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1 	 | 	 INTRODUCTION

The	 Organization	 for	 Economic	 Co-	operation	 and	
Development	 (OECD)	 noted	 that	 young	 people	 under	

the	 age	 of	 25  years	 represent	 about	 10%	 of	 the	 popula-
tion	 in	OECD	countries,	but	account	 for	more	than	25%	
of	 drivers	 killed	 on	 the	 road	 (OECD,	 2006),	 indicating	
the	 importance	 to	 focus	 on	 this	 population	 with	 regard	
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Abstract
Drivers	are	often	held	responsible	for	road	crashes.	Previous	research	has	shown	
that	stressors	such	as	carrying	passengers	in	the	vehicle	can	be	a	source	of	acci-
dents	for	young	drivers.	To	mitigate	this	problem,	this	study	investigated	whether	
the	presence	of	a	passenger	behind	 the	wheel	can	be	predicted	using	machine	
learning,	based	on	physiological	signals.	It	also	addresses	the	question	whether	
relaxation	before	driving	can	positively	influence	the	driver's	state	and	help	con-
trolling	the	potential	negative	consequences	of	stressors.	Sixty	young	participants	
completed	a	10-	min	driving	simulator	session,	either	alone	or	with	a	passenger.	
Before	 their	 driving	 session,	 participants	 spent	 10  min	 relaxing	 or	 listening	 to	
an	audiobook.	Physiological	signals	were	recorded	throughout	the	experiment.	
Results	 show	 that	 drivers	 experience	 a	 higher	 increase	 in	 skin	 conductance	
when	driving	with	a	passenger,	which	can	be	predicted	with	90%-	accuracy	by	a	
k-	nearest	neighbors	classifier.	This	might	be	a	possible	explanation	for	increased	
risk	taking	in	this	age	group.	Besides,	the	practice	of	relaxation	can	be	predicted	
with	 80%	 accuracy	 using	 a	 neural	 network.	 According	 to	 the	 statistical	 analy-
sis,	the	potential	beneficial	effect	of	relaxation	did	not	carry	out	on	the	driver's	
physiological	state	while	driving,	although	machine	learning	techniques	revealed	
that	 participants	 who	 exercised	 relaxation	 before	 driving	 could	 be	 recognized	
with	 70%	 accuracy.	 Analysis	 of	 physiological	 characteristics	 after	 classification	
revealed	several	relevant	physiological	indicators	associated	with	the	presence	of	
a	passenger	and	relaxation.
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to	 traffic	 safety.	 In	 this	 regard,	 driving-	related	 stress	 has	
been	shown	to	represent	an	important	factor	for	drivers’	
safety	and	 individual	well-	being	(Matthews	et	al.,	1998).	
Experience	 of	 stress	 while	 driving	 is	 influenced	 by	 vari-
ous	 factors,	 such	 as	 the	 driving	 situation	 (e.g.,	 highway	
or	 urban	 area;	 Healey	 &	 Picard,	 2005),	 adverse	 weather	
conditions	(Tavakoli	et	al.,	2020),	or	the	presence	of	a	pas-
senger	(Chung	et	al.,	2019).	Previous	research	has	shown	
that	the	presence	of	passengers	in	the	car	is	related	to	risky	
driving	behavior	and	higher	accident	rates,	especially	for	
young	drivers	(Chen,	2000).

Despite	the	potential	important	influence	of	passenger	
presence	for	road	safety,	there	is	relatively	little	empirical	
evidence	addressing	this	phenomenon.	A	focus	on	physi-
ological	indicators	might	be	of	interest	in	order	to	obtain	
a	better	understanding	of	the	causes	and	the	cause–	effect	
relationship	in	this	regard.	In	addition	to	a	better	under-
standing	of	the	potential	stressful	link	between	passenger	
presence	and	driving,	it	is	important	to	address	the	ques-
tion	 how	 to	 overcome	 such	 stressful	 situations.	 Various	
stress	 management	 techniques	 have	 positive	 effects	 on	
measures	 of	 well-	being	 and	 health	 (Varvogli	 &	 Darviri,	
2011).	 In	 particular,	 meditation	 and	 relaxation	 have	
shown	to	be	very	effective	in	reducing	stress	(Davis	et	al.,	
2008).	 However,	 the	 effectiveness	 of	 such	 techniques	 in	
the	driving	context	has	yet	to	be	addressed.

In	the	wake	of	an	increased	automation	of	the	transpor-
tation	sector,	it	is	conceivable	that,	based	on	physiological	
indicators,	the	automatic	detection	of	potentially	danger-
ous	internal	conditions	such	as	arousal	may	be	of	interest	
in	the	future.	In	this	regard,	models	and	methods	should	
be	 developed	 to	 evaluate	 them	 empirically.	 The	 goal	 of	
this	study	is	to	evaluate	the	influence	of	the	presence	of	a	
passenger	and	relaxation	on	a	driver's	physiological	state,	
and	to	develop	and	evaluate	a	method	based	on	machine	
learning	that	automatically	detects	drivers’	physiological	
activation	related	to	these.

1.1	 |	 The presence of a passenger as a 
factor of stress

While	the	presence	of	a	passenger	can	have	safety-	critically	
influences	in	young	drivers,	this	was	not	the	case	for	older	
drivers,	who	showed	an	inversed	effect	pattern	when	driv-
ing	with	passengers	(i.e.,	a	reduction	in	accidents;	Chen,	
2000).	This	can	be	partly	explained	by	the	fact	that	young	
drivers	 are	 more	 prone	 to	 show	 risk-	taking	 (Centifanti	
et	al.,	2016;	Ulleberg,	2004),	which	may	be	linked	with	the	
driver's	 affective	 state	 (Chliaoutakis	 et	 al.,	 2002;	 Megías	
et	 al.,	 2011).	 In	 a	 similar	 vein,	 the	 lack	 of	 experience	 of	
young	 drivers	 might	 lead	 to	 an	 increased	 level	 of	 stress	
when	passengers	are	present.

Being	 observed	 while	 performing	 a	 task	 represents	 a	
source	of	stress	(Schrier,	1992),	even	if	the	observers	do	not	
interact	 with	 the	 observee	 (Sonderegger	 &	 Sauer,	 2009).	
This	stress	response	affects	emotional	state	and	influences	
performance	(Sonderegger	&	Sauer,	2009),	although	con-
trasting	results	have	been	reported	in	this	regard	(Larkin	
et	al.,	1998),	which	might	be	explained	by	social	facilita-
tion	 theory	 (Zajonc,	1965).	According	 to	 this	 theory,	 the	
presence	of	others	 is	 linked	with	an	 increase	 in	arousal.	
This	increase	has	a	positive	influence	on	the	performance	
of	simple	and	well-	learned	tasks,	while	it	impinges	on	the	
performance	of	complex	and	difficult	tasks.	Since	driving	
can	 be	 considered	 a	 complex	 and	 difficult	 task	 for	 inex-
perienced	and	young	drivers,	 it	can	be	assumed	that	the	
situation	caused	by	 the	presence	of	a	passenger	 leads	 to	
increased	 arousal	 and	 stress	 and	 thus	 to	 a	 reduction	 in	
driving	performance.	Previous	research	has	indicated	that	
such	 a	 stress	 response	 can	 be	 assessed	 by	 measures	 of	
heart	rate	variability	(Sonderegger	&	Sauer,	2009)	or	sys-
tolic	blood	pressure	(Larkin	et	al.,	1998).

1.2	 |	 Physiological indicators as 
measures of stress and arousal

Previous	 research	 has	 shown	 that	 physiological	 signals	
can	be	used	to	assess	various	levels	of	driving	stress	(Chen	
et	al.,	2017;	Healey	&	Picard,	2005).	With	recent	advances	
in	 the	 development	 of	 wearable	 sensors	 (e.g.,	 smart-
watches	or	smart	clothing),	these	signals	can	be	collected	
with	 high	 accuracy	 in	 a	 non-	intrusive	 manner	 (Merritt	
et	al.,	2009;	Poh	et	al.,	2010).

Electrodermal	activity	(EDA)	is	a	signal	widely	used	in	
research	to	measure	physiological	arousal	and	stress,	since	
eccrine	sweat	glands,	particularly	those	on	the	palms	and	
soles	 of	 the	 feet,	 are	 highly	 sensitive	 to	 psychologically	
driven	stimuli	(Boucsein,	2012;	Poh	et	al.,	2010;	Reinhardt	
et	 al.,	 2012;	 Sano	 &	 Picard,	 2013;	 Taylor	 &	 Machado-	
Moreira,	2013).	In	traffic	research,	EDA	has	been	used	to	
assess	the	activation	state	of	drivers	(Cacioppo	et	al.,	2007).	
Features	 calculated	 from	 the	 raw	 EDA	 signal	 have	 been	
shown	to	be	effective	for	predicting	various	levels	of	stress	
elicited	by	 the	driving	environment	 (Bitkina	et	al.,	 2019;	
Chen	et	al.,	2017;	Healey	&	Picard,	2005;	Liu	&	Du,	2018).

