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Abstract

Motivation: De novo motif discovery algorithms find statistically over-represented sequence motifs that may func-
tion as transcription factor binding sites. Current methods often report large numbers of motifs, making it difficult to
perform further analyses and experimental validation. The motif selection problem seeks to identify a minimal set of
putative regulatory motifs that characterize sequences of interest (e.g. ChIP-Seq binding regions).

Results: In this study, the motif selection problem is mapped to variants of the set cover problem that are solved via
tabu search and by relaxed integer linear programing (RILP). The algorithms are employed to analyze 349 ChIP-Seq
experiments from the ENCODE project, yielding a small number of high-quality motifs that represent putative bind-
ing sites of primary factors and cofactors. Specifically, when compared with the motifs reported by Kheradpour and
Kellis, the set cover-based algorithms produced motif sets covering 35% more peaks for 11 TFs and identified 4
more putative cofactors for 6 TFs. Moreover, a systematic evaluation using nested cross-validation revealed that the
RILP algorithm selected fewer motifs and was able to cover 6% more peaks and 3% fewer background regions,
which reduced the error rate by 7%.

Availability and implementation: The source code of the algorithms and all the datasets are available at https://
github.com/YichaoOU/Set_cover_tools.

Contact: welch@ohio.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Motif discovery is a de novo method for mining putative transcrip-
tion factor binding sites (TFBSs) from a set of related genomic
regions, such as promoter regions of co-expressed genes or genomic
windows that are bound by transcription factors (Das and Dai,
2007; Hu et al., 2005; Landt et al., 2012; Tompa et al., 2005).
Many methods have been developed for motif discovery, including
generative algorithms (Bailey et al., 1994; Pavesi et al., 2004); dis-
criminative methods (Huggins et al., 2011; Smith et al., 2005); deep
learning approaches (Lee et al., 2018; Quang and Xie, 2016); and
ensemble methods (Jin et al., 2009; Van Heeringen and Veenstra,
2011). Recent motif discovery tools have been optimized to handle
massive ChIP-Seq datasets and to utilize ChIP-Seq specific informa-
tion. For example, HMS (Hu et al., 2010) uses a Bayesian model
that integrates sequencing depth information. ChIPMunk
(Kulakovskiy et al., 2010) uses an iterative approach that incorpo-
rates peak shape information. Genome wide Event finding and
Motif discovery (Guo et al., 2012) is a k-mer-based method that
identifies spatial binding constraints. Identification of co-enriched
motifs is also an important problem when interpreting ChIP-seq
peaks. One common method is to apply a co-occurrence statistical
test, such as Homer-annotatepeaks (Heinz et al., 2010) and

MAmotif toolkit (Sun et al., 2018). More advanced approaches in-
clude training a machine learning model and using feature import-
ance to select top ranking motifs. For example, SeqUnwinder
trained a multi-class logistic regression model based on k-mer fre-
quencies using a time-series Lhx3 ChIP-seq dataset and identified
Zfp281 and Oct4 as cofactors during induced motor neuron pro-
graming (Kakumanu et al., 2017).

Individual motif discovery methods often fail to identify a single
motif that covers all of the binding regions from a ChIP-Seq experi-
ment (Al-Ouran et al., 2018). Moreover, ensemble motif discovery
methods tend to generate large numbers of motifs, which are infeas-
ible to validate experimentally. For example, the ENCODE project
(Consortium et al., 2012) has produced hundreds of ChIP-seq
experiments. Therefore, systematic methods for selecting motifs are
needed. Kheradpour and Kellis (2014) approached this problem by:
(i) manually clustering 427 ChIP-seq datasets into 84 transcription
factor groups; (ii) producing an initial set of motifs using a set of
five motif discovery tools; (iii) developing an enrichment method to
select up to 10 motifs per transcription factor group. In our previous
study, we developed a greedy set cover algorithm to address the
same issues (Al-Ouran et al., 2018), by finding a small number of
motifs that cover all binding regions. This article introduces an
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enhanced version of the motif selection problem, which yields sub-
stantial improvement in solution quality by also considering back-
ground sequence coverage.

