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Abstract

Drivers are often held responsible for road crashes. Previous research has shown
that stressors such as carrying passengers in the vehicle can be a source of acci-
dents for young drivers. To mitigate this problem, this study investigated whether
the presence of a passenger behind the wheel can be predicted using machine
learning, based on physiological signals. It also addresses the question whether
relaxation before driving can positively influence the driver's state and help con-
trolling the potential negative consequences of stressors. Sixty young participants
completed a 10-min driving simulator session, either alone or with a passenger.
Before their driving session, participants spent 10 min relaxing or listening to
an audiobook. Physiological signals were recorded throughout the experiment.
Results show that drivers experience a higher increase in skin conductance
when driving with a passenger, which can be predicted with 90%-accuracy by a
k-nearest neighbors classifier. This might be a possible explanation for increased
risk taking in this age group. Besides, the practice of relaxation can be predicted
with 80% accuracy using a neural network. According to the statistical analy-
sis, the potential beneficial effect of relaxation did not carry out on the driver's
physiological state while driving, although machine learning techniques revealed
that participants who exercised relaxation before driving could be recognized
with 70% accuracy. Analysis of physiological characteristics after classification
revealed several relevant physiological indicators associated with the presence of

a passenger and relaxation.
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1 | INTRODUCTION the age of 25 years represent about 10% of the popula-
tion in OECD countries, but account for more than 25%
of drivers killed on the road (OECD, 2006), indicating

the importance to focus on this population with regard

The Organization for Economic Co-operation and
Development (OECD) noted that young people under
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to traffic safety. In this regard, driving-related stress has
been shown to represent an important factor for drivers’
safety and individual well-being (Matthews et al., 1998).
Experience of stress while driving is influenced by vari-
ous factors, such as the driving situation (e.g., highway
or urban area; Healey & Picard, 2005), adverse weather
conditions (Tavakoli et al., 2020), or the presence of a pas-
senger (Chung et al., 2019). Previous research has shown
that the presence of passengers in the car is related to risky
driving behavior and higher accident rates, especially for
young drivers (Chen, 2000).

Despite the potential important influence of passenger
presence for road safety, there is relatively little empirical
evidence addressing this phenomenon. A focus on physi-
ological indicators might be of interest in order to obtain
a better understanding of the causes and the cause-effect
relationship in this regard. In addition to a better under-
standing of the potential stressful link between passenger
presence and driving, it is important to address the ques-
tion how to overcome such stressful situations. Various
stress management techniques have positive effects on
measures of well-being and health (Varvogli & Darviri,
2011). In particular, meditation and relaxation have
shown to be very effective in reducing stress (Davis et al.,
2008). However, the effectiveness of such techniques in
the driving context has yet to be addressed.

In the wake of an increased automation of the transpor-
tation sector, it is conceivable that, based on physiological
indicators, the automatic detection of potentially danger-
ous internal conditions such as arousal may be of interest
in the future. In this regard, models and methods should
be developed to evaluate them empirically. The goal of
this study is to evaluate the influence of the presence of a
passenger and relaxation on a driver's physiological state,
and to develop and evaluate a method based on machine
learning that automatically detects drivers’ physiological
activation related to these.

1.1 | The presence of a passenger as a
factor of stress

While the presence of a passenger can have safety-critically
influences in young drivers, this was not the case for older
drivers, who showed an inversed effect pattern when driv-
ing with passengers (i.e., a reduction in accidents; Chen,
2000). This can be partly explained by the fact that young
drivers are more prone to show risk-taking (Centifanti
et al., 2016; Ulleberg, 2004), which may be linked with the
driver's affective state (Chliaoutakis et al., 2002; Megias
et al., 2011). In a similar vein, the lack of experience of
young drivers might lead to an increased level of stress
when passengers are present.

Being observed while performing a task represents a
source of stress (Schrier, 1992), even if the observers do not
interact with the observee (Sonderegger & Sauer, 2009).
This stress response affects emotional state and influences
performance (Sonderegger & Sauer, 2009), although con-
trasting results have been reported in this regard (Larkin
et al., 1998), which might be explained by social facilita-
tion theory (Zajonc, 1965). According to this theory, the
presence of others is linked with an increase in arousal.
This increase has a positive influence on the performance
of simple and well-learned tasks, while it impinges on the
performance of complex and difficult tasks. Since driving
can be considered a complex and difficult task for inex-
perienced and young drivers, it can be assumed that the
situation caused by the presence of a passenger leads to
increased arousal and stress and thus to a reduction in
driving performance. Previous research has indicated that
such a stress response can be assessed by measures of
heart rate variability (Sonderegger & Sauer, 2009) or sys-
tolic blood pressure (Larkin et al., 1998).

