsia, Orientia and Wolbachia that
lacked the tatB gene. Three different main organizations according to operon structure preservation were found; one with the commonly described
operon organization, another one with a partially dispersed organization (tatA locus maps in a different location from that of the tatBC operon in the
same strand), and a completely scattered distribution for tat genes in well-separated location of the circular genomes in several genera of the order
Rickettsiales. Organisms lacking a tatB homolog, with the exception of Neorickettsia species, encoded tatA and tatC in different genome strands. The
bracket indicates the organisms that share a common tat genes organization.
doi:10.1371/journal.pone.0033605.g001

Tat Pathway in a-Proteobacteria
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location from that of the tatBC operon but codes in the same

strand. This group consists of two members: Gluconobacter oxydans

and Acidiphilium cryptum JF-5, both from the Acetobacteraceae

family. The last group included several genera of the order

Rickettsiales: Anaplasma, Ehrlichia, Neorickettsia (family Anaplasma-

taceae), Wolbachia and Rickettsia (family Rickettsiaceae), and

showed a completely scattered distribution of the tat genes in

well-separated locations of the circular genomes (Figure 1B).

Organisms lacking a tatB homolog, with the exception of

Neorickettsia species, also encode tatA and tatC in different genome

strands.

Tat genes transcription analysis
To confirm the expression of the complete translocation system

components, the transcription of the A. marginale tatA (JQ409478),

tatB (AM476) and tatC (AM740) genes and B. abortus tatA

(BAB1_0901), tatB (BAB1_0902) and tatC (BAB1_0903) was

assessed by reverse transcription PCR assays. Results were positive

for the three genes in both organisms (Figure 2A, 2B). We

performed RT-PCR from B. abortus cDNA using a forward

oligonucleotide matching the 39 region of the upstream ORF and

a reverse oligonucleotide specific to the 59 region of a contiguous

ORF. We detected an amplicon of the expected size when using

the specific primers for the contiguous genes tatA–tatB and tatB–

tatC. Conversely, no amplicon was detected when using specific

oligonucleotide for tatC-serS. In this way, we confirmed the

polycistronic mRNA for the tat genes in B. abortus (Figure 2C, 2D).

Heterologous expression of Tat A, B and C proteins
Since we corroborated the transcription of the three compo-

nents of the Tat system in both bacterial species, we tested protein

functionality through a complementation test in E. coli. Individual

Tat subunits were tested for their ability to substitute for the

absence of the cognate E. coli Tat component and thus form

functional Tat translocases with E. coli Tat proteins. The E. coli

mutants JARV16-P (DtatA; DtatE), BOD-P (DtatB), and BILK0-P

(DtatC) were every time individually complemented with the tatA,

tatB or tatC genes from both A. marginale and B. abortus. We used

four different tests to assess the functionality of the Tat system (see

below) [40,44,51].

Chain-forming phenotype
Since the amiB gene encodes a Tat-dependent secreted cell wall

amidase involved in cleaving the murein septum during cell

division [52], the Tat mutants resulted in a high frequency of cell

chains between 6 and 24 cells in length after a growth cycle

[44,51]. The E. coli mutants (JARVI6-P, BOP-P and BILK0-P)

without plasmids or complemented with the p-UNIPROM empty

vector showed a chain-forming phenotype (Figure 3). On the other

hand, cells complemented with E. coli native genes completely

Figure 2. Transcription of tatA, tatB and tatC genes and polycistronic mRNA of tatABC genes in Brucella abortus. (A) RT-PCR of A.
marginale; the groEL gene was used as housekeeping gene. (B) RT-PCR of B. abortus; the rpll gene was used as housekeeping gene. (Bands below
100 bp in the RT (2) lanes correspond to primer dimmers). (C) Operon transcription organization for B. abortus. Operon Vir4-5 was used as control.
(D) Genomic structure of B. abortus tatABC genes and intergenic regions. Specific primers for RT-PCR designed to amplify tatAB, tatBC, C-SerS and Vir4-
5 are shown in parentheses. Results confirmed transcription of the three genes in both organisms. Using RT-PCR with primers that amplified from the
39 region of one ORF to the 59 region of a contiguous ORF, we confirmed a polycistronic mRNA transcript for B. abortus tatABC genes, excluding the
contiguous serS.
doi:10.1371/journal.pone.0033605.g002

Tat Pathway in a-Proteobacteria
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restored the Tat system functionality, leading to a single-cell

phenotype due to correct cleavage of the septum. Cells

complemented with A. marginale tatA, tatB or tatC genes rendered

a single-cell phenotype only for the tatA gene. In contrast, for B.

abortus we observed the opposite results: a single-cell phenotype

when complemented with B. abortus tatB and tatC, but preservation

of the anomalous phenotype when complemented with B. abortus

tatA (Figure 3; Table 2).

SDS-resistance phenotype, anaerobic-TMAO growth and
TorA activity

E. coli depleted of any of the Tat components experienced a

pleiotropic cell envelope defect due to an inability to export two

Tat-dependent periplasmic amidases (AmiA and AmiC) that are

involved in cell wall integrity. As a consequence, mutant strains are

unable to grow on solid media in the presence of 2% SDS

[40,41,44]. On the other hand, wild type E. coli is able to grow

anaerobically using trimethylamine-N-oxide (TMAO) as an

electron acceptor due to two enzymes that are known to be

translocated to the periplasm by the Tat system: the soluble

periplasmic TMAO reductase (TorA) and the membrane-bound

protein dimethylsulphoxide reductase (DmsABC) [53].

TatA: As shown in Figure 4, expression of A. marginale TatA

proteins in the E. coli JARV16-P (DtatA; DtatE) mutant strain

resulted in significant restoration of the Tat system function under

the presence of SDS (Figure 4A, 4B), suggesting that it is capable

of heterologous interaction with the E. coli TatBC proteins to form

a functional protein complex. In contrast, B. abortus TatA failed to

restore functionality under this growth condition (Figure 4A, 4B).

The TatA protein of both organisms showed robust growth with

TMAO as sole terminal electron acceptor (Figure 4C) and had a

significant TMAO reductase (TorA) activity in the periplasmic

fraction of 25% and 41% for A. marginale and B. abortus,

respectively (Figure 4D).