The addition of background sequence coverage, while more
biologically relevant, complicates the underlying optimization prob-
lem. Ideally, we wish to (i) cover as much of the foreground as
possible, (ii) cover as little of the background as possible and
(iii) select the smallest set of motifs. Modeling such a multi-objective
optimization problem is notoriously difficult as there can be mul-
tiple optimal solutions. For instance, the Positive Negative Partial
Set Cover Problem (PNPSCP) (Miettinen, 2008) addresses (i) and (ii)
by minimizing the sum of the number of foreground sequences that
are not covered and the number of background sequences that are
covered. Unfortunately, not addressing (iii) means that an optimal
solution could contain many motifs, which again, may be infeasible
to validate experimentally. In this work, we address this issue with
two complementary approaches. In the first approach, we modify
the PNPSCP to include the number of motifs as part of the optimiza-
tion function and solve the modified PNPSCP via tabu search. In the
second approach, we define a new optimization problem, namely
the Minimum Discriminative Set Cover Problem (MDSCP), where
the objective is to find the minimum number of motifs subject to con-
straints on (i) and (ii). We model this problem via linear programing
and produce solutions to this problem via a randomized algorithm.

In the results, we show that set cover algorithms outperformed
the enrichment method developed by Kheradpour and Kellis in
terms of foreground coverage, background coverage, error rate
and number of motifs. Moreover, our algorithms also identified pu-
tative cofactors for six transcription factors, including GATA and
BRCA1.

In the remainder of this article, the authors formally define the
new motif selection problems, solve the problems via two methods:
tabu search and relaxed integer linear programing (RILP), and dem-
onstrate the effectiveness of the solutions by analyzing ChIP-Seq
data from the ENCODE project (Consortium et al., 2012).

2 Materials and methods

Traditional motif discovery algorithms output a large number of
motifs that are often infeasible to validate via laboratory experi-
ments. The goal of the new motif selection problem is to find a small
set of motifs that covers all the regions of interest while minimizing
the number of false positives (i.e. covering the background sequen-
ces). In this section, we define the motif selection problem in terms
of the modified PNPSCP and the MDSCP. Last, we describe our
evaluation datasets and methodology.

2.1 Mapping the motif selection problem to a variant of

the PNPSCP
A formal statement of the PNPSCP problem is as follows: given a
positive set P ¼ fp1;p2; . . . ; ppg, a negative set N ¼ fn1;n2; . . . ;n�g
and a collection M ¼ fm1;m2; . . . ;mkg � 2P[N, the objective is to
find a subset of M, denoted by M�, such that

costðP;N;M�Þ ¼ jP n
[

m2M�

mj þ jN \
[

m2M�

mj

is minimized (Miettinen, 2008). Note that the cost function repre-
sents the number of misclassified elements, which consists of the
number of uncovered positive elements and the number of covered
negative elements.

To introduce the motif selection problem, consider a motif dis-
covery setting where a set of foreground sequences is given as P ¼
fp1; p2; . . . ;ppg and a set of background sequences is given as
N ¼ fn1; n2; . . . ; n�g. The output from a motif discovery algorithm
or an ensemble of algortihms is a set of motifs denoted as
M ¼ fm1;m2; . . . ;mkg. Next, motif scanning is performed; motifs
are mapped to the foreground and background sequences to get the
information on whether a motif occurs in a sequence. A motif mj is
said to cover a sequence si if the motif mj occurs in the sequence si.

The solution to the motif selection problem is represented by a vec-
tor! x ¼ ðx1; x2; . . . ;xkÞ, where

xi ¼
1 if mi is part of the solution
0 otherwise

�

Let M� be the set of selected motifs, where mi 2M� if xi ¼ 1. Then
the motif selection problem is to minimize the following cost function:

b� jM�j þ ð1� bÞ � Error (1)

The cost function consists of two parts: one is the number of
selected motifs (i.e. jM�j), the other one is the percentage of misclas-
sified sequences (i.e. Error). It is different from the original PNPSCP
formulation, thus we call it a variant of PNPSCP. b 2 ½0; 1� is a scal-

ing factor for the two parts, with a default value of 1
kþ1 (so that the

ranges of the two parts are equal). The Error function is denoted as:

a� jP n
S

m2M�mj
jPj þ ð1� aÞ � jN \

S
m2M�mj
jNj (2)

A weight factor a 2 ½0; 1� with a default value of 0.5, is used to
specify the relative importance between covering more foreground
sequences and covering fewer background sequences.

2.1.1 The tabu search approach

Tabu search (Glover and Laguna, 1998) is a metaheuristic local
search method. It starts with a randomly generated initial solution
x
!0 then searches the neighborhood of x

!0, denoted by Nðx!0Þ, for
better solutions. The neighborhood generation function used in this
study involves flipping binary values (see Gendreau, 2003).