1.2 | Physiological indicators as
measures of stress and arousal

Previous research has shown that physiological signals
can be used to assess various levels of driving stress (Chen
et al., 2017; Healey & Picard, 2005). With recent advances
in the development of wearable sensors (e.g., smart-
watches or smart clothing), these signals can be collected
with high accuracy in a non-intrusive manner (Merritt
et al., 2009; Poh et al., 2010).

Electrodermal activity (EDA) is a signal widely used in
research to measure physiological arousal and stress, since
eccrine sweat glands, particularly those on the palms and
soles of the feet, are highly sensitive to psychologically
driven stimuli (Boucsein, 2012; Poh et al., 2010; Reinhardt
et al., 2012; Sano & Picard, 2013; Taylor & Machado-
Moreira, 2013). In traffic research, EDA has been used to
assess the activation state of drivers (Cacioppo et al., 2007).
Features calculated from the raw EDA signal have been
shown to be effective for predicting various levels of stress
elicited by the driving environment (Bitkina et al., 2019;
Chen et al., 2017; Healey & Picard, 2005; Liu & Du, 2018).

The electrocardiogram (ECG) is another physiological
signal used to evaluate the driver's state. Heart rate and
heart rate variability (HRV) can be used to assess the stress
level of individuals, especially when they are under some
form of social stress (Kirschbaum et al., 1993; Loeffler
et al., 2017). In the context of driving, these indicators are
also correlated with stress induced by the driving environ-
ment (Chen et al., 2017; Healey & Picard, 2005; Munla
et al., 2015; Wang et al., 2013).
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Finally, respiration is also used to assess driver state.
Respiratory activity is expected to be regular in calm
conditions but can be disrupted in stressful situations
(Cacioppo et al., 2007). The latter can alter respiratory be-
havior, causing an increase in respiratory rate, potentially
leading to hyperventilation (Grossman, 1983; Suess et al.,
1980). However, indicators of respiratory variability have
shown in some studies to be less effective in measuring an
individual's stress response compared to other physiolog-
ical indicators (Chen et al., 2017; Healey & Picard, 2005).

1.3 | Meditation and relaxation as
methods to reduce stress

As meditation and relaxation are considered efficient to
reduce stress (Sedlmeier et al., 2012), one might expect the
application of such techniques to be beneficial in the con-
text of driving. Meditation can be defined as a sequence
of steps to achieve an enhanced mental state, also com-
monly referred to as a meditative state, through various
existing methods that utilize specific cognitive strategies
(Nash et al., 2013). While meditation is typically practiced
over longer period of time (e.g., from several weeks to
several years, Goyal et al., 2014), relaxation can include
short-term exercises that do not require a specific level
of expertise and experience, aiming to release bodily ten-
sion and leading to a psychophysiological state of reduced
arousal (Jain et al., 2007).

Various techniques for relaxation and meditation
have been developed, ranging from ancient traditional
spiritual practices to more recent techniques including
mindfulness-based methods (Henchoz et al., 2021). Many
of these techniques have been shown to reduce depres-
sion, anxiety, stress, while improving mood and quality of
life of individuals (Goldberg et al., 2019; Goyal et al., 2014;
Hofmann et al., 2010; Jain et al., 2007; Khoury et al., 2017;
Niazi & Niazi, 2011). Meditation can also positively impact
a person's physiological state, characterized by short- and
long-term decrease in heart rate (Ditto et al., 2006; Solberg
etal., 2004) as well as an increase in HRV indicators (Ditto
et al., 2006). Meditation can thus have beneficial effects
not only during a stressful period, but also after experienc-
ing stress. Even in novices, it has been shown that practic-
ing meditation after a stressful experience leads to a faster
decrease in skin conductance and an increase in positive
affect (Borchardt & Zoccola, 2018).

In the context of driving, there are few empirical stud-
ies on the utility of relaxation and meditation techniques.
Barnes and colleagues (2001) evaluated the usefulness
of transcendental meditation on cardiovascular func-
tion and used a driving task as an experimental stressor.
Their results showed a beneficial effect of meditation on
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participants’ stress responses (including heart rate) after
driving. In addition, mindfulness interventions, includ-
ing relaxation and cognitive change exercises, have been
successfully administered to angry drivers (Deffenbacher,
2016).