TatB: The TatB subunit of A. marginale failed to restore the

ability to grow in the presence of 2% SDS in LB medium, since no

significant growth was observed either in agar or liquid medium

conditions (Figure 5A, 5B). However, it was sufficient to restore

viability under anaerobic conditions (Figure 5C), showing levels of

TMAO reductase activity higher than the negative control (empty

vector), although not statistically significant (Figure 5D). In the

case of B. abortus, the TatB subunit completely restored resistance

under 2% SDS (Figure 5A, B) and anaerobic conditions

(Figure 5C); however, similarly to TatB of A. marginale, TorA

activity was higher, but not statistically significant referred to the

negative control (Figure 5D).

TatC: TatC of A. marginale was unable to restore Tat

functionality either in the presence of 2% SDS or under anaerobic

Figure 3. Functionality of TatA, B or C by analyzing their ability to complete cellular division. Phase-contrast microscopy of control cells
M4100-P, DADE-P, E. coli tat mutants (JARVI6-P, BOD-P and BILK0-P), complemented with the pUNIPROM empty vector and complemented with
experimental heterologous genes from A. marginale, B. abortus or E. coli native genes. Cells were examined by Leica TCS-SP5 Laser Confocal
Microscope and each picture was taken at 63X magnification. Cells complemented with A. marginale genes revealed complementation only for the
TatA subunit. In contrast, in the case of B. abortus, TatA failed to restore the complete Tat activity and TatB and TatC restituted Tat functionality.
doi:10.1371/journal.pone.0033605.g003

Tat Pathway in a-Proteobacteria
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conditions, and no detectable levels of TMAO reductase were

measured in the periplasmic fractions. In contrast, TatC of B.

abortus completely restored the capacity to grow under both

selective conditions, and higher levels of TMAO reductase were

recorded in the periplasmic fractions (Figure 6A, 6B, 6C, 6D).

tatA, tatB and tatC mRNA transcript levels
Taking into consideration that A. marginale TatA and TatB

components were able to restore the E. coli Tat system

functionality, we decided to analyze the preservation of the

expected stoichiometry of the TatABC components, which has

been described as critical for export function [2]. To study the

transcript levels of the tat genes, we performed real time PCR to

quantify the mRNA abundance of the three genes in both

organisms. A. marginale tatA showed a 23- and 19-fold increase in

expression relative to tatB and tatC, respectively, equivalent to the

expected stoichiometry of functional protein translocase machin-

ery. On the other hand, for B. abortus, the mRNA abundance did

not differ between the tatA, tatB and tatC genes, as expected for

polycistronic mRNA (Figure 7).

Table 2. Results of Tat subunits functionality.

Anaplasma marginale str. St. Maries

Test Cell-chain phenotype SDS-resistant phenotype Anaerobic-TMAO growth TMAO reductase activity (%)a

TatA yes yes yes 25,48*

TatB no no yes 32,33

TatC no no no 13,03

Brucella melitensis biovar abortus 2308

TatA no no yes 41,37*

TatB yes yes yes 41,67

TatC yes yes yes 78,82*

aActivity relative to positive control.
*p,0.05 statistically significant.
doi:10.1371/journal.pone.0033605.t002

Figure 4. Functionality of TatA subunits. Complementation of the E. coli DtatA–DtatE (JARVI6-P) with heterologous tatA genes from A. marginale
(b), B. abortus (c) and E. coli (d). The UNIPROM empty vector (a) was used as a negative control. Strains were grown on: (A) LB medium agar plates
containing 2% SDS. (B) LB liquid medium containing 2% SDS. (C) Agar plates under anaerobic conditions with minimal medium supplemented with
glycerol as a carbon source and TMAO as sole electron acceptor. (D) TMAO reductase activity from periplasmic fractions. *100% activity is taken as
that determined from the periplasmic fraction of JARVI6-P carrying the E. coli tatA gene (pFAT415). Error bars represent the standard error of the
mean of three independent experiments. (*) p,0.01 ANOVA, LSD-Fisher, Statistic 6.0. Complementation of JARVI6-P with A. marginale tatA gene
resulted in significant restoration of Tat system function. In contrast, B. abortus TatA failed to restore functionality under these growth conditions.
TatA of both organisms restored Tat functionality, showing growth in the M9, TMAO agar plates and also a statistically significant TMAO reductase
activity of 25% and 41% for A. marginale and B. abortus, respectively.
doi:10.1371/journal.pone.0033605.g004
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Tat substrates prediction
After demonstrating Tat system functionality in the microor-

ganism selected, we searched in silico for potential translocation

system substrates. The predicted protein sets from both Brucellaceae

and Anaplasmataceae species were scanned using the three existing

algorithms designed to detect the N-terminal Tat-signal peptide.

We identified putative Tat-dependent secreted proteins in the

families Brucellaceae (10 species) and Anaplasmataceae (12 species). We

considered as potential Tat substrates those which gave a positive

result for a possible Tat signal sequence with at least two of the

three software programs. The putative Tat substrates were

grouped based on functional categories from the Cluster of

Orthologs Groups (COGs). Nevertheless, the predicted Tat-

secreted proteins ought to be experimentally validated to become

true substrates.

Three positive substrates with COG definitions associated were

identified for Anaplasmataceae (Table 3). We identified the Rieske Fe-S

protein (COG0723) represented in 8 out of the 12 family members

(Table 3 and Table S3). In Wolbachia endosymbiont of Culex

quinquefasciatus, we detected the Cell division protein FtsI/penicillin-

binding protein 2 (COG0768). Finally, we found the COG

Dehydrogenases with different specificities (related to short-chain

alcohol dehydrogenases, COG1028) in Anaplasma centrale str. Israel.

Positive substrates were searched in the other organisms of the

family to identify orthologs proteins (when present) to analyze

possible modifications of the signal peptides. Orthologs for the

protein COG1028 identified in Anaplasma centrale str. Israel were

found in all other genome selected. A. centrale has a typical Tat-like

signal peptide conformed by the RR and consensus amino acids;

interestingly, other organisms from the family showed several

modifications with one or both R replaced by lysine (RK, KR or

KK) (Figure S2). In addition A. marginale str. St. Maries and A.

marginale str. Florida were annotated starting upstream in compar-

ison to the others orthologs, which in turn would affect the Tat

signal prediction. The penicillin-binding protein (COG0768) was

identified as a positive substrate by two different software

programs (TatP and TATFIND) in Wolbachia endosymbiont of

Culex quinquefasciatus, but was positive only for TATFIND in the

other three Wolbachia sp. studied. Orthologs proteins were

identified only in A. marginale (str. St. Maries and str. Florida) and

A. centrale Israel, which showed conserved blocks along the protein

and the characteristic amino acids from the signal peptide (RR).