The	electrocardiogram	(ECG)	is	another	physiological	
signal	used	 to	evaluate	 the	driver's	 state.	Heart	 rate	and	
heart	rate	variability	(HRV)	can	be	used	to	assess	the	stress	
level	of	individuals,	especially	when	they	are	under	some	
form	 of	 social	 stress	 (Kirschbaum	 et	 al.,	 1993;	 Loeffler	
et	al.,	2017).	In	the	context	of	driving,	these	indicators	are	
also	correlated	with	stress	induced	by	the	driving	environ-
ment	 (Chen	 et	 al.,	 2017;	 Healey	 &	 Picard,	 2005;	 Munla	
et	al.,	2015;	Wang	et	al.,	2013).
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Finally,	 respiration	 is	 also	 used	 to	 assess	 driver	 state.	
Respiratory	 activity	 is	 expected	 to	 be	 regular	 in	 calm	
conditions	 but	 can	 be	 disrupted	 in	 stressful	 situations	
(Cacioppo	et	al.,	2007).	The	latter	can	alter	respiratory	be-
havior,	causing	an	increase	in	respiratory	rate,	potentially	
leading	to	hyperventilation	(Grossman,	1983;	Suess	et	al.,	
1980).	However,	indicators	of	respiratory	variability	have	
shown	in	some	studies	to	be	less	effective	in	measuring	an	
individual's	stress	response	compared	to	other	physiolog-
ical	indicators	(Chen	et	al.,	2017;	Healey	&	Picard,	2005).

1.3	 |	 Meditation and relaxation as 
methods to reduce stress

As	 meditation	 and	 relaxation	 are	 considered	 efficient	 to	
reduce	stress	(Sedlmeier	et	al.,	2012),	one	might	expect	the	
application	of	such	techniques	to	be	beneficial	in	the	con-
text	of	driving.	Meditation	can	be	defined	as	a	sequence	
of	 steps	 to	achieve	an	enhanced	mental	 state,	 also	com-
monly	 referred	 to	as	a	meditative	 state,	 through	various	
existing	methods	that	utilize	specific	cognitive	strategies	
(Nash	et	al.,	2013).	While	meditation	is	typically	practiced	
over	 longer	 period	 of	 time	 (e.g.,	 from	 several	 weeks	 to	
several	 years,	 Goyal	 et	 al.,	 2014),	 relaxation	 can	 include	
short-	term	 exercises	 that	 do	 not	 require	 a	 specific	 level	
of	expertise	and	experience,	aiming	to	release	bodily	ten-
sion	and	leading	to	a	psychophysiological	state	of	reduced	
arousal	(Jain	et	al.,	2007).

Various	 techniques	 for	 relaxation	 and	 meditation	
have	 been	 developed,	 ranging	 from	 ancient	 traditional	
spiritual	 practices	 to	 more	 recent	 techniques	 including	
mindfulness-	based	methods	(Henchoz	et	al.,	2021).	Many	
of	 these	 techniques	 have	 been	 shown	 to	 reduce	 depres-
sion,	anxiety,	stress,	while	improving	mood	and	quality	of	
life	of	individuals	(Goldberg	et	al.,	2019;	Goyal	et	al.,	2014;	
Hofmann	et	al.,	2010;	Jain	et	al.,	2007;	Khoury	et	al.,	2017;	
Niazi	&	Niazi,	2011).	Meditation	can	also	positively	impact	
a	person's	physiological	state,	characterized	by	short-		and	
long-	term	decrease	in	heart	rate	(Ditto	et	al.,	2006;	Solberg	
et	al.,	2004)	as	well	as	an	increase	in	HRV	indicators	(Ditto	
et	 al.,	 2006).	 Meditation	 can	 thus	 have	 beneficial	 effects	
not	only	during	a	stressful	period,	but	also	after	experienc-
ing	stress.	Even	in	novices,	it	has	been	shown	that	practic-
ing	meditation	after	a	stressful	experience	leads	to	a	faster	
decrease	in	skin	conductance	and	an	increase	in	positive	
affect	(Borchardt	&	Zoccola,	2018).

In	the	context	of	driving,	there	are	few	empirical	stud-
ies	on	the	utility	of	relaxation	and	meditation	techniques.	
Barnes	 and	 colleagues	 (2001)	 evaluated	 the	 usefulness	
of	 transcendental	 meditation	 on	 cardiovascular	 func-
tion	and	used	a	driving	task	as	an	experimental	stressor.	
Their	results	showed	a	beneficial	effect	of	meditation	on	

participants’	 stress	 responses	 (including	heart	 rate)	after	
driving.	 In	 addition,	 mindfulness	 interventions,	 includ-
ing	relaxation	and	cognitive	change	exercises,	have	been	
successfully	administered	to	angry	drivers	(Deffenbacher,	
2016).

1.4	 |	 The present study

The	main	objective	of	 this	study	was	to	assess	 the	 influ-
ence	of	the	presence	of	a	passenger	on	the	physiological	
state	of	drivers.	The	second	goal	of	 this	study	was	to	 in-
vestigate	whether	pre-	driving	relaxation	can	be	used	as	a	
technique	to	mitigate	physiological	activation	due	to	the	
presence	of	a	passenger.	This	work	aims	to	help	develop	
intelligent	systems	able	to	recognize	the	drivers’	state	and	
thus	optimally	support	them	(Nguyen	et	al.,	2021).

To	address	 these	questions,	 the	presence	of	a	passen-
ger	 and	 relaxation	 prior	 to	 driving	 were	 manipulated	
experimentally	 in	 a	 laboratory-	based	 driving	 simulation	
study.	ECG,	EDA,	and	respiration	were	used	for	continu-
ous	monitoring	of	drivers’	physiological	activation.	In	the	
perspective	 of	 potential	 use	 in	 real	 conditions,	 machine	
learning	 techniques	 were	 used	 to	 investigate	 if	 driver's	
physiological	activation	can	be	accurately	detected	in	such	
situations.	 In	 this	 regard,	 three	different	 classifiers	were	
trained	 to	 predict	 drivers’	 condition	 using	 a	 5-	repeated	
4-	fold	cross-	validation	approach	and	a	large	range	of	fea-
tures	extracted	from	physiological	signals.	To	understand	
the	models’	decision	and	find	out	the	most	relevant	phys-
iological	indicators	linked	with	the	presence	of	a	passen-
ger	while	driving	and	relaxation,	a	post	hoc	calculation	of	
feature	importance	was	conducted.

Based	on	findings	of	previous	research	reported	above,	
we	 expected	 that	 driving	 with	 a	 passenger	 negatively	
influences	 drivers’	 state	 for	 both	 subjective	 measure	
(affective	state)	and	objective	measures	(physiological	in-
dicators)	(Healey	&	Picard,	2005;	Kirschbaum	et	al.,	1993;	
Poh	et	al.,	2010;	Reinhardt	et	al.,	2012).	Despite	the	sparse	
empirical	evidence	in	the	context	of	driving,	a	brief	pre-	
driving	relaxation	is	expected	to	have	a	positive	effect	on	
the	 driver's	 physiological	 and	 affective	 state	 during	 and	
after	driving	(lower	physiological	activation	and	negative	
affect)	(Borchardt	&	Zoccola,	2018;	Ditto	et	al.,	2006;	Hill	
&	Boyle,	2007;	Solberg	et	al.,	2004).

2 	 | 	 MATERIAL AND METHODS

2.1	 |	 Participants

Sixty	 young	 participants	 (22  ±  1.9  years	 old)	 were	 re-
cruited	 for	 this	 study.	 The	 sample	 consisted	 of	 26  male	
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and	34	female	students.	A	specific	sample	of	young	driv-
ers	has	been	recruited	because	the	presence	of	a	passenger	
is	particularly	dangerous	for	this	age	group	and	negatively	
influences	driving	behavior	(Chen,	2000).	All	participants	
were	required	to	hold	a	driving	license	and	be	of	good	gen-
eral	 health.	 Participants	 received	 course	 credit	 for	 their	
participation.	The	study	procedure	followed	the	tenets	of	
the	Helsinki	agreement	and	written	informed	consent	was	
obtained	from	all	participants.