1.4 | The present study

The main objective of this study was to assess the influ-
ence of the presence of a passenger on the physiological
state of drivers. The second goal of this study was to in-
vestigate whether pre-driving relaxation can be used as a
technique to mitigate physiological activation due to the
presence of a passenger. This work aims to help develop
intelligent systems able to recognize the drivers’ state and
thus optimally support them (Nguyen et al., 2021).

To address these questions, the presence of a passen-
ger and relaxation prior to driving were manipulated
experimentally in a laboratory-based driving simulation
study. ECG, EDA, and respiration were used for continu-
ous monitoring of drivers’ physiological activation. In the
perspective of potential use in real conditions, machine
learning techniques were used to investigate if driver's
physiological activation can be accurately detected in such
situations. In this regard, three different classifiers were
trained to predict drivers’ condition using a 5-repeated
4-fold cross-validation approach and a large range of fea-
tures extracted from physiological signals. To understand
the models’ decision and find out the most relevant phys-
iological indicators linked with the presence of a passen-
ger while driving and relaxation, a post hoc calculation of
feature importance was conducted.

Based on findings of previous research reported above,
we expected that driving with a passenger negatively
influences drivers’ state for both subjective measure
(affective state) and objective measures (physiological in-
dicators) (Healey & Picard, 2005; Kirschbaum et al., 1993;
Poh et al., 2010; Reinhardt et al., 2012). Despite the sparse
empirical evidence in the context of driving, a brief pre-
driving relaxation is expected to have a positive effect on
the driver's physiological and affective state during and
after driving (lower physiological activation and negative
affect) (Borchardt & Zoccola, 2018; Ditto et al., 2006; Hill
& Boyle, 2007; Solberg et al., 2004).

2 | MATERIAL AND METHODS

2.1 | Participants

Sixty young participants (22 + 1.9 years old) were re-
cruited for this study. The sample consisted of 26 male
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and 34 female students. A specific sample of young driv-
ers has been recruited because the presence of a passenger
is particularly dangerous for this age group and negatively
influences driving behavior (Chen, 2000). All participants
were required to hold a driving license and be of good gen-
eral health. Participants received course credit for their
participation. The study procedure followed the tenets of
the Helsinki agreement and written informed consent was
obtained from all participants.

2.2 | Experimental design

The experiment followed a 2 X 2 X 3 mixed design, with
driving condition (passenger vs. alone) and relaxation
(meditation podcast vs. audiobook) as between-subjects
variables, and measurement time (baseline vs. relaxation
vs. driving) as a within-subjects variable.

2.3 | Material and instruments

The experiment was conducted in a fixed-base simula-
tor, composed of two adjacent car seats, a steering wheel
(Logitech G27), and pedals (gas and brake) installed
in front of a large screen. The driving simulation was
back-projected using a projector (Epsilon EH-TW3200).
Participants were able to adjust the position and inclina-
tion of the seat. Two speakers located behind the seats
played the sound of the driving simulation to immerse
drivers in the driving environment. The free version of
OpenDS was used as simulation software.

Physiological signals of drivers were recorded using
the Biopac MP36 hardware at a sample rate of 1000 Hz.
A digital low-pass filter with a frequency of 66.5 Hz, a Q
factor of 0.5, and a gain of 2000 was applied to all signals.
An additional gain of 2000 and 1000 was, respectively, ap-
plied to digital filters for the EDA and respiration signals.
Lead sets (SS57LA and SS2LB, Biopac) with disposable
Ag/AgCl pre-gelled electrodes (EL507 and EL503, Biopac)
were, respectively, used to record the EDA and ECG of
participants. Electrodes recording the EDA signal were

Questionnaire 3

PANAS

placed on the distal phalanges of the middle and ring fin-
gers of the non-dominant hand of participants. The SS5LB
respiratory effort transducer (Biopac) recorded the respi-
ration via chest expansion and contraction.

A guided-mindfulness meditation podcast was used for
the manipulation of relaxation and an online audiobook
(Sherlock Holmes - Die drei Studenten (Horbuch), YouTube)
was used for the control condition, similar to Ditto et al.
(2006) or Borchardt and Zoccola (2018). Audio files were
presented via headphones (SONY WH-1000X M3).