Traditional local search methods, such as hill climbing, update
current solution if they find a better solution in the neighborhood

Algorithm 1. The tabu search algorithm for motif selection

(Gendreau, 2003; Maischberger, 2011)

x
!0: Initial solution

x
!� ¼ x

!0: Current best solution

Tenure: The size of the tabu list

f ðx!�Þ: The cost of x
!�

ForeCovðx!�Þ: The foreground coverage of x
!�

N ðx!�Þ: The neighborhood of x
!�

~N ðx!�Þ: The ‘accessible’ subset of Nðx!�Þ (i.e. non-tabu or

allowed by aspiration)

k: The foreground coverage incremental threshold

while :terminateðÞ do

Update_flag ¼ FALSE

for x
!0 2 ~N ðx!�Þ do

if ðjx!0j > jx!�jÞ ^ ForeCovðx!0Þ � ForeCovðx!�Þ < k then

pass

else

if f ðx!0Þ < f ðx!�Þ then

x
!� ¼ x

!0

Update_flag ¼ TRUE

end if

end if

end for

if Update_flag is TRUE then

Delete the oldest entry if the tabu size > Tenure

Add x
!�

to the tabu list

else

end if

end while

return x
!�
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and thus result in local optima. In contrast, tabu search alleviates
this issue by employing two strategies: (i) tabu search accepts non-
improving moves when better moves are unavailable in the neigh-
borhood of current solution and (ii) tabu search uses a short-term
memory structure, called tabu list, to store recently visited solutions
and prevent selecting solutions that are visited previously.

Because the tabu list may prohibit reaching better solutions
(if intermediate moves to such solutions are tabu; Gendreau, 2003),
it may be necessary to revoke tabus (i.e. allow one visited solution to
be non-tabu). Such operations are called aspiration criteria. We em-
ploy the ‘best so far’ aspiration criterion, which allows moving to a
neighborhood solution if its objective value is close to the current
best solution (Gendreau, 2003; Maischberger, 2011).

2.1.2 The tabu search algorithm

The METSlib framework is used to implement the tabu search algo-
rithm. METSlib (Maischberger, 2011) is a metaheuristic modeling
framework and optimization toolkit based on the programing lan-
guage Cþþ. Algorithm 1 shows the pseudocode for the tabu search
algorithm. It starts with an initial solution x

!0
. The initial solution is

a set of all motifs. x
!�

is the current best solution. f ðÞ calculates the
cost value defined in Equation (1). ForeCovðÞ calculates the percent-
age of covered foreground sequences for a given solution. k is used
as a foreground coverage incremental threshold, meaning that the
best solution is replaced by the current solution only if it adds k% or
more foreground coverage. The similar threshold is used in the
greedy set cover algorithm (Al-Ouran et al., 2018). Nðx!�Þ is a set of
k neighborhood solutions of x

!�
, which are generated by flipping the

binary value at each position of x
!�

. ~N ðx!�Þ � N ðx!�Þ consists of two
parts: (i) non-tabu neighborhood solutions and (ii) tabu solutions
that are allowed by aspiration. ~N ðx!�Þ should be updated after enu-
merating all neighborhood solutions of x

!�
.

Our implementation uses the following termination criteria: (i)
mets :: noimprove termination criteria. If the total number of non-
improving iterations exceeds a maximum number, then the tabu
search is stopped. (ii) mets :: threshold termination criteria. This
termination criterion terminates the tabu search when the cost
reaches a certain threshold. The tabu list uses mets :: simple
tabu list. The aspiration criterion uses mets :: best ever criteria.
In each iteration, we search for x

!0
in the neighborhood of x

!�
that

minimizes the cost function. If the cost of x
!0

is less than the current
best solution and its incremental foreground coverage is greater or
equal to k, then the best solution is assigned to x

!0
. Otherwise, the

non-improving counter adds 1.
The tabu search algorithm runs in iterations. In each iteration, it

takes OðjMj � ðjPj þ jNjÞÞ time to calculate the cost function. Since
the neighborhood of the current solution contains at most jMj solu-
tions, it can take at most OðjMj2 � ðjPj þ jNjÞÞ steps to finish every
iteration. Thus, the tabu search algorithm given above has a time
complexity of Oðmax � jMj2 � ðjPj þ jNjÞÞ, where max denotes the
total number of iterations.