2.2	 |	 Experimental design

The	experiment	followed	a	2 × 2 × 3 mixed	design,	with	
driving	 condition	 (passenger	 vs.	 alone)	 and	 relaxation	
(meditation	 podcast	 vs.	 audiobook)	 as	 between-	subjects	
variables,	and	measurement	time	(baseline	vs.	relaxation	
vs.	driving)	as	a	within-	subjects	variable.

2.3	 |	 Material and instruments

The	 experiment	 was	 conducted	 in	 a	 fixed-	base	 simula-
tor,	composed	of	two	adjacent	car	seats,	a	steering	wheel	
(Logitech	 G27),	 and	 pedals	 (gas	 and	 brake)	 installed	
in	 front	 of	 a	 large	 screen.	 The	 driving	 simulation	 was	
back-	projected	 using	 a	 projector	 (Epsilon	 EH-	TW3200).	
Participants	were	able	to	adjust	the	position	and	inclina-
tion	 of	 the	 seat.	 Two	 speakers	 located	 behind	 the	 seats	
played	 the	 sound	 of	 the	 driving	 simulation	 to	 immerse	
drivers	 in	 the	 driving	 environment.	 The	 free	 version	 of	
OpenDS	was	used	as	simulation	software.

Physiological	 signals	 of	 drivers	 were	 recorded	 using	
the	Biopac	MP36 hardware	at	a	sample	rate	of	1000 Hz.	
A	digital	low-	pass	filter	with	a	frequency	of	66.5 Hz,	a	Q	
factor	of	0.5,	and	a	gain	of	2000	was	applied	to	all	signals.	
An	additional	gain	of	2000	and	1000	was,	respectively,	ap-
plied	to	digital	filters	for	the	EDA	and	respiration	signals.	
Lead	 sets	 (SS57LA	 and	 SS2LB,	 Biopac)	 with	 disposable	
Ag/AgCl	pre-	gelled	electrodes	(EL507	and	EL503,	Biopac)	
were,	 respectively,	 used	 to	 record	 the	 EDA	 and	 ECG	 of	
participants.	 Electrodes	 recording	 the	 EDA	 signal	 were	

placed	on	the	distal	phalanges	of	the	middle	and	ring	fin-
gers	of	the	non-	dominant	hand	of	participants.	The	SS5LB	
respiratory	effort	transducer	(Biopac)	recorded	the	respi-
ration	via	chest	expansion	and	contraction.

A	guided-	mindfulness	meditation	podcast	was	used	for	
the	 manipulation	 of	 relaxation	 and	 an	 online	 audiobook	
(Sherlock	Holmes	-		Die	drei	Studenten	(Hörbuch),	YouTube)	
was	 used	 for	 the	 control	 condition,	 similar	 to	 Ditto	 et	 al.	
(2006)	 or	 Borchardt	 and	 Zoccola	 (2018).	 Audio	 files	 were	
presented	via	headphones	(SONY	WH-	1000X	M3).

2.4	 |	 Measures

The	 affective	 state	 was	 assessed	 three	 times	 (see	 Figure	
1)	via	the	Positive	and	Negative	Affect	Schedule	(PANAS;	
Watson	 et	 al.	 (1988)),	 which	 was	 presented	 on	 a	 tablet.	
This	 self-	report	 questionnaire	 consists	 of	 20	 items	 with	
each	 item	 rated	 on	 a	 five-	point	 Likert	 scale	 to	 measure	
both	positive	and	negative	affect	as	two	dimensions	of	the	
construct	(10	items	each).

ECG,	EDA,	and	respiration	were	recorded	throughout	
the	 entire	 experiment.	 From	 these	 signals,	 physiological	
indicators	corresponding	to	the	different	periods	of	the	ex-
periment	were	calculated:	baseline,	 relaxing	or	 listening	
to	an	audiobook,	and	driving.

2.5	 |	 Experimental procedure

An	overview	of	 the	experimental	procedure	 is	 shown	 in	
Figure	 1.	 After	 being	 welcomed,	 participants	 answered	
a	questionnaire	containing	socio-	demographic	questions	
(i.e.,	age,	gender,	driving	experience,	driving	habits,	etc..)	
and	assessed	their	current	affective	state	(baseline	affect).	
Electrodes	were	attached	and	participants	were	asked	to	
take	a	seat	in	the	driving	simulator.	The	experiment	was	
composed	of	four	phases:	the	baseline,	the	relaxation,	the	
training,	and	the	driving	phase.

In	the	first	phase,	participants	listened	to	an	audiobook	
for	5 min	in	order	to	record	the	individual	baseline	of	phys-
iological	 signals.	 In	 the	 second	 phase,	 participants	 either	

F I G U R E  1  Procedure	of	the	study
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listened	to	a	guided	mindfulness-	meditation	podcast	(relax-
ation	group)	or	went	on	listening	to	the	audiobook	(control	
group)	for	10 min.	Given	the	short	duration	of	the	manipu-
lation	with	regard	to	meditation,	this	phase	is	referred	to	as	
a	relaxation	phase	in	the	rest	of	the	manuscript.	At	the	end	
of	this	phase,	the	affective	state	was	assessed	a	second	time.	
The	 third	phase	was	 the	driving	practice	session.	 It	 lasted	
5  min	 and	 gave	 participants	 the	 possibility	 to	 familiarize	
themselves	with	the	driving	simulator.	Data	from	the	train-
ing	drive	were	not	considered	for	analysis.

The	 fourth	 phase	 was	 the	 main	 driving	 session.	 To	
avoid	learning	effects,	different	scenarios	were	used	in	the	
driving	and	 training	phases.	The	scenario	consisted	of	a	
2 × 2 lane	highway	without	traffic,	with	repeatedly	occur-
ring	construction	zones	on	the	right	lane.	Participants	had	
to	drive	for	10 min.	Before	driving,	participants	were	in-
structed	to	cover	the	longest	distance	possible	by	respect-
ing	all	traffic	regulations	and	speed	limits.	Depending	on	
the	experimental	condition,	participants	were	driving	ei-
ther	alone	or	with	a	passenger.	Trained	actors	(male	and	
female,	 randomly	 assigned	 to	 the	 various	 experimental	
conditions)	 played	 the	 passenger,	 following	 a	 script	 of	
non-	intrusive	 conversation	 with	 the	 driver.	 Participants	
did	not	know	that	the	passenger	was	an	actor	but	thought	
that	the	person	was	also	recruited	for	the	experiment.	A	
fictitious	 draw	 was	 used	 at	 the	 beginning	 of	 the	 experi-
ment	 to	 assign	 the	 roles	 of	 the	 driver	 and	 the	 passen-
ger—	in	 which	 always	 the	 participant	 was	 assigned	 the	
driver's	role.	Participants	were	allowed	to	talk	to	the	pas-
senger.	At	the	end	of	the	driving	task,	 the	affective	state	
was	assessed	again.	Finally,	the	electrodes	were	removed	
and	the	participant	was	thanked	and	discharged.

2.6	 |	 Classification of drivers’ condition

Three	 classification	 tasks	 were	 implemented	 and	 evalu-
ated	in	this	study:

•	 Classification task 1:	 The	 presence	 of	 a	 passenger	
while	 driving	 (passenger	 vs.	 no	 passenger)	 based	 on	
physiological	 features	 calculated	 during	 the	 driving	
session.

•	 Classification task 2:	 Relaxation	 practice	 (relaxation	
vs.	 audiobook)	 based	 on	 physiological	 features	 calcu-
lated	during	the	relaxation	phase.

•	 Classification task 3:	Relaxation	practice	before	driv-
ing	 (relaxation	 vs.	 audiobook)	 based	 on	 physiological	
features	calculated	during	the	driving	session.

For	every	classification	task,	the	dataset	contained	55	
samples	 with	 balanced	 classes	 (passenger	 vs.	 alone	 and	
relaxation	vs.	audiobook).