However, the signal peptide has a substitution in the position next

to RR (an Isoleucine instead of Serine or Alanine), which

prevented the recognition as true substrate by TATFIND

algorithm. (Figure S3).

The search in Brucellaceae organisms (10 complete genomes) for

potential Tat substrates yielded 250 proteins positive for at least

two software programs that could be clustered in 22 COGs

(Table 4 and Table S4) with different levels of representation

Figure 5. Functionality of TatB subunits. Complementation of the E. coli DtatB (BOD-P) with heterologous tatB from A. marginale (b), B. abortus
(c) and E. coli (d). The UNIPROM empty vector (a) was used as a negative control. Strains were grown on: (A) LB-medium agar plates containing 2%
SDS. (B) LB liquid medium containing 2% SDS. (C) Agar plates under anaerobic conditions on minimal media with glycerol as a carbon source and
TMAO as sole electron acceptor. (D) TMAO reductase activity from periplasmic fractions. *100% activity is taken as that determined from the
periplasmic fraction of BOD-P carrying the E. coli tatB gene (pFAT416). Error bars represent the standard error of the mean of three independent
experiments. (*) p,0.01 ANOVA, LSD-Fisher, Statistic 6.0. TatB subunit of A. marginale failed to restore ability to grow in the presence of 2% SDS in LB
medium, since non-significant growth can be observed either in agar or liquid medium conditions. However, it was sufficient to restore viability
under anaerobic conditions, showing levels of TMAO reductase activity higher than those of the negative control, although it was not statistically
significant. For B. abortus, the TatB subunit completely restored resistance under 2% SDS and anaerobic conditions; however, similarly to TatB of A.
marginale, TorA activity was higher, but not statistically significant, than the negative control.
doi:10.1371/journal.pone.0033605.g005
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Figure 6. Functionality of TatC subunits. Complementation of the E. coli DtatC (BILK0-P) with heterologous tatC from A. marginale (b), B. abortus
(c) and E. coli (d). The UNIPROM empty vector (a) was used as a negative control. Strains were grown on: (A) LB-medium agar plates containing 2%
SDS. (B) LB liquid medium containing 2% SDS. (C) Agar plates under anaerobic conditions on minimal media with glycerol as a carbon source and
TMAO as sole electron acceptor. (D) TMAO reductase activity from periplasmic fractions. *100% activity is taken as that determined from the
periplasmic fraction of BILK0P carrying the E. coli tatC gene (pFAT417). Error bars represent the standard error of the mean of three independent
experiments. (*)p,0.01 ANOVA, LSD-Fisher, Statistic 6.0. TatC of A. marginale was unable to restore Tat functionality either under 2% SDS or
anaerobic conditions, and no detectable levels of TMAO reductase were measured in the periplasmic fractions. In contrast, TatC of B. abortus
completely restored capacity to grow under both selective conditions, and higher levels of TMAO reductase were recorded in the periplasmic
fractions.
doi:10.1371/journal.pone.0033605.g006

Figure 7. TatA, tatB and tatC mRNA transcript levels. Real time q-PCR for determining the mRNA abundance of tatA, tatB and tatC genes for
both organisms, (GOI: gene-of-interest) (A) A. marginale str. St. Maries (B) Brucella melitensis biovar abortus 2308. (*) p,0.001, Pair Wise Fixed
Reallocation Randomization Test. A. marginale tatA showed a 23- and 19-fold increase in expression relative to tatB and tatC, respectively. For B.
abortus the expression rate did not differ between tatA, tatB and tatC genes. A. marginale tatA showed a 23- and 19-fold increase in expression relative
to tatB and tatC, respectively. In the case of B. abortus, the mRNA levels did not differ between the tatA, tatB and tatC genes.
doi:10.1371/journal.pone.0033605.g007
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within the family, and seven COGs that were unique to

Ochrobactrum anthropi. Among candidates, 14 were hypothetical

proteins with no related COGs (Table S4). It is interesting to note

in Table 4 the large number of periplasmic components of solute-

binding proteins likely to be dependent on Tat export. In this

regard, the presence of Tat-like signal peptides in the periplasmic

components of ABC transporters has been previously reported in

Rhizobum leguminosarum bv. viciae [32] and Halobacteraceae [54,55].

Import systems are found only in prokaryotic organisms and

contain both ABC domains and inner membrane domains, along

Table 3. COG definition for Tat predicted substrates in Anaplasmataceae familya.

Anaplasmataceae family (12 genomes)

COG GOG definition Present in Anaplasmataceae Present in Brucellaceae

COG0723 Rieske Fe-S protein 8 of 12 yes

COG0768 Cell division protein FtsI/penicillin-binding 1 of 12 no

COG1028 Dehydrogenases with different specificities 1 of 12 no

aProteins positive with at least two of the three software programs were consider as Tat substrates.
doi:10.1371/journal.pone.0033605.t003

Table 4. COG definition for Tat predicted substrates in Brucellaceae familya.

Brucellaceae family (10 genomes)

COG GOG definition Present in Brucellaceae Present in Rickettsiales

COG0723 Rieske Fe-S protein 10 of 10 yes

COG0747 ABC-type dipeptide transport system, PC 10 of 10 no

COG1651 DSBA oxidoreductase; thiol:disulfide interchange 10 of 10 yes

COG2132 Putative multicopper oxidases 10 of 10 no

COG2041 Sulfite oxidase and related enzymes 10 of 10 no

COG1376 Uncharacterized protein conserved in bacteria 10 of 10 no

COG4263 Nitrous oxide reductase 9 of 10 no

COG3206 Uncharacterized protein involved in exopolysaccharide biosynthesis 9 of 10 no

COG3319 Thioesterase domains of type I polyketide synthases or non-ribosomal peptide synthetases 9 of 10 no

COG3683 ABC-type uncharacterized transport system, PC 9 of 10 no

COG4134 ABC-type uncharacterized transport system, PC 9 of 10 no

COG4213 ABC-type xylose transport system, PC 8 of 10 no

COG1477 Membrane-associated lipoprotein involved in thiamine biosynthesis 8 of 10 no