2.2 Mapping the motif selection problem to MDSCP
Unlike the tabu approach, which tries to minimize the number of
motifs and the number of misclassified sequences at the same time,
in this section, we introduce a parameterized version of the motif se-
lection problem, which we refer to as the MDSCP.

Definition 2.1. MDSCP: Given a foreground set P, a background set N, a

set M containing subsets of P [N and integers k and j, find a subset M� �
M of minimum cardinality satisfying the following two constraints:

1.
j [

m2M�
m \ Pj � jPj � k;

i.e. at most k elements in P are not covered by some set in M�, and

2.
j [

m2M�
m \Nj 	 j;

i.e. at most j elements of N are covered by the sets in M�.

MDSCP is shown to be NP-complete by reducing the set cover problem

to it (i.e. set k ¼ 0; j ¼ jNj). Therefore, finding exact and fast algorithms

for MDSCP is difficult. However, we can use standard techniques to

bound the optimal value of the MDSCP.

2.2.1 Integer linear programing characterizations

In this section, we present a 0�1 integer linear programing charac-
terization of MDSCP and explore how to use this for
approximation.

Definition 2.2. Given an instance hP;N;M; k; ji of MDSCP, we define

the following 0�1 linear programing variant of this instance. Let

m ¼ jMj þ jPj þ jNj. Let x
!

be a 0–1 vector of size m such that

x
! ¼ u

!
v
!

w
!

, where u
!

has size jMj; v
!

has size jPj and w
!

has size jNj. The

objective is to find a 0�1 vector x
!

such that the following linear con-

straints are satisfied and the number of 1’s in u
!

is minimized.

1. For every element i of P,

X
i2Mj

uj � vi � 0:

Notice that, since both uj 2 f0; 1g and vi 2 f0; 1g, then if vi ¼ 1, there

must be at least one uj ¼ 1 such that i 2Mj.

2. For every element i of P, let Ki ¼ jfMjji 2Mjgj, and let

X
i2Mj

uj �Ki � vi 	 0:

Notice that, since both uj 2 f0; 1g and vi 2 f0; 1g, then if vi ¼ 0, there is

no uj where uj ¼ 1 and i 2Mj. This guarantees that, if vi ¼ 0, then i in P

is not covered.

3. For every element i of N, let

X
i2Mj

uj �wi � 0:

Notice that, since both uj 2 f0;1g and wi 2 f0; 1g, then if wi ¼ 1, there

must be at least one uj ¼ 1 such that i 2Mj.

4. For every element i of N, let Ki ¼ jfMjji 2Mjgj, and let

X
i2Mj

uj � Ki �wi 	 0:

Notice that, since both uj 2 f0;1g and wi 2 f0; 1g, then if wi ¼ 0, there

is no uj where uj ¼ 1 and i 2Mj. This guarantees that, if wi ¼ 0, then i in

N is not covered.

5.

XjPj
i¼1

vi � jPj � k;

i.e. at least all but k of the foreground elements are covered.

6.

XjNj
i¼1

wi 	 j;

i.e. at most j of the background elements are covered.
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We refer to this instance as MDSCPILP. We note that the optimal solution

to the integer linear programing formulation MDSCPILP is equivalent to the

optimal solution to MDSCP. However, both problems are NP-complete.

Fortunately, the integer linear programing formulation provides a natural

avenue for approximation via relaxation. In this case, the relaxed version of

MDSCPILP is the linear program where the constraints that xi 2 f0; 1g are

replaced by xi 2 ½0; 1�. We refer to the relaxed problem as MDSCPLP.

2.2.2 The RILP algorithm

The RILP algorithm (Algorithm 2) contains two steps. The first step
is to obtain an optimal solution x

!�
to the MDSCPLP problem (which

can be computed via GNU Linear Programming Kit; Makhorin,
2008). The second step is to solve the MDSCPILP problem through
a randomized algorithm.

If the randomized algorithm halts, it is clear that the solution M�

covers at least jPj � k elements of P. However, it is possible that the
given solution covers more than j elements of N. In this situation,
there are two possible approaches: (i) consider this solution a failure,
and (ii) consider this a solution that satisfies only one of the two
constraints. Our software uses approach (ii).

The RILP algorithm takes at most Oðmax � jMj � ðjPj þ jNjÞÞ
steps to complete, notwithstanding the cost of computing the opti-
mal solution to MDSCPLP via linear programing, given that the sets
M�, PM and NM are implemented via bit-vectors and each set mi is
implemented via a balanced binary tree.