The	physiological	 signals	collected	during	 the	experi-
ment	were	processed	using	the	Neurokit	library	in	Python	
(Makowski	et	al.,	2020).	Two	hundred	and	twenty	four	fea-
tures	from	112	indicators	(10	from	EDA,	74	from	ECG,	21	
from	RESP,	7	 from	RSA)	were	calculated	 from	the	 three	
raw	 signals,	 as	 presented	 in	Table	 1.	 Indicators	 of	 respi-
ratory	sinus	arrhythmia	(RSA)	were	calculated	from	pro-
cessed	ECG	and	respiration	signals	(Lewis	et	al.,	2012).	To	
consider	 drivers’	 physiological	 state	 at	 rest	 (baseline)	 in	
the	training	process,	two	features	were	calculated	for	each	
physiological	indicator:

•	 The	indicator's	value	while	relaxing	(Task	2)	or	driving	
(Tasks	1	and	3)

•	 The	difference	of	the	indicator's	value	between	the	driv-
ing	phase	and	the	baseline	phase	(∆	Driving-	Baseline)	
for	 Tasks	 1	 and	 3	 or	 between	 the	 relaxation	 and	 the	
baseline	phase	(∆	Relaxation-	Baseline)	for	Task	2.

The	 scikit	 learn	 machine-	learning	 framework	
(Pedregosa	et	al.,	2011)	was	used	to	implement	the	classi-
fication	pipeline	in	Python	(feature	normalization,	selec-
tion,	training,	and	evaluation	of	classifiers).	For	classifiers	
requiring	 features	 with	 equal	 ranges,	 features	 were	 nor-
malized	between	the	 first	quartile	and	the	 third	quartile	
of	data	distribution	of	each	feature	(RobustScaler	method	
from	 scikit	 learn;	 Pedregosa	 et	 al.,	 2011).	 To	 reduce	 the	
dimensionality	 and	 select	 only	 relevant	 features	 for	 the	
classification,	 the	 best	 features	 were	 selected	 during	 a	
univariate	feature	selection	process	(SelectKBest	method	
from	scikit	 learn;	Pedregosa	et	al.,	2011).	The	20	highest	
scoring	 features	 according	 to	 the	 f-	value	 calculated	 by	
analysis	of	variance	(ANOVA)	were	considered	for	train-
ing	 the	model.	Three	machine	 learning	algorithms	were	
trained	to	predict	drivers’	condition:	random	forest	(RF),	
k-	nearest	neighbors	(KNN)	and	a	neural	network	with	one	
hidden	layer	(NN).	This	choice	was	based	on	results	from	
previous	 studies	 in	 the	 field	 (Darzi	 et	 al.,	 2018;	 Solovey	
et	al.,	2014;	Son	et	al.,	2013).

To	train	them	and	validate	the	results,	a	5-	repeated	4-	fold	
cross-	validation	approach	was	applied	to	prevent	classifiers	
from	overfitting	the	data	and	obtain	results	that	reflect	the	
real	performance	of	the	model	(Hastie	et	al.,	2009).	At	each	
iteration,	the	dataset	was	split	into	a	training	set	(80%)	and	a	
test	set	(20%).	The	training	set	was	split	into	k = 4	folds	due	
to	 the	 reduced	size	of	 the	dataset	 (only	60	 training	exam-
ples).	Classifiers	were	trained	using	data	from	three	subsets	
and	 then	 validated	 on	 the	 remaining	 subset.	This	 process	
was	repeated	four	times,	with	each	subset	acting	as	the	val-
idation	set	once.	A	grid	search	technique	was	employed	in	
parallel	to	search	for	the	best	set	of	hyperparameters.	It	con-
sists	of	predefining	a	range	of	values	to	test	for	each	hyper-
parameter.	At	each	iteration	of	the	training	procedure,	the	
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T A B L E  1 	 Summary	of	indicators	computed	from	raw	physiological	signals.	Identical	indicators	computed	from	both	ECG	and	
respiration	(RESP)	signals	are	grouped	together.	IBIs	refers	to	interbeat	intervals	(ECG)	and	BBs	refers	to	breath-	to-	breath	cycles	(RESP)

Signal Indicator Domain Description

EDA Mean	raw	EDA	level The	mean	value	of	filtered	EDA	signal

Min	raw	EDA	value The	minimum	value	of	filtered	EDA	signal

Max	raw	EDA	value The	maximum	value	of	filtered	EDA	signal

Std	raw	EDA	value The	standard	deviation	of	filtered	EDA	signal

Mean	tonic	EDA	level The	mean	value	of	tonic	EDA	signal

Max	tonic	EDA	value The	minimum	value	of	tonic	EDA	signal

Min	tonic	EDA	value The	maximum	value	of	tonic	EDA	signal

Std	tonic	EDA	value The	standard	deviation	of	tonic	EDA	signal

Mean	amplitude	of	
NS-	SCRs

The	mean	amplitude	of	NS-	SCRs	(computed	from	phasic	EDA	signal)

Frequency	of	NS-	SCRs The	number	of	NS-	SCRs	per	minute	(computed	from	phasic	EDA	signal)

ECG/RESP Mean	rate Time-	domain The	mean	number	of	cardiac	cycles	per	minute

Mean The	mean	time	of	IBIs/BBs

Median The	median	of	the	absolute	values	of	the	successive	differences	between	
adjacent	IBIs/BBs

MAD The	mean	absolute	deviation	of	IBIs/BBs

SD The	standard	deviation	of	IBIs/BBs

SDSD The	standard	deviation	of	the	successive	differences	between	adjacent	IBIs/
BBs

CV The	coefficient	of	variation,	i.e.,	the	ratio	of	SD	divided	by	Mean

mCV Median-	based	coefficient	of	variation,	i.e.,	the	ratio	of	MAD	divided	by	Median

RMSSD The	square	root	of	the	mean	of	the	sum	of	successive	differences	between	
adjacent	IBIs/BBs

CVSD The	coefficient	of	variation	of	successive	differences;	the	RMSSD	divided	by	
Mean	IBI

LF Frequency	
domain

The	spectral	power	density	pertaining	to	low	frequency	band	(0.04–	0.15 Hz)

HF The	spectral	power	density	pertaining	to	high	frequency	band	(0.15–	0.4 Hz)

LF/HN The	ratio	of	LF	to	HF

SD1 Non-	linear	
domain

The	measure	of	the	IBIs/BBs	spread	on	the	Poincare´	plot	perpendicular	to	the	
line	of	identity	(short-	term	fluctuations)

SD2 The	measure	of	the	IBIs/BBs	spread	on	the	Poincare´	plot	along	the	line	of	
identity	(long-	term	fluctuations)

SD2/SD1 The	ratio	between	long	and	short	term	fluctuations	of	IBIs	(SD2	divided	by	SD1)

ApEn Approximate	entropy

ECG pNN50 Time-	domain The	proportion	of	successive	IBIs	greater	than	50 ms,	out	of	the	total	number	
of	IBIs

pNN20 The	proportion	of	successive	IBIs	greater	than	20 ms,	out	of	the	total	number	
of	IBIs

TINN The	baseline	width	of	IBIs	distribution	obtained	by	triangular	interpolation

HTI The	HRV	triangular	index,	measuring	the	total	number	of	IBIs	divided	by	the	
height	of	the	IBIs	histogram

IQR The	interquartile	range	(IQR)	of	the	RR	intervals

SDNNI1(2) The	mean	of	the	standard	deviations	of	RR	intervals	extracted	from	
1(2)-	minute(s)	segments	of	time	series	data

SDANN1(2) The	standard	deviation	of	average	RR	intervals	extracted	from	1(2)-	minute(s)	
segments	of	time	series	data
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Signal Indicator Domain Description

VHF Frequency	
domain

Variability,	or	signal	power,	in	very	high	frequency	(0.4–	0.5 Hz)

LFn The	normalized	low	frequency,	obtained	by	dividing	the	low	frequency	power	
by	the	total	power

HFn The	normalized	high	frequency,	obtained	by	dividing	the	low	frequency	power	
by	the	total	power

LnHF The	log	transformed	HF

CSI Non-	linear	
domain

The	Cardiac	Sympathetic	Index

CVI The	Cardiac	Vagal	Index

CSI	modified The	modified	CSI	was	obtained	by	dividing	the	square	of	the	longitudinal	
variability	by	its	transverse	variability.

S Area	of	ellipse	described	by	SD1	and	SD2

SampEn Sample	entropy

PIP Percentage	of	inflection	points	of	the	RR	intervals	series.