COG0715 ABC-type nitrate/sulfonate/bicarbonate transport, PC 8 of 10 no

COG1464 ABC-type metal ion transport system, PC/surface antigen 8 of 10 no

COG4663 TRAP-type mannitol/chloroaromatic compound transport system, PC 8 of 10 no

COG2989 Uncharacterized protein conserved in bacteria 8 of 10 no

COG1574 Predicted metal-dependent hydrolase with the TIM-barrel 7 of 10 no

COG4166 ABC-type oligopeptide transport system, PC 5 of 10 no

COG2340 Uncharacterized protein with SCP/PR1 domains 5 of 10 no

COG0612 Predicted Zn-dependent peptidases 4 of 10 yes

COG0741 Soluble lytic murein transglycosylase and related regulatory proteins 2 of 10 yes

COG0243 Anaerobic dehydrogenases, selenocysteine-containing Ochrobactrum no

COG1879 ABC-type sugar transport system, PC Ochrobactrum no

COG2837 Predicted iron-dependent peroxidase Ochrobactrum no

COG0683 ABC-type branched-chain amino acid transport, PC Ochrobactrum no

COG0687 Spermidine/putrescine-binding PC Ochrobactrum no

COG3019 Predicted metal-binding protein Ochrobactrum no

COG3246 Uncharacterized conserved protein Ochrobactrum no

Abbreviations: PC: periplasmic protein.
aProteins positive with at least two of the three software programs were consider as Tat substrates.
Tat predicted substrates with no related COGs are listed in Table S4.
doi:10.1371/journal.pone.0033605.t004
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with extra-cytoplasmic binding proteins (BPs) designed to bind the

specific allocrite of that ABC system. In Gram-negative bacteria,

the BPs are located in the periplasm [56]. ABC systems import a

diverse range of substrates into the bacterial cell including

peptides, polyamines, metal ions, amino acids, iron, and sulphates

[56,57]. We also identified the COG Nitrous oxide reductase (Nos;

COG4263) potentially exported by the Tat system. Previous

studies have described the role of the Tat machinery in nitrous

oxide reductase translocation in Pseudomonas stutzeri [58], where the

Tat system has been shown to be necessary for establishing

anaerobic nitrite denitrification. Nos is one of the four Brucella spp.

reductases involved in the ‘‘denitrification island’’ that allow

bacteria to grow under low-oxygen tension inside macrophages by

respiration of nitrate [59]. Finally, COG0723 (Rieske Fe-S

protein) was the only category shared by Anaplasmataceae and

Brucellaceae Tat-dependent secretome (Table 3 and Table 4).

Discussion

This work is the first description of the Tat system in two

important pathogens: Anaplasma marginale and Brucella abortus. We

identified the Tat components and studied the conservation of

structural features and genome organization of the tatA, tatB and

tatC genes in organisms from the a-proteobacteria class. We

analyzed the transcription patterns and stoichiometry ratios of tat

mRNA and functionality under different tat gene organizations

(operon vs. disperse) to study the impact of genomic and regulatory

conservation on functionality. The use of the Tat system was

analyzed using available prediction algorithms for the identifica-

tion of the Tat signal peptide, to study a potential role of the

protein export system in conferring adaptive skills or in the

pathogenesis of these phylogenetic groups.

In the past years, rapid progress has been made in unraveling

the molecular mechanism and biochemical characterization of the

Tat system as an alternative translocation system in bacteria.

Despite this progress, little is known concerning the Tat system

relevance in the a-proteobacteria [30,32,60–62]. This group

shows a great genome size variation (1–10 Mb) associated with

massive gene expansions and extreme losses [63], diversity in

lifestyles, ecological niches (from obligate intracellular to free living

organisms) and infection strategies [3], which could be partially

explained with a thorough understanding of the protein

translocation systems and exported substrates as key players.

Fifty-three annotated genome sequences from the a-proteobac-

teria class were analyzed in this study. We confirmed the presence

of the tatA, tatB and tatC genes for the assembly of the translocation

machinery in almost all members. Our identification of the tatA

gene in A. marginale str. St. Maries and Ehrlichia ruminantium str. Gardel,

which was significantly shorter than its orthologs in the a-

proteobacteria class, revealed that, in agreement with similar

observations [6], short ORFs are frequently omitted by automated

annotation methods, like those used for processing the genomes of

both organisms [49,50]. In addition, in some obligate intracellular

bacteria that have undergone genomic reduction [3], the

identification of proteins of multicomponent systems might be

hampered when selection does not favor the clustering of genes

within one operon. In this regard, the tat gene organization

revealed a great diversity within the class. In most members of the

genus, tat genes are typically arranged in the canonical structure,

encoded by three genes in operon (tatABC). Conversely, the

members of the order Rickettsiales, exposed to an extraordinary

trend towards genome reduction, displayed a dispersed Tat

translocation machinery organization, with the three genes

scattered throughout the genome (Figure 1B). A dispersed

organization for the tat genes has been previously described for

Rickettsia prowazekii [11]. Given the process of genome reduction

observed in the Rickettsiales, it could be argued that this

mechanism caused the splitting of the Tat operon. However, at

present we cannot rule out other rearrangement generating

processes like recombination. The succinate dehydrogenase gene

arrangement and expression has been recently studied in

Anaplasma phagocytophilum, another genome-reduced bacterium

[64]. In that work, the authors described an overall conservation

of sdh genes and critical amino acids, suggesting that these subunits

remain functional. However, this bacterium showed an unusual

genomic rearrangement, expression and operon splitting pattern.

Interestingly, some split genes alternatively presented ATG or

GTG start codons as well as the presence or absence of Shine-

Dalgarno (SD) sequences, which may represent alternative

mechanisms to control gene expression in fragmented operons.

Several studies have described an atypical nature of the bacterial

type IV secretion system (T4SS) in organisms from the

Rickettsiales order [5,6]. These studies have revealed a reduced

T4SS as compared with virB/virD T4SS from Agrobacterium

tumefaciens. Furthermore, the arrangement of Vir genes was non-

canonically relative to the most frequently observed organizations,

in which scattered genes are located in distant genome positions.