2.3 Evaluation methodology
To evaluate our methods, we used the ChIP-Seq datasets and the
predicted binding motifs from (Kheradpour and Kellis, 2014). The
authors analyzed 427 ChIP-Seq experiments and grouped them into
84 transcription factor groups based on homology. Ensemble motif
discovery was done using five existing motif discovery methods:
MEME (Bailey et al., 1994), AlignACE (Hughes et al., 2000),
Trawler (Ettwiller et al., 2007), MDscan (Liu et al., 2002) and
Weeder (Pavesi et al., 2004). The top 10 most enriched motifs for
each factor group were reported. The enrichment score was com-
puted based on the fraction of motif instances in the bound regions
(as detected by ChIP-seq).

Three set cover-based methods were evaluated against the en-
richment method (Kheradpour and Kellis, 2014), including a greedy
set cover algorithm (Al-Ouran et al., 2018) and the aforementioned
tabu search and RILP methods. The greedy set cover algorithm uses
the ‘maximum uncovered-first’ rule (Al-Ouran et al., 2018).
Therefore, a motif will be added to the set until all the sequences are
covered. This method doesn’t consider background sequences.

Our methods are validated using 55 factor group datasets be-
cause the known motifs of these factors are available; each of the
datasets contains pooled regions (q-value 	 0.01) across all the

ChIP-Seq experiments of the given factor. To generate evaluation
datasets, 10 000 random peaks were selected per factor group data-
set. A few numbers of datasets, including SIX5, ATF3, ZEB1, PBX3,
MXI1, ZBTB33, NR2C2, BHLHE40, ZBTB7A, BRCA1, POU5F1,
NFE2, PRDM1, HSF and SREBP contained <10 000 peaks, so all
the peaks were used. The same number of randomly selected back-
ground regions from Kheradpour and Kellis (2014) was added to
the evaluation datasets. In other words, the evaluation datasets con-
tain a balanced number of foreground sequences and background
sequences.

Figure 1 shows the pipeline used for evaluating the motif selec-
tion methods. The sets of all discovered motifs for each factor group
were adopted from (Kheradpour and Kellis, 2014). The evaluation
datasets contain foreground sequences (i.e. bound regions), back-
ground sequences and the corresponding motifs discovered in that
factor group. Motif scanning was done using find individual motif
occurrences (FIMO) with default parameters (e.g. P-value cutoff ¼
1e�4) (Grant et al., 2011). In a recent study of motif scanning tools
(Jayaram et al., 2016), FIMO was the top performer comparing to
Matrix-Scan (part of the RSAT suite) (Turatsinze et al., 2008),
Clover (Frith et al., 2004), Patser (Turatsinze et al., 2008) and
PossumSearch (Beckstette et al., 2006). Since a motif can either
occur or not occur in a sequence [i.e. zero or one occurrence per se-
quence, the ZOOP model (Bailey et al., 1994)], it is natural to pro-
duce a boolean matrix to represent the occurrence information,
where each row is a sequence and each column is a motif. Together
with the class label (i.e. foreground sequence or background se-
quence), it is the input to the enrichment method and the motif selec-
tion methods. The optimization process is to find the best
combination of columns (i.e. combination of motifs) in terms of the
number of uncovered foreground sequences, the number of covered
background sequences and the number of selected motifs. The evalu-
ation procedure used a nested cross-validation (CV) approach (see
Supplementary Fig. S1; Chen et al., 2008). Nested CV can reduce
the bias and give a better estimation of the error than the traditional
CV methods (Varma and Simon, 2006). For the Greedy method, fil-
ter_level was searched from 1 to 20%. For the tabu search method,
tenure (i.e. controlling the tabu list size) was set to be 0.2, 0.4 or 0.6
and delta (i.e. incremental coverage cutoff, same as filter_level in the
Greedy method) was set to be 2%. For the RILP method, maximal
uncovered foreground percent and maximal covered background

Fig. 1. Motif selection evaluation pipeline using ENCODE datasets. The blue boxes

represent the motif discovery steps in (Kheradpour and Kellis, 2014). The discov-

ered motifs were obtained from Kheradpour and Kellis (2014). All the ChIP-Seq

datasets from the same transcription factor group (defined in Kheradpour and

Kellis, 2014) were combined and duplicate peaks were removed. The evaluation

datasets contain 10 000 random selected peaks, 10 000 random selected back-

ground sequences and the discovered motifs. Two new motif selection algorithms

(i.e. the tabu search algorithm and the RILP algorithm), the greedy algorithm (Al-

Ouran et al., 2018), and the enrichment method (Kheradpour and Kellis, 2014)

were evaluated using nested CV

Algorithm 2. The RILP algorithm for motif selection

Compute x
!�

, the optimal solution to MDSCPLP.