IALS Inverse	of	the	average	length	of	the	acceleration/deceleration	segments

PSS Percentage	of	short	segments

PAS Percentage	of	IBIs	in	alternation	segments

GI Guzik's	Index

SI Slope	Index

AI Area	Index

PI Porta's	Index

C1d/C1a Indices	of	respectively	short-	term	HRV	deceleration/acceleration

SD1d/SD1a Short-	term	variance	of	contributions	of	decelerations	and	accelerations

C2d/C2a Indices	of	respectively	long-	term	HRV	deceleration/acceleration

SD2d/SD2a Long-	term	variance	of	contributions	of	decelerations	and	accelerations

Cd/Ca Total	contributions	of	heart	rate	decelerations	and	accelerations	to	HRV

SDNNd/SDNNa Total	variance	of	contributions	of	heart	rate	decelerations	and	accelerations	to	
HRV

DFA	alpha1	(2) The	monofractal	detrended	fluctuation	analysis	of	the	HR	signal	
corresponding	to	short(long)-	term	correlations

DFA	alpha1	(2)	
ExpRange

Range	of	singularity	exponents,	corresponding	to	the	width	of	the	singularity	
spectrum	from	the	monofractal	detrended	fluctuation	analysis	of	the	HR	
signal,	corresponding	to	short(long)-	term	correlations

DFA	alpha1	(2)	
DimRange

Range	of	singularity	dimensions,	corresponding	to	the	height	of	the	singularity	
spectrum	from	the	monofractal	detrended	fluctuation	analysis	of	the	HR	
signal,	corresponding	to	short(long)-	term	correlations

DFA	alpha1	(2)	
ExpMean

Mean	of	singularity	exponents	from	the	monofractal	detrended	fluctuation	
analysis	of	the	HR	signal,	corresponding	to	short(long)-	term	correlations

DFA	alpha1	(2)	
DimMean

Mean	of	singularity	dimension	from	the	monofractal	detrended	fluctuation	
analysis	of	the	HR	signal,	corresponding	to	short(long)-	term	correlations

ShanEn Shannon	entropy

FuzzyEn Fuzzy	entropy

MSE Multiscale	entropy

CMSE Composite	multiscale	entropy

RCMSE Refined	composite	multiscale	entropy

CD Correlation	dimension

T A B L E  1 	 (Continued)

(Continues)



8 of 17 |   METEIER et al.

classifier	performed	the	cross-	validation	procedure	with	all	
possible	combinations	of	parameters.	The	model	obtaining	
the	best	score	during	the	training	(grid	search)	for	a	given	
set	of	hyperparameters	was	used	for	evaluation	on	the	test	
set.	Reported	results	are	the	mean	f1-	score	achieved	by	each	
classifier	on	the	test	set	over	five	iterations.

A	post	hoc	analysis	determined	the	most	important	fea-
tures	in	the	classification	process,	using	the	SHAP	(SHapley	
Additive	exPlanations)	library	in	Python	(Lundberg	&	Lee,	
2017).	For	each	feature,	it	assigns	an	importance	value	for	
a	 particular	 prediction,	 called	 SHAP	 value.	 A	 list	 of	 the	
most	significant	features	in	descending	order	(ordered	by	
absolute	mean	of	SHAP	value)	was	extracted,	for	each	con-
dition	predicted	in	this	study	(presence	of	passenger	and	
relaxation).	The	SHAP	values	were	calculated	on	models	
trained	with	the	three	physiological	signals.

2.7	 |	 Statistical analysis and exclusion of 
participants

The	subjective	affective	state	and	the	physiological	data	were	
analyzed	using	two	factorial	repeated	measures	ANOVA	for	
investigating	the	effect	of	time,	performance	of	relaxation,	
and	 presence	 of	 a	 passenger.	 To	 do	 that,	 the	 mean	 tonic	
EDA	level,	the	heart	rate,	and	the	breathing	rate,	as	well	as	
the	positive	and	negative	affect,	during	the	different	periods	
of	 the	experiment	 (baseline,	 relaxation,	and	driving)	were	
used.	 If	 Mauchly's	 test	 of	 sphericity	 indicated	 that	 the	 as-
sumption	of	sphericity	was	violated	(p < 0.o5),	Greenhouse-	
Geiser	 sphericity	 corrections	 were	 applied.	 Post	 hoc	 tests	

with	 Bonferroni	 correction	 were	 done	 when	 the	 effect	 of	
time	was	significant.	The	physiological	signals	of	 five	par-
ticipants	could	not	be	processed,	due	to	bad	quality	signal	
(3)	and	data	parsing	issues	(2).	Hence,	the	statistical	analysis	
was	run	with	the	data	corresponding	to	55	participants.

3 	 | 	 RESULTS

3.1	 |	 Affective state of drivers

The	 repeated	measures	ANOVA	 indicated	a	 significant	ef-
fect	of	time	on	positive	affect	(F	(2,	108) = 28.11,	p < 0.001,	
η2  =  0.10).	 Post	 hoc	 tests	 indicate	 that	 compared	 to	 base-
line,	 positive	 affect	 decreased	 after	 the	 relaxation	 phase	
(t	 (55)  =  5.80,	 p  <  0.001)	 and	 increased	 after	 driving		
(t	(55) = −7.02,	p < 0.001)	regardless	the	condition	of	partici-
pants.	The	presence	of	a	passenger,	performance	of	relaxa-
tion,	and	all	interaction	effects	were	not	significant	(p > 0.05).

Besides,	no	significant	effect	of	time	was	found	on	neg-
ative	affect	(F	(1.336,	71.06) = 3.30,	p > 0.05,	η2 = 0.02).	The	
presence	of	a	passenger,	performance	of	relaxation,	and	all	
interaction	effects	were	not	significant	either	(p > 0.05).

3.2	 |	 Physiological state of drivers

3.2.1	 |	 Mean	EDA	tonic	level

Data	analysis	 showed	a	 significant	main	effect	of	 time	on	
the	mean	EDA	tonic	level	(F	(1.63,	83.33) = 39.52,	p < 0.001,	

Signal Indicator Domain Description

HFD Higuchi's	Fractal	Dimension	of	the	HR	signal

KFD The	Katz's	Fractal	Dimension	of	the	HR	signal

LZC The	Lempel-	Ziv	complexity	of	the	HR	signal

RESP Mean	amplitude Time	domain The	mean	respiratory	amplitude.

Phase	Duration	
Inspiration

The	average	inspiratory	duration

Phase	Duration	
Expiration

The	average	expiratory	duration

Phase	Duration	Ratio The	inspiratory-	to-	expiratory	time	ratio	(I/E)

RSA Mean	(P2T) Mean	of	RSA	estimates	(peak-	to-	trough	method)

Mean	Log	(P2T) The	logarithm	of	the	mean	of	RSA	estimates	(peak-	to-	trough	method)

SD	(P2T) The	standard	deviation	of	all	RSA	estimates	(peak-	to-	trough	method)

Mean	(Gates) Mean	of	RSA	estimates	(Gates	method)

Mean	Log	(Gates) The	logarithm	of	the	mean	of	RSA	estimates	(Gates	method)

SD	(Gates) The	standard	deviation	of	all	RSA	estimates	(Gates	method)

PorgesBohrer The	Porges-	Bohrer	estimate	of	RSA,	optimal	when	the	signal	to	noise	ratio	is	
low,	in	ln(msˆ2)

T A B L E  1 	 (Continued)



   | 9 of 17METEIER et al.

η2  =  0.05).	 Post	 hoc	 tests	 revealed	 that	 drivers’	 EDA	 was	
higher	while	driving	compared	to	relaxation	(t	(51) = −8.14,	
p < 0.001)	and	baseline	(t	(51) = −7.16,	p < 0.001)	periods.

Data	analysis	also	showed	a	significant	main	effect	of	
presence	of	passenger	on	the	mean	tonic	EDA	level	(F	(1,	
51) = 5.20,	p < 0.001,	η2 = 0.08).	Figure	2 shows	that	par-
ticipants	who	drove	with	a	passenger	had	a	higher	mean	
EDA	tonic	level.

Besides,	 the	 analysis	 also	 showed	 a	 significant	 inter-
action	effect	of	 time	and	presence	of	passenger	on	EDA		
(F	(1.63,	83.33) = 10.61,	p < .001,	η2 = .01).	Post	hoc	tests	
revealed	that	the	mean	tonic	EDA	level	was	significantly	
higher	 for	 the	 experimental	 group	 while	 driving	 than	
for	 the	 control	 group	 (t	 (51)  =  −3.47,	 p  <  .05),	 while	 it	
was	 not	 different	 between	 groups	 during	 the	 relaxation		
(t	(51) = −1.46,	p > 0.05)	and	the	baseline	(t	(51) = −1.63,	
p > 0.05)	phases.

Otherwise,	 relaxation	 and	 other	 interaction	 effects	
were	not	significant	on	EDA	(p > 0.05).