2.4 | Measures

The affective state was assessed three times (see Figure
1) via the Positive and Negative Affect Schedule (PANAS;
Watson et al. (1988)), which was presented on a tablet.
This self-report questionnaire consists of 20 items with
each item rated on a five-point Likert scale to measure
both positive and negative affect as two dimensions of the
construct (10 items each).

ECG, EDA, and respiration were recorded throughout
the entire experiment. From these signals, physiological
indicators corresponding to the different periods of the ex-
periment were calculated: baseline, relaxing or listening
to an audiobook, and driving.

2.5 | Experimental procedure
An overview of the experimental procedure is shown in
Figure 1. After being welcomed, participants answered
a questionnaire containing socio-demographic questions
(i.e., age, gender, driving experience, driving habits, etc..)
and assessed their current affective state (baseline affect).
Electrodes were attached and participants were asked to
take a seat in the driving simulator. The experiment was
composed of four phases: the baseline, the relaxation, the
training, and the driving phase.

In the first phase, participants listened to an audiobook
for 5 min in order to record the individual baseline of phys-
iological signals. In the second phase, participants either
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listened to a guided mindfulness-meditation podcast (relax-
ation group) or went on listening to the audiobook (control
group) for 10 min. Given the short duration of the manipu-
lation with regard to meditation, this phase is referred to as
a relaxation phase in the rest of the manuscript. At the end
of this phase, the affective state was assessed a second time.
The third phase was the driving practice session. It lasted
5 min and gave participants the possibility to familiarize
themselves with the driving simulator. Data from the train-
ing drive were not considered for analysis.

The fourth phase was the main driving session. To
avoid learning effects, different scenarios were used in the
driving and training phases. The scenario consisted of a
2 % 2 lane highway without traffic, with repeatedly occur-
ring construction zones on the right lane. Participants had
to drive for 10 min. Before driving, participants were in-
structed to cover the longest distance possible by respect-
ing all traffic regulations and speed limits. Depending on
the experimental condition, participants were driving ei-
ther alone or with a passenger. Trained actors (male and
female, randomly assigned to the various experimental
conditions) played the passenger, following a script of
non-intrusive conversation with the driver. Participants
did not know that the passenger was an actor but thought
that the person was also recruited for the experiment. A
fictitious draw was used at the beginning of the experi-
ment to assign the roles of the driver and the passen-
ger—in which always the participant was assigned the
driver's role. Participants were allowed to talk to the pas-
senger. At the end of the driving task, the affective state
was assessed again. Finally, the electrodes were removed
and the participant was thanked and discharged.

2.6 | Classification of drivers’ condition
Three classification tasks were implemented and evalu-
ated in this study:

+ Classification task 1: The presence of a passenger
while driving (passenger vs. no passenger) based on
physiological features calculated during the driving
session.

« Classification task 2: Relaxation practice (relaxation
vs. audiobook) based on physiological features calcu-
lated during the relaxation phase.

+ Classification task 3: Relaxation practice before driv-
ing (relaxation vs. audiobook) based on physiological
features calculated during the driving session.

For every classification task, the dataset contained 55
samples with balanced classes (passenger vs. alone and
relaxation vs. audiobook).

)
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The physiological signals collected during the experi-
ment were processed using the Neurokit library in Python
(Makowski et al., 2020). Two hundred and twenty four fea-
tures from 112 indicators (10 from EDA, 74 from ECG, 21
from RESP, 7 from RSA) were calculated from the three
raw signals, as presented in Table 1. Indicators of respi-
ratory sinus arrhythmia (RSA) were calculated from pro-
cessed ECG and respiration signals (Lewis et al., 2012). To
consider drivers’ physiological state at rest (baseline) in
the training process, two features were calculated for each
physiological indicator:

« The indicator's value while relaxing (Task 2) or driving
(Tasks 1 and 3)

 The difference of the indicator’s value between the driv-
ing phase and the baseline phase (A Driving-Baseline)
for Tasks 1 and 3 or between the relaxation and the
baseline phase (A Relaxation-Baseline) for Task 2.