M� ¼1; PM ¼1; NM ¼1.

iter ¼ 0

while not done and iter < max do

iter ¼ iterþ 1

for each set mi do

add mi to M� with probability u�i .

if mi is added to M� then

PM ¼ PM [ ðmi \ PÞ.
NM ¼ NM [ ðmi \NÞ.

end if

end for

if jPMj � jPj � k, halt and return M�.

end while
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percent were searched from 10 to 50%. The evaluation program
was run at the Ohio Supercomputer Center. Each algorithm for each
dataset was run for 100 h with 8 cores and 64G memory. The nested
CV program ran in parallel. Due to excessive memory usage, the
tabu search algorithm did not finish four datasets: AP1, CTCF,
MYC and TATA (which contain 244, 853, 372 and 248 motifs,
respectively).

The motif selection methods were evaluated using the following
metrics:

1. Foreground coverage (ForeCov): The fraction of foreground

sequences that contain the selected motifs. The algorithms at-

tempt to maximize this metric.

2. Background coverage (BackCov): The fraction of background

sequences that contain the selected motifs. The algorithms at-

tempt to minimize this metric.

3. Error rate: The fraction of uncovered foreground sequences (i.e.

False negatives) and covered background sequences (i.e. False

positives).

4. Number of motifs: The number of selected motifs returned by

motif selection algorithms. This number should be minimized.

Individual motifs were evaluated based on a Fisher exact test
(Lin et al., 2015) where the 2 � 2 contingency table was created
with the following values: (i) the number of foreground sequences
with at least one occurrence of a given motif; (ii) the number of

foreground sequences with no occurrence of the given motif; (iii) the
number of background sequences with at least one occurrence of the
given motif; (iv) the number of background sequences with no oc-
currence of the given motif.

3 Results and discussion

Using the set cover-based methods, we are able to identify a small
set of motifs for each TF group with high foreground coverage and
low background coverage. This section provides a comparison of
the results obtained by the set cover methods and the enrichment
method (Kheradpour and Kellis, 2014). Additionally, we discuss
biological insights provided by the motifs identified by the set cover
methods.

3.1 Comparison of set cover-based methods
Three set cover algorithms were evaluated on the same 55 TF group
datasets used by the enrichment method (Kheradpour and Kellis,
2014). Unlike the enrichment method, which calculates an enrich-
ment score for each motif and then selects the top 10 motifs, the set
cover methods iteratively optimize a group of selected motifs.

The foreground coverage represents the fraction of ChIP-Seq
regions that contain the selected motifs. As shown in Figure 2a, the
median foreground coverage of the enrichment method is 66.6%,
even though it is 1.7% higher than the tabu search method, it is 4.8
and 6.3% lower than the greedy method and the RILP method,

Fig. 2. Boxplots of the four evaluation metrics. Median values and all the data points are shown. Each data point represents the dataset of a transcription factor group. Enrch:

the enrichment method (Kheradpour and Kellis, 2014). Greedy: the greedy algorithm for motif selection (Al-Ouran et al., 2018). RILP: the RILP algorithm for motif selection.

Tabu: the tabu search algorithm for motif selection
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respectively. Specifically, the enrichment method failed to cover
more foreground sequences in 41 TF groups (see Supplementary Fig.
S2a), suggesting that simply selecting the top motifs based on a se-
quence enrichment method can fail to account for all sequences of
interest. With respect to the foreground coverage metric, the RILP
method performed the best.

The background coverage shows the fraction of randomly
selected regions not identified by ChIP-Seq that contain the selected
motifs. In other words, it represents the false positive rate (because
the motifs are not expected to occur in the background sequences).
As shown in Figure 2b, the median background coverage of the en-
richment method is 19.8%, which is 3.5% higher than the greedy
method and the RILP method, respectively. With respect to the
background coverage metric, the tabu search method performed the
best.

The error rate represents the percentage of misclassified sequen-
ces if the selected set of motifs is used to predict the regions bound
by a TF. The median error rate of the enrichment method is 29.1%
(Fig. 2c). All three set cover-based methods have a lower median
cost (than the enrichment method) and the RILP method has the
lowest median cost of 22.7%.