3.2.2	 |	 Mean	heart	rate

Data	analysis	showed	a	significant	main	effect	of	time	on	
the	mean	heart	rate	of	individuals	(F	(1.43,	72.85) = 8.04,	
p < 0.01,	η2 = 0.01),	after	sphericity	corrections.	Post	hoc	
tests	 revealed	 that	 drivers’	 heart	 rate	 was	 higher	 while	
driving	compared	to	relaxation	(t	(51) = −3.90,	p < 0.001)	
and	baseline	(t	(51) = −2.75,	p < 0.05)	periods.

The	 presence	 of	 a	 passenger,	 performance	 of	 relax-
ation,	 and	 all	 interaction	 effects	 were	 not	 significant	 on	
mean	heart	rate	(p > 0.05).

3.2.3	 |	 Mean	respiratory	rate

Data	 analysis	 showed	 a	 significant	 main	 effect	 of	 time	
on	 the	 mean	 respiratory	 rate	 (F	 (1.61,	 82.02)  =  37.52,	
p  <  0.001,	 η2  =  0.04).	 Post	 hoc	 tests	 revealed	 that	 driv-
ers’	 respiratory	 rate	 was	 higher	 while	 driving	 compared	

F I G U R E  2  Evolution	of	participants’	
physiological	indicators	over	time.	Left:	
Influence	of	passenger;	Right:	Influence	of	
relaxation
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to	 relaxation	 (t	 (51) = −8.26,	 p < 0.001)	and	baseline	 (t	
(51) = −6.38,	p < 0.001)	periods.

Besides,	the	analysis	also	showed	a	significant	interac-
tion	effect	of	time	and	presence	of	passenger	on	respira-
tory	rate	(F	(1.61,	82.02) = 13.03,	p < 0.001,	η2 = 0.01).	Post	
hoc	tests	revealed	that	compared	to	baseline,	the	respira-
tory	rate	was	higher	for	the	control	group	while	driving	(t	
(51) = −7.80,	p < 0.001),	but	it	was	not	significantly	differ-
ent	for	the	experimental	group	(t	(51) = −1.16,	p > 0.05).

The	interaction	effect	of	time	and	relaxation	was	mar-
ginally	 significant	 on	 drivers’	 respiratory	 rate	 (F	 (1.61,	
82.02)  =  3.14,	 p  =  0.06,	 η2  =  0.004).	 Post	 hoc	 tests	 re-
vealed	 that	 between	 the	 baseline	 and	 relaxation	 phases,	
the	respiratory	rate	did	not	change	for	the	control	group	(t	
(51) = −0.38,	p > 0.05),	while	it	significantly	decreased	for	
the	experimental	group	(t	(51) = 3.02,	p < 0.05).

The	effect	of	passenger	and	relaxation	alone,	as	well	as	
other	interaction	effects	were	not	significant	mean	respi-
ratory	rate	(p > 0.05).

3.3	 |	 Classification of drivers’ condition

3.3.1	 |	 Task	1:	Presence	of	passenger	
while	driving

For	 all	 possible	 combinations	 of	 physiological	 signals,	
Table	 2	 shows	 the	 best	 performance	 achieved	 by	 the	
model	to	predict	drivers’	condition	while	driving	(passen-
ger	vs.	no	passenger).	The	best	performance	was	achieved	
with	the	EDA	and	respiration	signals	as	inputs	of	a	KNN	
classifier	(90%	accuracy,	SD = 9%).	The	second-	best	result	
was	achieved	with	the	three	signals	as	input	signals	of	a	
RF	classifier	(86%	accuracy,	SD = 13%).

3.3.2	 |	 Task	2:	Practice	of	relaxation

Table	 3	 presents	 the	 best	 performance	 achieved	 by	 the	
model	 to	 predict	 the	 performance	 of	 relaxation	 (relaxa-
tion	vs.	audiobook),	based	on	 features	calculated	during	
the	relaxation	phase.	The	best	performance	was	achieved	
with	the	three	signals	as	input	of	a	NN	classifier	(80%	ac-
curacy,	SD = 9%).	The	second-	best	result	was	achieved	by	
a	KNN	classifier	using	EDA	and	ECG	signals	(78%	accu-
racy,	SD = 13%).

3.3.3	 |	 Task	3:	Practice	of	relaxation	based	on	
features	during	the	driving	phase

Table	 4	 shows	 the	 performance	 of	 the	 model	 to	 predict	
drivers’	condition	during	the	relaxation	phase	(relaxation	

vs.	audiobook),	based	on	physiological	features	computed	
from	the	driving	session.	The	best	score	achieved	for	each	
combination	of	signals	is	summarized	in	Table	4.	The	best	
accuracy	was	achieved	by	the	KNN	classifier	using	EDA	
and	ECG	as	inputs	(70%	accuracy,	SD = 16%).

T A B L E  2 	 Best	performance	achieved	for	each	combination	of	
selected	signals	to	predict	the	presence	of	a	passenger.	Bold	values	
indicate	the	best	score	(with	classifier)	across	all	combinations	of	
signals

Selected signal(s) Best classifier
Best 
score

EDA RF 0.73	(0.03)

ECG KNN 0.75	(0.10)

RESP RF 0.80	(0.07)

EDA + ECG KNN 0.83	(0.12)

EDA + RESP KNN 0.90 (0.09)

ECG + RESP RF 0.82	(0.09)

EDA + ECG + RESP RF 0.86	(0.13)

T A B L E  3 	 Best	performance	achieved	for	each	combination	of	
selected	signals	to	predict	pre-		driving	relaxation,	based	on	features	
calculated	during	the	relaxation	phase.	Bold	values	indicate	the	
best	score	(with	classifier)	across	all	combination	of	signals

Selected signal(s) Best classifier
Best 
score

EDA RF 0.63	(0.12)

ECG KNN 0.70	(0.13)

RESP NN 0.78	(0.14)

EDA + ECG KNN 0.78	(0.13)

EDA + RESP NN 0.75	(0.10)

ECG + RESP RF 0.74	(0.14)

EDA + ECG + RESP NN 0.80 (0.09)

T A B L E  4 	 Best	performance	achieved	for	each	combination	of	
selected	signals	to	predict	pre-		driving	relaxation,	based	on	features	
calculated	during	the	driving	phase.	Best accuracy	column	is	the	
mean	(with	standard	deviation)	and	Features	is	the	number	of	
features	used	for	the	classification	task.	Bold	values	indicate	the	
best	score	(with	classifier)	across	all	combination	of	signals

Selected signal(s) Best classifier
Best 
accuracy

EDA RF 0.42	(0.09)

ECG RF 0.56	(0.13)

RESP KNN 0.50	(0.10)

EDA + ECG KNN 0.70 (0.16)

EDA + RESP NN 0.60	(0.09)

ECG + RESP RF 0.56	(0.07)

EDA + ECG + RESP NN 0.64	(0.15)
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3.3.4	 |	 Most	important	features	for	each	
classification	task

To	understand	the	decision	of	the	models	and	to	find	out	
the	most	relevant	features	as	indicators	of	the	physiologi-
cal	activation	induced	by	the	presence	of	a	passenger	and	
relaxed	state,	Figures	3–	5 show	the	10 most	impacting	in	
the	respective	classification	Tasks	1,	2,	and	3.	Each	point	
on	the	graph	is	the	Shapley	value	of	a	feature	for	a	given	
participant.	Points	to	the	right	of	the	median	axis	most	in-
fluence	the	model's	decision	to	predict	 the	experimental	
group	 condition	 (passenger	 and	 relaxation),	 while	 those	
to	the	left	 influence	most	the	decision	for	predicting	the	
control	condition	(no	passenger	and	audiobook).

4 	 | 	 DISCUSSION

4.1	 |	 Change of physiological and 
affective state over time

Data	analysis	revealed	that	compared	to	baseline,	the	driv-
ers’	positive	affect	decreased	after	relaxation	and	then	in-
creased	after	driving.	Participants	may	have	felt	 that	the	
relaxation/audiobook	phase	was	boring	while	driving	 in	
the	simulator	was	more	entertaining.	However,	no	change	
in	 negative	 affect	 was	 observed	 during	 the	 experiment.	
Data	analysis	also	showed	that	the	physiological	state	of	
participants	changed	during	the	experiment.	Participants’	
mean	 tonic	 EDA	 level,	 heart	 rate,	 and	 respiratory	 rate	

F I G U R E  3  Most	important	features	
in	the	classification	process	of	task	1	
(presence	of	passenger),	based	on	SHAP	
values	calculated	on	the	test	set.	The	
meaning/description	of	each	feature	can	
be	found	in	Table	1.	Bl,	with	baseline	
correction;	EDA,	electrodermal	activity;	
RRV,	respiratory	rate	variability

F I G U R E  4  Most	important	features	
in	the	classification	process	of	task	2	
(relaxation	practice),	based	on	SHAP	
values	calculated	on	the	test	set.	The	
meaning/description	of	each	feature	can	
be	found	in	Table	1.	Bl,	with	baseline	
correction;	HRV,	heart	rate	variability;	
RRV,	respiratory	rate	variability;	RSP,	
respiration
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increased	significantly	during	the	driving	phase	compared	
to	baseline	and	relaxation,	demonstrating	the	stimulating	
nature	of	this	task	(Healey	&	Picard,	2005).