In the rickettsial pathogen Ehrlichia chaffeensis, the virBD genes are

split into two operons (virB3–virB6 and virB8–virD4). Electropho-

retic mobility shift assays revealed a previously unidentified protein

that specifically binds to the promoter regions upstream the virBD

loci and it has been proposed to regulate the five virBD loci to allow

developmental stage-specific expression of the T4SS system in E.

chaffeensis [5]. These results support the hypothesis of operon

fragmentation events as a frequent phenomenon in obligate

intracellular bacteria that suffered genomic rearrangements, where

the loss of a coordinated expression to ensure equimolar amounts

of each protein should require alternative mechanisms by which

the organisms could coordinate the appropriate protein levels.

Recalling the phenomenon of gene loss events due to genome

reduction, the absence of the tatB gene in Rickettsia, Neorickettsia,

Orientia and Wolbachia could have led to an abrogation of the Tat

system. However, it has been described that organisms such as

gram-positive bacteria and archaea do not require TatB for a

functional Tat translocase [15,16] that is fully active as the TatAC-

type complex [16]. In addition, a study in which some amino acids

of TatA were replaced strongly suggests that the biological activity

of TatA and TatB has been condensed into one protein in those

systems that did not encode an obvious TatB protein [17]. The

TatB protein is absent in Rickettsia spp., Neorickettsia spp., Wolbachia

spp. and Orientia spp., in which the conservation of functionality

has not been demonstrated yet, and thus further experimental

work on this subject is required.

In spite of the scattered organization and smallest ORFs for A.

marginale, sequence analysis indicated an overall conservation of

essential amino acids, structural features and critical protein

portions in both organisms, suggesting that functionality is

conserved (Figure S1).

Experimental results in A. marginale demonstrated that the TatA

subunit can fully restore Tat functionality in the heterologous

system of E coli. In fact, in almost all cross-species complemen-

tation tests that have been assessed, TatA proteins always seem to

retain some level of function in the heterologous host, suggesting

that the constraints on TatA function are less severe than those on

TatB or TatC [31,40]. This is consistent with the role of the TatA

subunit within the protein complex, where most interactions of the

heterologously expressed TatA would be self-oligomerized to

assemble into channel-forming multimers. By contrast, the
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constraints on cross-complementation with heterologously ex-

pressed TatB or TatC proteins are likely to be much more

stringent since this process would require the recognition of non-

native signal peptides of E. coli. Since TatB interacts with each of

the other Tat components and with Tat signal peptides, cross-

complementation with this subunit might be expected to be less

efficient than that with other Tat proteins. TatB from A. marginale

allowed significant growth of BOD-P on selective media

containing TMAO, indicating Tat function. However, it failed

to grow in SDS-containing media, probably due to a substrate-

specific effect. The tatC gene of A. marginale completely failed to

complement BILK0-P in different selective media. We were not

able to demonstrate whether the A. marginale TatC protein was

expressed in these experiments due to the lack of a native antibody

against the protein; however, we corroborated the expression of

the tatA, tatB and tatC genes from A. marginale in the complemented

E. coli strains by RT-PCR (data not shown). Taken together, our

results suggest that A. marginale conserved a functional Tat system,

since TatA and TatB were able to restore functionality. In spite of

its conservation of structure and essential amino acids, TatC was

not able to restore functionality in the heterologous system.

Considering that TatC has been implicated as a specificity

determinant for Tat-dependent secretion through the recognition

of Tat signal peptides [2,65] and that the A. marginale genome does

not encode for any of the Tat substrates involved in the

experimental tests used in this study, negative results could be

related to the inability to recognize Tat signal peptides from E. coli

Tat native substrates. Another possible explanation could be an

anomalous (if any) interaction due to the heterologous nature of

the complex (Table 2). However, the existence of putative co-

evolution between A. marginale (and related organisms) Tat signal

peptides and the machinery for the specific recognition is an

interesting question that has not been addressed yet.

The three subunits of B. abortus were able to restore Tat

function, suggesting a complete conservation of functionality and

substrate recognition (Figures 4C, 4D, 5 and 6), with the exception

of the SDS selective medium (Figure 4A, 4B, and Table 2).

The mRNA transcript levels obtained for tat genes in A. marginale

correlate with the described stoichiometry of the TatABC protein

complex (20–30:1:1) [2,65]. Furthermore, it could represent an

indirect evidence not only of potential functionality of the system,

but also of an alternative transcriptional regulatory mechanism to

operon organization, that will require further experiments to test if

mRNA abundance difference correlates with a equivalent protein

difference. For B. abortus, we demonstrated that the components

are transcribed in polycistronic mRNA. Moreover, equal amounts

of mRNA were detected for each gene, in agreement with that

expected for operon expression system regulation that relies on

post-transcriptional mechanisms to end up with the appropriate

relative amounts of proteins according to the correct stoichiometry

of the multicomponent system.

Although Brucellaceae and Anaplasmataceae are phylogenetically

related groups, there were significant differences in their predicted

Tat secretome. Our data are consistent with previous analysis of

Proteobacteria, in which, regardless of the phylogeny, pathogenic

bacteria appear as poor users of Tat, while the free-living and soil

bacteria are moderate-to-extensive users [66]. This characteristic,

which links Tat usage to an organism’s lifestyle, is clearly shown in

the Brucellaceae family, where Ochrobactrum antropi exhibited a

significantly higher number of predicted Tat substrates than

Brucella spp. (Table 4). In this regard, as facultative intracellular

bacteria, Brucella spp. seems to be an intermediate stage between

pathogens and free-living organisms. This hypothesis is supported

by the relatively large amount of ABC transport machinery

predicted as Tat substrate in Brucellaceae, high-affinity substrate

binding proteins of transporters used to scavenge nutrients from

competitive and variable habitats, although most of the time

Brucella spp. can acquire nutrition from a stable niche.