The median number of selected motifs doesn’t vary much (i.e.
two or three motifs) for these methods (Fig. 2d). However, their
ranges can differ significantly. For example, the enrichment method
has a range from 1 to 10 and the RILP method has a range from 1 to
12. On the other hand, the greedy and tabu search methods pick
only one to four motifs for each TF group. It is worth noting that
the RILP method selected one to four motifs in most cases (52/55)
(see Supplementary Fig. S2b). Therefore, the set cover-based meth-
ods select fewer motifs than the enrichment method and the tabu
search method generally picks the smallest number of motifs.

Our results demonstrate the effectiveness of set cover approaches
in solving the sequence coverage problem (Al-Ouran et al., 2018). For
example, the enrichment method produced the highest foreground
coverage in NRF1, CTCF, REST, SPI1 and ETS (Supplementary Fig.
S2a). However, in all the aforementioned five TF groups, the enrich-
ment method reported a larger number of motifs (Supplementary Fig.
S2b); it selected 10 CTCF motifs while the set cover methods selected
only 1 motif. The number of discovered motifs is greatly reduced
using set cover-based methods. The minimal description length prin-
ciple favors hypotheses that describe the biological data using fewer
symbols than needed (Grunwald, 2004). In this vein, the set cover
methods discover few motifs, which in turn tend to cover few back-
ground sequences (Supplementary Fig. S2c) and thus produce low-
cost solutions (Supplementary Fig. S2d). Overall, when compared
with the enrichment method, the RILP algorithm selected two motifs
(median number) and was able to cover 6% more peaks and 3%
fewer background regions, which reduced the error rate by 7%.

3.2 Shared motifs between the solutions of set

cover-based methods and the enrichment method
The three set cover-based methods have found the same motifs in
seven factor groups as reported in (Kheradpour and Kellis, 2014).
As shown in Table 1, these shared motifs occur more frequently in
the bound regions than in the background regions. For example,
TFAP2_disc2 occurs in 76.3% of the TFAP2 binding peaks and yet
only 9.7% of the background sequences. TAL1_disc1 matches the
binding motif of GATA. It has been shown that TAL1 acts as a co-
factor for GATA3 (Ono et al., 1998). More recently, Moreau et al.
(2016) has identified ‘GATA1, FLI1 and TAL1 as a minimal and
sufficient combination of TFs to induce the formation of MK pre-
cursors from hPSCs’, which is relevant to transfusion medicine.
PBX3_disc2 matches the known MEIS1 motif (Kheradpour and
Kellis, 2014), which is consistent with the known cooperative bind-
ing activity of PBX3 and MEIS1 (Bischof et al., 1998). Interestingly,
it is known that PBX3 and MEIS1 work cooperatively in hematopoi-
etic cells to drive acute myeloid leukemia (AML) (Li et al., 2016),
suggesting PBX3_disc2 might play an important role in the progres-
sion of AML. Our results show that the set cover-based methods

were able to re-identify enriched motifs as reported by the enrich-
ment method.

3.3 Putative cofactors identified by set cover-based

methods
To explore whether the set cover-based methods identified any
known motifs that were missed by the enrichment method
(Kheradpour and Kellis, 2014), we took the union of motifs selected
by the set cover methods and filtered out the motifs that were similar
to the enrichment discovered motifs. The remaining motifs were
matched to 579 JASPAR 2018 vertebrates non-redundant motifs
(Khan et al., 2018) using TOMTOM (Gupta et al., 2007) with q-
value cutoff at 0.01, resulting in six motifs (Table 2). A Fisher exact
test (Lin et al., 2015) showed that these motifs were significantly
enriched in the ChIP-Seq peaks. Interestingly, three motifs in HEY1,
GATA and EP300 factor groups all matched the binding motif of
ZNF263. It has been reported that HEY1 and ZNF263 are highly
expressed (fold change � 25) in the CD34þ cell line (Gomes et al.,
2002), suggesting that they might be cofactors. The ZBTB33 motif
found in the BRCA1-bound regions is consistent with the finding
that BRCA1 might ‘bind ZBTB33 to perform their functions in
DNA repair and genome maintenance’ (Wang et al., 2012).
Moreover, both BRCA1 and ZBTB33 are strongly associated with
TP53 (Szklarczyk et al., 2015), suggesting they might have a co-
operative function in cancer. RXRA and RXRG are retinoic acid re-
ceptor RXR-alpha and RXR-gamma, respectively. Hence, it is
expected to see the binding motif of RXRG that we observed in
RXRA bound regions. In summary, the motifs identified by the set
cover methods provide new potential insights regarding the genomic
biology of gene regulation.