4.2	 |	 Presence of passenger

4.2.1	 |	 Change	in	physiological	and	
affective	state.

Data	analysis	showed	that	the	presence	of	a	passenger	was	
linked	with	an	 increase	 in	 the	mean	 tonic	EDA	 level	of	
participants,	 but	 not	 on	 the	 mean	 heart	 rate	 or	 respira-
tory	rate.	Since	EDA	can	be	considered	related	to	arousal	
(Boucsein,	 2012),	 the	 results	 show	 that	 the	 presence	 of	
a	 passenger	 is	 associated	 with	 an	 increase	 in	 arousal.	
Interestingly,	 the	 respiratory	 rate	 increased	 for	 the	 con-
trol	group	while	driving,	compared	to	baseline,	but	it	was	
not	the	case	for	participants	driving	with	a	passenger.	The	
drivers’	 vocal	 interaction	 with	 the	 passengers	 may	 have	
affected	 their	 breathing	 pattern	 and	 hence	 reduced	 the	
increase	 in	 respiratory	 rate	 of	 the	 experimental	 group.	
Besides,	the	presence	of	a	passenger	did	not	have	any	ef-
fect	on	drivers’	affective	state.	It	indicates	that	drivers	did	
not	feel	subjectively	affected	by	the	presence	of	a	passen-
ger,	whereas	it	affected	their	physiological	activation.

4.2.2	 |	 Classification	and	the	most	
relevant	features

Results	 indicate	 that	 the	presence	of	a	passenger	can	be	
detected	 with	 90%	 accuracy,	 based	 on	 20	 features	 ex-
tracted	 from	 EDA	 and	 respiration	 signals.	 The	 model	

has	consistently	achieved	70%	accuracy	in	predicting	the	
presence	 of	 a	 passenger,	 regardless	 of	 the	 physiological	
signals	selected.	Sensor	 fusion	improved	the	accuracy	of	
the	model.	According	to	the	results	obtained	in	this	study,	
the	accuracy	achieved	is	lower	than	that	achieved	in	the	
works	 of	 Healey	 and	 Picard	 (2005)	 and	 Chen	 and	 col-
leagues	(2017).	The	latter	showed	that	signals	of	ECG	and	
EDA	collected	from	the	foot	yielded	higher	performances	
than	 the	 EDA	 signal	 collected	 from	 the	 hand.	 Different	
features	 and	 classification	 procedures	 were	 used	 in	 our	
study,	 so	 it	 is	 difficult	 to	 compare	 the	 results	 and	 argue	
that	the	physiological	activation	induced	by	the	presence	
of	 a	 passenger	 is	 more	 difficult	 to	 classify	 than	 that	 in-
duced	by	the	driving	environment.

Post	hoc	analysis	of	feature	importance	in	the	classifi-
cation	process	suggests	that	features	calculated	from	the	
EDA	 and	 respiration	 signals	 should	 be	 used	 to	 predict	
the	presence	of	a	passenger	with	machine	learning	tech-
niques.	The	presence	of	a	passenger	is	associated	higher	
skin	 conductivity	 and	 longer	 exhalations,	 likely	 due	 to	
the	vocal	interaction	between	the	driver	and	the	passen-
ger	(see	Figures	2	and	3).	Results	are	consistent	with	the	
findings	of	Healey	and	Picard	(2005),	who	found	that	the	
mean	EDA	level	correlated	most	with	stress	in	the	context	
of	driving.

In	summary,	the	model	implemented	in	this	work	was	
able	to	detect	the	presence	of	a	passenger	in	a	controlled	
environment,	mainly	due	to	an	increase	in	drivers’	arousal	
(measured	through	EDA	indicators).	In	real	driving	situ-
ations,	a	significant	increase	of	arousal	could	be	detected	
in	 young	 drivers,	 using	 machine	 learning	 models	 as	 the	
one	proposed	in	this	work.	Young	drivers	could	be	warned	
when	an	increase	in	arousal	is	detected,	which	could	help	
prevent	 them	 from	 taking	 more	 risks	 behind	 the	 wheel	

F I G U R E  5  Most	important	features	
in	the	classification	process	of	Task	3	
(relaxation	practice	based	on	features	
calculated	during	the	drive),	based	on	
SHAP	values	calculated	on	the	test	set.	
The	meaning/description	of	each	feature	
can	be	found	in	Table	1.	Bl,	with	baseline	
correction;	HRV,	heart	rate	variability;	
SCR,	skin	conductance	response
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(Centifanti	 et	 al.,	 2016;	 Chen,	 2000).	 The	 physiological	
changes	 detected	 by	 the	 model	 can	 be	 interpreted	 as	 a	
form	of	social	stress,	due	to	being	observed	while	perform-
ing	a	task	by	an	unknown	individual	(Schrier,	1992).

4.3	 |	 Practice of relaxation

4.3.1	 |	 Change	in	physiological	and	
affective	state

Interestingly,	 the	 results	 of	 relaxation	 before	 driving	 did	
not	show	the	expected	effect	pattern.	No	effect	of	relaxa-
tion	was	found	on	drivers’	physiological	and	affective	state.	
Only	 the	 manipulation	 check	 revealed	 that	 participants	
following	 a	 mindfulness	 exercise	 reduced	 their	 respira-
tory	 rate	 compared	 to	 participants	 listening	 to	 an	 audio-
book,	although	this	effect	was	only	marginally	significant.	
However,	this	potential	beneficial	effect	did	not	carry	over	
the	driving	situation,	regarding	the	statistical	analysis.	This	
remains	to	be	confirmed	by	the	classification	task.

4.3.2	 |	 Classification	results	and	relevant	
features	of	a	relaxed	state

In	the	classification	Task	2,	relaxation	could	be	predicted	
with	 80%	 accuracy	 using	 all	 signals	 as	 input	 to	 a	 neural	
network	classifier.	Again,	sensor	fusion	allowed	the	model	
to	 perform	 better.	 Considering	 each	 physiological	 signal	
alone,	 EDA	 showed	 the	 lowest	 accuracy.	 Classification	
task	3	was	the	most	challenging	because	no	physiological	
data	collected	during	the	relaxation	phase	was	used.	Still,	
the	model	achieved	70%	accuracy	using	EDA	and	ECG	as	
input	signals.	This	shows	that	the	effect	of	relaxation	car-
ried	over	the	driving	phase,	in	contrast	with	the	statistical	
analysis	 above.	 This	 shows	 that	 it	 is	 relevant	 to	 use	 ma-
chine	learning	techniques	in	some	contexts,	even	when	the	
statistical	analysis	is	not	significant.	However,	the	results	
show	that	the	model	still	has	difficulty	predicting	the	con-
dition	of	subjects	who	performed	relaxation	before	driving.	
The	physiological	change	on	the	drivers’	state	while	driv-
ing	was	probably	not	significant	enough.	This	implies	that	
a	longer	phase	of	mindfulness	meditation	might	be	neces-
sary	before	driving	if	one	wants	to	benefit	from	the	effect	of	
such	a	stress	management	technique	while	driving.

The	post	hoc	analysis	of	the	significance	of	features	re-
vealed	that	the	participants	in	the	manipulation	group	cor-
rectly	practiced	the	relaxation.	Indeed,	they	exhale	longer,	
which	led	to	a	decrease	in	their	breathing	rate	(see	Figures	
2	and	4).	The	analysis	showed	that	features	such	as	the	ratio	
of	 low	 to	 high	 frequencies	 of	 the	 respiratory	 signal,	 fre-
quency	measures	in	the	low-		and	high-	frequency	bands	of	

the	HRV	(with	baseline	correction)	and	the	minimum	level	
of	skin	conductance	(see	Figure	4)	were	among	the	most	
useful	 features	 for	 predicting	 a	 relaxed	 state.	 Besides,	 it	
seems	that	the	effect	of	pre-	driving	relaxation	might	mainly	
be	observed	via	heart	rate	variability	indicators	in	the	non-
linear	domain,	calculated	by	(multifractal)	detrended	fluc-
tuation	analysis	(DFA,	see	Table	1	and	Figure	5).