Notably, both Anaplasmataceae and Brucellaceae exhibited ubiqui-

nol-cytochrome c reductase iron-sulfur subunit (Rieske iron-sulfur

domain-containing protein) as the only one shared COG predicted

as Tat substrate. The Rieske Fe/S protein is an essential subunit of

mitochondrial and bacterial bc1 complexes, which are central

redox carriers in respiratory electron transport and belong to a

class of Tat substrates that are integral membrane proteins with an

uncleaved Tat signal peptide that functions as an N-terminal

transmembrane anchor and a large domain periplasmically

located. Importantly, it has been recently demonstrated that the

Tat pathway is indispensable for correct integration of the signal

peptide and anchoring of the periplasmic iron–sulfur domain to

the membrane in the Gram-negative facultative intracellular lung

pathogen Legionella pneumophila [67]. Furthermore, one of the

predicted Tat substrates in Anaplasmataceae is Penicillin-binding

protein 2 (PBP2- COG0768), a well-characterized class of enzymes

required for the assembly of peptidoglycan from intracellularly

synthesized precursors. Particularly, PBP2 function in assembling

peptide cross-links and in rod-shaped bacteria is implicated in the

elongation phase of cell growth [68]. Interestingly, though we

detected a signal Tat peptide only in PBP2 from Wolbachia, the A.

marginale orthologs were highly conserved (Figure S3). Additionally,

we verified the absence of PBP2 orthologs in Ehrlichia spp.,

Neorickettsia spp. and A. phagocytophilum by BlastP and tBlastn

searches. Although pathogenic bacteria of Anaplasmataceae family

are expected to bear a low number of Tat substrates, we cannot

rule out that the number of potential substrates is underestimated

due to inaccurate determination of the start codon during the

automatic annotation process (Figure S2 and Figure S3).

These results and observations provide new insights into the

characterization of the Tat system and novel proteins potentially

secreted by this translocation complex, to unravel their role in

proving adaptive skills and intracellular infection strategies.

Supporting Information

Figure S1 TatA, B and C protein sequence alignments.
Multiple alignments of amino acid sequences from TatA, TatB

and TatC proteins. Amino acid sequences from A. marginale str. St.

Maries, B. abortus 2308 and E. coli K12 were aligned using

CLUSTAL W [33] (A) TatA protein, (B) TatB protein, (C) TatC

protein.

(DOC)

Figure S2 COG1028, Anaplasmataceae protein se-
quence alignment. Multiple alignment of orthologs amino acid

sequences (Dehydrogenases with different specificities) using

CLUSTAL W [33] from Anaplasma centrale str. Israel, Anaplasma

marginale str. Florida, Anaplasma marginale str. St. Maries, Anaplasma

phagocytophilum HZ, Ehrlichia canis str. Jake, Ehrlichia chaffeensis str.

Arkansas, Ehrlichia ruminantium str. Gardel, Ehrlichia ruminantium str.

Welgevonden, Neorickettsia risticii str. Illinois, Neorickettsia sennetsu str.

Miyayama, Wolbachia endosymbiont of Culex quinquefasciatus, Wolbachia

endosymbiont of Drosophila mel, Wolbachia endosymbiont str. TRS Brugia

malayi, Wolbachia sp. wRi. Annotated start sites were highlighted in

red, RR motif and its variants were highlighted in yellow.

(TIF)

Figure S3 COG0768, Anaplasmataceae protein se-
quence alignment. Multiple alignment of orthologs amino acid

sequences (Cell division protein FtsI/penicillin-binding protein 2)
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using CLUSTAL W [33] from Anaplasma centrale str. Israel,

Anaplasma marginale str. Florida, Anaplasma marginale str. St. Maries,

Wolbachia endosymbiont of Culex quinquefasciatus, Wolbachia endosymbiont

of Drosophila mel, Wolbachia endosymbiont str. TRS Brugia malayi,

Wolbachia sp. wRi. Annotated start sites were highlighted in red,

RR motif and its variants were highlighted in yellow.

(TIF)

Table S1 Primers used for RT-PCR and Real-time
qPCR.

(DOC)

Table S2 Selected a-proteobacteria genomes analyzed
in the study (Accession numbers of 53 organisms).

(DOC)

Table S3 Tat predicted substrates for Anaplasmataceae
family.

(XLS)

Table S4 Tat predicted substrates for Brucellaceae
family.
(XLS)

Acknowledgments

We thank Dr. Pablo Baldi for valuable comments on Brucellaceae data

analysis, Dr. Tracy Palmer for kindly providing us with the E. coli Tat

mutant strains and Dr. Guy Palmer for providing DNA for A. marginale str.

St. Maries. We thank Dr. Silvio Cravero and Marcos Trangoni for

providing us with the B. abortus 2308 and their help with cultures under a

P3-level laboratory. PN has a PhD fellowship from the National Research

Council of Argentina (CONICET), MS is a Professor at the School of

Agronomy (University of Buenos Aires), and MF is a Career Member of

CONICET and INTA researcher.

Author Contributions

Conceived and designed the experiments: PAN MS MF. Performed the

experiments: PAN. Analyzed the data: PAN MS MF. Contributed

reagents/materials/analysis tools: MS MF. Wrote the paper: PAN MS MF.

References

1. Driessen AJ, Nouwen N (2008) Protein translocation across the bacterial

cytoplasmic membrane. Annu Rev Biochem 77: 643–667.

2. Lee PA, Tullman-Ercek D, Georgiou G (2006) The bacterial twin-arginine

translocation pathway. Annu Rev Microbiol 60: 373–395.

3. Batut J, Andersson SG, O’Callaghan D (2004) The evolution of chronic

infection strategies in the alpha-proteobacteria. Nat Rev Microbiol 2: 933–945.

4. Bao W, Kumagai Y, Niu H, Yamaguchi M, Miura K, et al. (2009) Four VirB6

paralogs and VirB9 are expressed and interact in Ehrlichia chaffeensis-

containing vacuoles. J Bacteriol 191: 278–286.

5. Cheng Z, Wang X, Rikihisa Y (2008) Regulation of type IV secretion apparatus

genes during Ehrlichia chaffeensis intracellular development by a previously
unidentified protein. J Bacteriol 190: 2096–2105.

6. Gillespie JJ, Ammerman NC, Dreher-Lesnick SM, Rahman MS, Worley MJ,
et al. (2009) An anomalous type IV secretion system in Rickettsia is

evolutionarily conserved. PLoS One 4: e4833.

7. Rikihisa Y (2011) Mechanisms of obligatory intracellular infection with
Anaplasma phagocytophilum. Clin Microbiol Rev 24: 469–489.

8. Yuan J, Zweers JC, van Dijl JM, Dalbey RE (2010) Protein transport across and
into cell membranes in bacteria and archaea. Cell Mol Life Sci 67: 179–199.

9. Sargent F, Bogsch EG, Stanley NR, Wexler M, Robinson C, et al. (1998)
Overlapping functions of components of a bacterial Sec-independent protein

export pathway. Embo J 17: 3640–3650.

10. Sargent F, Stanley NR, Berks BC, Palmer T (1999) Sec-independent protein
translocation in Escherichia coli. A distinct and pivotal role for the TatB protein.