3.4 Improved motif results by the set cover-based

methods
The results show that the set cover algorithms improve the motif set
discovered in ENCODE ChIP-seq experiments. Specifically, the set

Table 1. Shared motifs between the three set cover-based methods

and the enrichment method

Motif name Motif Logo ForeCov BackCov

TFAP2_disc2 76.3% 9.7%

POU5F1_disc1 71.8% 12.2%

REST_disc3 60.7% 8.4%

TAL1_disc1 47.3% 7.0%

ZNF143_disc3 39.8% 11.9%

PAX5_disc1 37.8% 5.6%

PBX3_disc2 37.3% 7.4%

Note: Motif names used in this table are adopted from Kheradpour and

Kellis (2014).
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cover methods increased the foreground coverage by at least 35%
for 11 TF groups (see Supplementary Fig. S2a). The methods also
discovered motifs for POU2F2 (a key regulator for B cells and neur-
onal cells; Latchman, 1996) and BRCA1 (a well-known tumor sup-
pressor). The set cover methods decreased the error rate by at least
10% for 9 TF groups (see Supplementary Fig. S2c), including
BRCA1 and MXI1 (an oncogenic transcription factor). Given the
improvement in foreground coverage and the decrease in error rate,
the set cover-based methods have produced an improved, high-qual-
ity motif analysis result for ChIP-seq data.

4 Conclusion

Current motif discovery tools often produce a large number of DNA
motifs, making it difficult to gain biological insight or to perform
experimental validation. One way to select fewer motifs is to per-
form an enrichment analysis; this type of analysis evaluates individ-
ual motifs and outputs a motif list (e.g. ranked by enrichment score).
Users can set their own threshold and select the top motifs. In con-
trast, the motif selection problem provides a way to find a concise
set of key regulatory motifs that maximizes foreground coverage
and minimizes background coverage. Specifically, the motif selec-
tion algorithms do not explicitly evaluate individual motifs; they
look for a set of motifs by performing a combinatorial optimization.

This article contributes two new set cover-based methods to solve
the motif selection problem. Tabu search is an effective metaheuristic
method that uses adaptive memory programing to explore the solution
space in a manner that avoids repetitively searching in the region of a
local optimum. This method performed the best in terms of back-
ground coverage and number of motifs. RILP is a classic method for
solving set cover problems. The relaxed constraints guarantee that the
algorithm finds optimal solutions in the linear space. Then it uses a
randomized algorithm to pick the motifs based on probabilities
returned by the optimal solution. This method performed the best in
terms of foreground coverage and error rate, and it also selected one to
four motifs in most cases. In terms of time complexity, both the tabu
search and the RILP method are linear with respect to the number of
input sequences. The number of motifs (i.e. —M—); however, is differ-
ent between the two methods. It is still linear for the RILP method, but
it is quadratic for the tabu search method, which means that for inputs
with large number of motifs, the RILP method is more efficient. Taken
together, the RILP method is recommended as the single algorithm of
choice, because it provides a small set of motifs that covers most of the
foreground sequences and few of the background sequences. Another

good approach is to select the set of motifs identified by one or more of
the set cover-based algorithms.

Identification of putative cofactor binding sites is important for
biological interpretation of ChIP-seq peaks. It is worth noting that
the analysis of the set cover-based methods showed that they not
only rediscovered motifs that were reported by the enrichment
method but also identified known motifs representing putative
cofactors that were missed by the enrichment method. In summary,
the set cover-based methods improved ChIP-seq motif content sig-
nificantly, including >35% increment in foreground coverage for 11
TFs. When applying a nested CV framework and comparing to the
motifs reported by Kheradpour and Kellis, the RILP algorithm
selected fewer motifs and was able to cover 6% more peaks, 3%
fewer background regions and 7% lower error rate. New biological
insights were gained from the four new putative cofactors that were
missed by the enrichment method.

Future work may include expansion of the set cover algorithms
to include a multi-cover approach, which is based on the set multi-
cover problem (Chekuri et al., 2009). For example, it is known that
CTCF binds to a 33/34 bp region that consists of the CTCF motif
and a shorter secondary motif (i.e. M2). With the multi-cover con-
straint, each CTCF peak is required to be covered by at least two dif-
ferent motifs.
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