The scikit learn machine-learning framework
(Pedregosa et al., 2011) was used to implement the classi-
fication pipeline in Python (feature normalization, selec-
tion, training, and evaluation of classifiers). For classifiers
requiring features with equal ranges, features were nor-
malized between the first quartile and the third quartile
of data distribution of each feature (RobustScaler method
from scikit learn; Pedregosa et al., 2011). To reduce the
dimensionality and select only relevant features for the
classification, the best features were selected during a
univariate feature selection process (SelectKBest method
from scikit learn; Pedregosa et al., 2011). The 20 highest
scoring features according to the f-value calculated by
analysis of variance (ANOVA) were considered for train-
ing the model. Three machine learning algorithms were
trained to predict drivers’ condition: random forest (RF),
k-nearest neighbors (KNN) and a neural network with one
hidden layer (NN). This choice was based on results from
previous studies in the field (Darzi et al., 2018; Solovey
et al., 2014; Son et al., 2013).

To train them and validate the results, a 5-repeated 4-fold
cross-validation approach was applied to prevent classifiers
from overfitting the data and obtain results that reflect the
real performance of the model (Hastie et al., 2009). At each
iteration, the dataset was split into a training set (80%) and a
test set (20%). The training set was split into k = 4 folds due
to the reduced size of the dataset (only 60 training exam-
ples). Classifiers were trained using data from three subsets
and then validated on the remaining subset. This process
was repeated four times, with each subset acting as the val-
idation set once. A grid search technique was employed in
parallel to search for the best set of hyperparameters. It con-
sists of predefining a range of values to test for each hyper-
parameter. At each iteration of the training procedure, the
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TABLE 1 Summary of indicators computed from raw physiological signals. Identical indicators computed from both ECG and
respiration (RESP) signals are grouped together. IBIs refers to interbeat intervals (ECG) and BBs refers to breath-to-breath cycles (RESP)

Signal
EDA

ECG/RESP

ECG

Indicator

Mean raw EDA level
Min raw EDA value
Max raw EDA value
Std raw EDA value
Mean tonic EDA level
Max tonic EDA value
Min tonic EDA value
Std tonic EDA value

Mean amplitude of
NS-SCRs

Frequency of NS-SCRs
Mean rate
Mean

Median

MAD
SD
SDSD

(€)Y
mCV
RMSSD

CVSD

LF

HF
LF/HN
SD1

SD2

SD2/SD1
ApEn
PNN50

PNN20

TINN
HTI

IQR
SDNNI1(2)

SDANN1(2)

Domain

Time-domain

Frequency
domain

Non-linear
domain

Time-domain

Description

The mean value of filtered EDA signal

The minimum value of filtered EDA signal

The maximum value of filtered EDA signal

The standard deviation of filtered EDA signal

The mean value of tonic EDA signal

The minimum value of tonic EDA signal

The maximum value of tonic EDA signal

The standard deviation of tonic EDA signal

The mean amplitude of NS-SCRs (computed from phasic EDA signal)

The number of NS-SCRs per minute (computed from phasic EDA signal)
The mean number of cardiac cycles per minute
The mean time of IBIs/BBs

The median of the absolute values of the successive differences between
adjacent IBIs/BBs

The mean absolute deviation of IBIs/BBs
The standard deviation of IBIs/BBs

The standard deviation of the successive differences between adjacent IBIs/
BBs

The coefficient of variation, i.e., the ratio of SD divided by Mean
Median-based coefficient of variation, i.e., the ratio of MAD divided by Median

The square root of the mean of the sum of successive differences between
adjacent IBIs/BBs

The coefficient of variation of successive differences; the RMSSD divided by
Mean IBI

The spectral power density pertaining to low frequency band (0.04-0.15 Hz)
The spectral power density pertaining to high frequency band (0.15-0.4 Hz)
The ratio of LF to HF

The measure of the IBIs/BBs spread on the Poincare’ plot perpendicular to the
line of identity (short-term fluctuations)

The measure of the IBIs/BBs spread on the Poincare” plot along the line of
identity (long-term fluctuations)

The ratio between long and short term fluctuations of IBIs (SD2 divided by SD1)
Approximate entropy

The proportion of successive IBIs greater than 50 ms, out of the total number
of IBIs

The proportion of successive IBIs greater than 20 ms, out of the total number
of IBIs

The baseline width of IBIs distribution obtained by triangular interpolation

The HRYV triangular index, measuring the total number of IBIs divided by the
height of the IBIs histogram

The interquartile range (IQR) of the RR intervals

The mean of the standard deviations of RR intervals extracted from
1(2)-minute(s) segments of time series data

The standard deviation of average RR intervals extracted from 1(2)-minute(s)
segments of time series data
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TABLE 1 (Continued)