J Biol Chem 274: 36073–36082.

11. Berks BC, Sargent F, Palmer T (2000) The Tat protein export pathway. Mol

Microbiol 35: 260–274.

12. Xiong Y, Santini CL, Kan B, Xu J, Filloux A, et al. (2007) Expression level of

heterologous tat genes is crucial for in vivo reconstitution of a functional Tat

translocase in Escherichia coli. Biochimie 89: 676–685.

13. Jack RL, Sargent F, Berks BC, Sawers G, Palmer T (2001) Constitutive

expression of Escherichia coli tat genes indicates an important role for the twin-
arginine translocase during aerobic and anaerobic growth. J Bacteriol 183:

1801–1804.

14. Chanal A, Santini C, Wu L (1998) Potential receptor function of three

homologous components, TatA, TatB and TatE, of the twin-arginine signal

sequence-dependent metalloenzyme translocation pathway in Escherichia coli.
Mol Microbiol 30: 674–676.

15. Dilks K, Gimenez MI, Pohlschroder M (2005) Genetic and biochemical analysis
of the twin-arginine translocation pathway in halophilic archaea. J Bacteriol 187:

8104–8113.

16. Jongbloed JD, Grieger U, Antelmann H, Hecker M, Nijland R, et al. (2004)

Two minimal Tat translocases in Bacillus. Mol Microbiol 54: 1319–1325.

17. Blaudeck N, Kreutzenbeck P, Muller M, Sprenger GA, Freudl R (2005)
Isolation and characterization of bifunctional Escherichia coli TatA mutant

proteins that allow efficient tat-dependent protein translocation in the absence of
TatB. J Biol Chem 280: 3426–3432.

18. Punginelli C, Maldonado B, Grahl S, Jack R, Alami M, et al. (2007) Cysteine

scanning mutagenesis and topological mapping of the Escherichia coli twin-
arginine translocase TatC Component. J Bacteriol 189: 5482–5494.

19. Hinsley AP, Stanley NR, Palmer T, Berks BC (2001) A naturally occurring
bacterial Tat signal peptide lacking one of the ‘invariant’ arginine residues of the

consensus targeting motif. FEBS Lett 497: 45–49.

20. Ignatova Z, Hornle C, Nurk A, Kasche V (2002) Unusual signal peptide directs

penicillin amidase from Escherichia coli to the Tat translocation machinery.

Biochem Biophys Res Commun 291: 146–149.

21. Alami M, Luke I, Deitermann S, Eisner G, Koch HG, et al. (2003) Differential

interactions between a twin-arginine signal peptide and its translocase in

Escherichia coli. Mol Cell 12: 937–946.

22. Caldelari I, Mann S, Crooks C, Palmer T (2006) The Tat pathway of the plant

pathogen Pseudomonas syringae is required for optimal virulence. Mol Plant

Microbe Interact 19: 200–212.

23. De Buck E, Lammertyn E, Anne J (2008) The importance of the twin-

arginine translocation pathway for bacterial virulence. Trends Microbiol 16:

442–453.

24. Joshi MV, Mann SG, Antelmann H, Widdick DA, Fyans JK, et al. (2010) The

twin arginine protein transport pathway exports multiple virulence proteins in

the plant pathogen Streptomyces scabies. Mol Microbiol 77: 252–271.

25. Lavander M, Ericsson SK, Broms JE, Forsberg A (2006) The twin arginine

translocation system is essential for virulence of Yersinia pseudotuberculosis.

Infect Immun 74: 1768–1776.

26. McDonough JA, Hacker KE, Flores AR, Pavelka MS, Jr., Braunstein M (2005)

The twin-arginine translocation pathway of Mycobacterium smegmatis is

functional and required for the export of mycobacterial beta-lactamases.

J Bacteriol 187: 7667–7679.

27. Ochsner UA, Snyder A, Vasil AI, Vasil ML (2002) Effects of the twin-arginine

translocase on secretion of virulence factors, stress response, and pathogenesis.

Proc Natl Acad Sci U S A 99: 8312–8317.

28. Saint-Joanis B, Demangel C, Jackson M, Brodin P, Marsollier L, et al. (2006)

Inactivation of Rv2525c, a substrate of the twin arginine translocation (Tat)

system of Mycobacterium tuberculosis, increases beta-lactam susceptibility and

virulence. J Bacteriol 188: 6669–6679.

29. Zhang L, Zhu Z, Jing H, Zhang J, Xiong Y, et al. (2009) Pleiotropic effects of the

twin-arginine translocation system on biofilm formation, colonization, and

virulence in Vibrio cholerae. BMC Microbiol 9: 114.

30. Ding Z, Christie PJ (2003) Agrobacterium tumefaciens twin-arginine-dependent

translocation is important for virulence, flagellation, and chemotaxis but not

type IV secretion. J Bacteriol 185: 760–771.

31. Lindenstrauss U, Bruser T (2006) Conservation and variation between

Rhodobacter capsulatus and Escherichia coli Tat systems. J Bacteriol 188:

7807–7814.

32. Meloni S, Rey L, Sidler S, Imperial J, Ruiz-Argueso T, et al. (2003) The twin-

arginine translocation (Tat) system is essential for Rhizobium-legume symbiosis.

Mol Microbiol 48: 1195–1207.

33. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007)

Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.

34. Talavera G, Castresana J (2007) Improvement of phylogenies after removing

divergent and ambiguously aligned blocks from protein sequence alignments.

Syst Biol 56: 564–577.

35. Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric

software for evolutionary analysis of DNA and protein sequences. Brief

Bioinform 9: 299–306.

36. Stothard P, Wishart DS (2005) Circular genome visualization and exploration

using CGView. Bioinformatics 21: 537–539.

37. Ruybal P, Moretta R, Perez A, Petrigh R, Zimmer P, et al. (2009) Genetic

diversity of Anaplasma marginale in Argentina. Vet Parasitol 162: 176–180.

38. Wieser M, Busse HJ (2000) Rapid identification of Staphylococcus epidermidis.

Int J Syst Evol Microbiol 50(Pt 3): 1087–1093.

39. Jack RL, Buchanan G, Dubini A, Hatzixanthis K, Palmer T, et al. (2004)

Coordinating assembly and export of complex bacterial proteins. Embo J 23:

3962–3972.