4.4	 |	 Limitations

4.4.1	 |	 Presence	of	passenger	and	
young	drivers

In	this	study,	the	model	can	detect	the	presence	of	a	pas-
senger	in	a	simulated	environment.	However,	it	has	yet	to	
be	confirmed	that	the	model	would	also	be	able	to	do	so	in	
a	more	complex	real-	world	driving	environment,	includ-
ing	other	stressors	(such	as	bad	weather	or	heavy	traffic).	
It	is	very	likely	that	this	model	detects	some	mere	physi-
ological	 activation	 but	 not	 specifically	 the	 presence	 of	 a	
passenger.	 Future	 research	 might	 address	 the	 question	
whether	different	stressors	could	be	distinguished	based	
on	specific	physiological	reactions.	As	mentioned	earlier,	
results	showed	that	respiration	features	were	useful	in	pre-
dicting	the	presence	of	a	passenger.	However,	vocal	inter-
action	between	confederates	and	participants	might	have	
played	a	role	 in	the	difference	in	breathing	behavior	be-
tween	the	two	experimental	groups.	For	further	research,	
the	mere	presence	of	a	passenger	and	the	vocal	interaction	
between	the	driver	and	the	passenger	should	be	carefully	
controlled	in	separate	experimental	condition.

Another	 limitation	of	 this	study	may	be	 the	 focus	on	
young	 adults.	 While	 this	 work	 is	 an	 interesting	 jigsaw	
piece	 for	 understanding	 the	 physiological	 responses	 of	
young	 drivers	 related	 to	 the	 presence	 of	 a	 passenger,	 it	
would	be	interesting	to	learn	if	a	similar	effect	could	be	re-
ported	for	older,	more	experienced	drivers.	Given	that	they	
appear	to	show	an	opposite	effect	pattern	to	young	drivers	
(i.e.,	 fewer	accidents	with	a	passenger	present	(Williams	
et	al.,	2007))	it	remains	unclear	which	role	age	and	driving	
experience	 play	 in	 moderating	 the	 relationship	 between	
arousal	 and	 risky	 driving	 behavior.	 Future	 experimental	
studies	should	address	this	issue	by	comparing	the	conse-
quences	of	passenger	presence	among	drivers	of	different	
age	groups	and	driving	experiences.

4.4.2	 |	 Experience	with	meditation

Concerning	the	interesting	but	unexpected	findings	on	re-
laxation	(e.g.,	higher	increase	in	physiological	indicators	
while	driving),	the	data	indicate	that	there	was	an	effect	
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of	 the	 intervention.	 The	 term	 relaxation	 was	 chosen	 in	
this	research,	even	though	the	intervention	applied	in	this	
study	 was	 listening	 to	 a	 guided	 mindfulness	 meditation	
exercise.	It	can	be	argued	that	(mindfulness)	meditation	is	
considered	a	very	specific	technique	that	requires	exten-
sive	training	and	experience	(e.g.,	Barinaga	(2003);	Moore	
and	Malinowski	 (2009)).	However,	 in	 the	present	 study,	
most	 participants	 had	 no	 prior	 experience	 with	 medita-
tion	 techniques.	 Although	 a	 guided-	mindfulness	 medi-
tation	 training	 was	 used	 in	 this	 study,	 especially	 those	
new	 to	 meditation,	 cannot	 be	 expected	 to	 enter	 a	 self-	
regulatory	 meditative	 state	 that	 includes	 full	 control	 of	
the	components	of	enhanced	attention	control,	improved	
emotion	regulation,	and	altered	self-		awareness	(c.f.	Tang	
et	al.	(2015)).

In	 addition,	 some	 participants	 may	 have	 been	 more	
interested	in	practicing	relaxation	than	others.	Thus,	the	
effect	of	relaxation	may	have	been	reduced	on	the	phys-
iological	state	of	those	who	lost	interest	in	the	relaxation	
task.	Future	studies	that	attempt	to	replicate	the	findings	
of	this	experiment	should	consider	the	experience	of	par-
ticipants	in	meditation	to	assess	its	potential	moderating	
influence	 on	 the	 long-	term	 consequences	 of	 meditation	
before	driving.

4.4.3	 |	 Experimental	setting	and	procedure

For	 the	 experimental	 settings	 of	 that	 study,	 driving	 in	 a	
simulator	 could	 have	 reduced	 the	 sense	 of	 danger	 com-
pared	 to	 a	 real-	world	 driving	 situation	 and	 thus	 the	 be-
havior	 exhibited	 in	 this	 artificial	 environment	 could,	
despite	 the	 highly	 immersive	 nature	 of	 the	 installation,	
be	different	from	behavior	in	a	real-	world	environment	as	
it	was	the	case	in	the	study	of	Healey	and	Picard	(2005).	
Although	this	lack	of	ecological	validity	in	driving	simula-
tor	studies	might	be	considered	a	limitation,	a	more	valid	
methodological	 approach	 to	 address	 this	 research	 ques-
tion	 in	 a	 more	 natural	 environment	 would	 be	 linked	 to	
severe	 safety	 issues	 and	 ethical	 implications.	 Indeed,	 it	
is	ethically	unjustifiable	to	conduct	experimental	studies	
on	research	questions	in	which	participants	are	placed	in	
risky	situations.	Therefore,	a	combination	of	correlational	
studies	referring	to	real-	world	accident	statistics	data	and	
experimental	studies	to	investigate	cause	and	effect	rela-
tionships	may	be	the	best	solution	in	this	area	of	research.

According	to	the	experimental	procedure	employed	in	
this	 study,	 the	 practice	 session	 was	 done	 just	 before	 the	
main	 driving	 session.	 Although	 it	 was	 short,	 this	 may	
have	affected	 the	physiological	and	affective	 state	of	 the	
drivers	and	thus	reduced	the	effect	of	the	relaxation	done	
just	before.	In	other	similar	studies,	the	relaxation	should	
be	performed	just	before	the	main	driving	period,	and	the	

practice	in	the	simulator	should	be	performed	at	the	very	
beginning	of	the	experimental	procedure.

Finally,	 the	 same	 audiobook	 was	 used	 for	 all	 partici-
pants.	 Some	 of	 them	 might	 have	 been	 more	 interested	
than	others	by	 the	 story.	Hence,	 these	participants	were	
possibly	more	focused	on	listening	the	audiobook,	which	
could	have	affected	their	physiological	state	(i.e.,	increased	
mental	load).

5 	 | 	 CONCLUSION

Findings	 of	 this	 piece	 of	 research	 show	 that	 drivers	 ex-
perience	 a	 higher	 increase	 in	 physiological	 activation	
when	 driving	 with	 a	 passenger,	 which	 can	 be	 predicted	
with	 90%-	accuracy	 by	 a	 k-	nearest	 neighbors	 classifier.	
A	 short	 relaxation	 phase	 (10  min)	 before	 driving	 could	
be	 recognized	 with	 80%-	accuracy	 based	 on	 three	 physi-
ological	signals.	According	to	the	statistical	analysis,	the	
potential	 beneficial	 effect	 of	 relaxation	 did	 not	 subse-
quently	affect	the	driver's	state	during	driving,	although	
the	 classification	 task	 suggested	 the	 opposite.	 Indeed,	 a	
k-	nearest	neighbors	classifier	was	able	to	recognize	with	
70%	 accuracy	 the	 participants	 who	 exercised	 relaxation	
before	 driving,	 based	 on	 the	 features	 of	 heart	 rate	 vari-
ability	 and	 electrodermal	 activity.	 In	 addition,	 some	 of	
the	most	relevant	physiological	indicators	associated	with	
the	presence	of	a	passenger	and	a	relaxed	state	are	pro-
posed	in	this	study.	The	finding	of	this	study	suggest	that	
skin	conductivity	characteristics	should	be	used	to	detect	
physiological	 activation	 associated	 with	 the	 presence	 of	
a	passenger,	while	cardiac	and	respiratory	variability	in-
dicators	 are	 better	 at	 predicting	 relaxation.	 Finally,	 the	
results	suggest	that	the	effect	of	relaxation	on	the	driver's	
state	later	during	driving	might	be	observed	via	the	car-
diac	 variability	 indicators.	 In	 the	 perspective	 of	 making	
future	cars	 smarter	and	safer,	machine	 learning	models	
implemented	 in	 this	 study	 could	 be	 used	 to	 assess	 the	
driver's	state	continuously,	by	selecting	the	physiological	
features	suggested	in	this	study.
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