Tat Pathway in a-Proteobacteria

PLoS ONE | www.plosone.org 13 March 2012 | Volume 7 | Issue 3 | e33605



40. Hicks MG, Guymer D, Buchanan G, Widdick DA, Caldelari I, et al. (2006)

Formation of functional Tat translocases from heterologous components. BMC
Microbiol 6: 64.

41. Buchanan G, de Leeuw E, Stanley NR, Wexler M, Berks BC, et al. (2002)

Functional complexity of the twin-arginine translocase TatC component
revealed by site-directed mutagenesis. Mol Microbiol 43: 1457–1470.

42. Stanley NR, Palmer T, Berks BC (2000) The twin arginine consensus motif of
Tat signal peptides is involved in Sec-independent protein targeting in

Escherichia coli. J Biol Chem 275: 11591–11596.

43. Silvestro A, Pommier J, Giordano G (1988) The inducible trimethylamine-N-
oxide reductase of Escherichia coli K12: biochemical and immunological

studies. Biochim Biophys Acta 954: 1–13.
44. Ize B, Stanley NR, Buchanan G, Palmer T (2003) Role of the Escherichia coli

Tat pathway in outer membrane integrity. Mol Microbiol 48: 1183–1193.
45. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool

(REST) for group-wise comparison and statistical analysis of relative expression

results in real-time PCR. Nucleic Acids Res 30: e36.
46. Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S (2005) Prediction of

twin-arginine signal peptides. BMC Bioinformatics 6: 167.
47. Dilks K, Rose RW, Hartmann E, Pohlschroder M (2003) Prokaryotic utilization

of the twin-arginine translocation pathway: a genomic survey. J Bacteriol 185:

1478–1483.
48. Bagos PG, Nikolaou EP, Liakopoulos TD, Tsirigos KD (2010) Combined

prediction of Tat and Sec signal peptides with hidden Markov models.
Bioinformatics 26: 2811–2817.

49. Brayton KA, Kappmeyer LS, Herndon DR, Dark MJ, Tibbals DL, et al. (2005)
Complete genome sequencing of Anaplasma marginale reveals that the surface is

skewed to two superfamilies of outer membrane proteins. Proc Natl Acad

Sci U S A 102: 844–849.
50. Frutos R, Viari A, Ferraz C, Morgat A, Eychenie S, et al. (2006) Comparative

genomic analysis of three strains of Ehrlichia ruminantium reveals an active
process of genome size plasticity. J Bacteriol 188: 2533–2542.

51. Stanley NR, Findlay K, Berks BC, Palmer T (2001) Escherichia coli strains

blocked in Tat-dependent protein export exhibit pleiotropic defects in the cell
envelope. J Bacteriol 183: 139–144.

52. Tsui HC, Zhao G, Feng G, Leung HC, Winkler ME (1994) The mutL repair
gene of Escherichia coli K-12 forms a superoperon with a gene encoding a new

cell-wall amidase. Mol Microbiol 11: 189–202.
53. Stanley NR, Sargent F, Buchanan G, Shi J, Stewart V, et al. (2002) Behaviour of

topological marker proteins targeted to the Tat protein transport pathway. Mol

Microbiol 43: 1005–1021.

54. Bolhuis A (2002) Protein transport in the halophilic archaeon Halobacterium sp.

NRC-1: a major role for the twin-arginine translocation pathway? Microbiology

148: 3335–3346.

55. Rose RW, Bruser T, Kissinger JC, Pohlschroder M (2002) Adaptation of protein

secretion to extremely high-salt conditions by extensive use of the twin-arginine

translocation pathway. Mol Microbiol 45: 943–950.

56. Jenner DC, Dassa E, Whatmore AM, Atkins HS (2009) ATP-Binding Cassette

Systems of Brucella. Comp Funct Genomics. 354649 p.

57. Holland IB, Blight MA (1999) ABC-ATPases, adaptable energy generators

fuelling transmembrane movement of a variety of molecules in organisms from

bacteria to humans. J Mol Biol 293: 381–399.

58. Heikkila MP, Honisch U, Wunsch P, Zumft WG (2001) Role of the Tat ransport

system in nitrous oxide reductase translocation and cytochrome cd1 biosynthesis

in Pseudomonas stutzeri. J Bacteriol 183: 1663–1671.

59. Seleem MN, Boyle SM, Sriranganathan N (2008) Brucella: a pathogen without

classic virulence genes. Vet Microbiol 129: 1–14.

60. Krehenbrink M, Downie JA (2008) Identification of protein secretion systems

and novel secreted proteins in Rhizobium leguminosarum bv. viciae. BMC

Genomics 9: 55.

61. Pickering BS, Oresnik IJ (2010) The twin arginine transport system appears to

be essential for viability in Sinorhizobium meliloti. J Bacteriol 192: 5173–5180.

62. Jiang X, Fares MA (2011) Functional diversification of the twin-arginine

translocation pathway mediates the emergence of novel ecological adaptations.

Mol Biol Evol 28: 3183–3193.

63. Boussau B, Karlberg EO, Frank AC, Legault BA, Andersson SG (2004)

Computational inference of scenarios for alpha-proteobacterial genome

evolution. Proc Natl Acad Sci U S A 101: 9722–9727.

64. Massung RF, Hiratzka SL, Brayton KA, Palmer GH, Lee KN (2008) Succinate

dehydrogenase gene arrangement and expression in Anaplasma phagocytophi-

lum. Gene 414: 41–48.

65. Sargent F, Berks BC, Palmer T (2006) Pathfinders and trailblazers: a prokaryotic

targeting system for transport of folded proteins. FEMS Microbiol Lett 254:

198–207.

66. Shruthi H, Babu MM, Sankaran K (2010) TAT-pathway-dependent lipopro-

teins as a niche-based adaptation in prokaryotes. J Mol Evol 70: 359–370.

67. De Buck E, Vranckx L, Meyen E, Maes L, Vandersmissen L, et al. (2007) The

twin-arginine translocation pathway is necessary for correct membrane insertion

of the Rieske Fe/S protein in Legionella pneumophila. FEBS Lett 581: 259–264.

68. Begg KJ, Donachie WD (1985) Cell shape and division in Escherichia coli:

experiments with shape and division mutants. J Bacteriol 163: 615–622.

Tat Pathway in a-Proteobacteria

PLoS ONE | www.plosone.org 14 March 2012 | Volume 7 | Issue 3 | e33605