Signal

Indicator

VHF
LFn

HFn

LnHF

CSI

CVI

CSI modified

SampEn
PIP

TALS

PSS

PAS

GI

SI

Al

PI

Cld/Cla
SD1d/SD1a
C2d/C2a
SD2d/SD2a
Cd/Ca
SDNNd/SDNNa

DFA alphal (2)

DFA alphal (2)
ExpRange

DFA alphal (2)
DimRange

DFA alphal (2)
ExpMean

DFA alphal (2)
DimMean

ShanEn
FuzzyEn
MSE
CMSE
RCMSE
CD

Domain

Frequency
domain

Non-linear
domain

§éfbe_., el mq, Physiological Reports 70f17
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Description

Variability, or signal power, in very high frequency (0.4-0.5 Hz)

The normalized low frequency, obtained by dividing the low frequency power
by the total power

The normalized high frequency, obtained by dividing the low frequency power
by the total power

The log transformed HF
The Cardiac Sympathetic Index
The Cardiac Vagal Index

The modified CSI was obtained by dividing the square of the longitudinal
variability by its transverse variability.

Area of ellipse described by SD1 and SD2

Sample entropy

Percentage of inflection points of the RR intervals series.

Inverse of the average length of the acceleration/deceleration segments
Percentage of short segments

Percentage of IBIs in alternation segments

Guzik's Index

Slope Index

Area Index

Porta’s Index

Indices of respectively short-term HRV deceleration/acceleration
Short-term variance of contributions of decelerations and accelerations
Indices of respectively long-term HRV deceleration/acceleration
Long-term variance of contributions of decelerations and accelerations
Total contributions of heart rate decelerations and accelerations to HRV

Total variance of contributions of heart rate decelerations and accelerations to
HRV

The monofractal detrended fluctuation analysis of the HR signal
corresponding to short(long)-term correlations

Range of singularity exponents, corresponding to the width of the singularity
spectrum from the monofractal detrended fluctuation analysis of the HR
signal, corresponding to short(long)-term correlations

Range of singularity dimensions, corresponding to the height of the singularity
spectrum from the monofractal detrended fluctuation analysis of the HR
signal, corresponding to short(long)-term correlations

Mean of singularity exponents from the monofractal detrended fluctuation
analysis of the HR signal, corresponding to short(long)-term correlations

Mean of singularity dimension from the monofractal detrended fluctuation
analysis of the HR signal, corresponding to short(long)-term correlations

Shannon entropy

Fuzzy entropy

Multiscale entropy

Composite multiscale entropy
Refined composite multiscale entropy

Correlation dimension

(Continues)
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TABLE 1 (Continued)

Signal

RESP

RSA

Indicator

HFD
KFD
LzC
Mean amplitude

Phase Duration
Inspiration

Phase Duration
Expiration

Phase Duration Ratio

Mean (P2T)

Mean Log (P2T)

SD (P2T)

Mean (Gates)

Mean Log (Gates)

SD (Gates)

PorgesBohrer

METEIER ET AL.

The

Domain

Time domain

Description

Higuchi's Fractal Dimension of the HR signal
The Katz's Fractal Dimension of the HR signal
The Lempel-Ziv complexity of the HR signal
The mean respiratory amplitude.

The average inspiratory duration

The average expiratory duration

The inspiratory-to-expiratory time ratio (I/E)

Mean of RSA estimates (peak-to-trough method)

The logarithm of the mean of RSA estimates (peak-to-trough method)
The standard deviation of all RSA estimates (peak-to-trough method)
Mean of RSA estimates (Gates method)

The logarithm of the mean of RSA estimates (Gates method)

The standard deviation of all RSA estimates (Gates method)

The Porges-Bohrer estimate of RSA, optimal when the signal to noise ratio is
low, in In(ms"2)

classifier performed the cross-validation procedure with all
possible combinations of parameters. The model obtaining
the best score during the training (grid search) for a given
set of hyperparameters was used for evaluation on the test
set. Reported results are the mean f1-score achieved by each
classifier on the test set over five iterations.

A post hoc analysis determined the most important fea-
tures in the classification process, using the SHAP (SHapley
Additive exPlanations) library in Python (Lundberg & Lee,
2017). For each feature, it assigns an importance value for
a particular prediction, called SHAP value. A list of the
most significant features in descending order (ordered by
absolute mean of SHAP value) was extracted, for each con-
dition predicted in this study (presence of passenger and
relaxation). The SHAP values were calculated on models
trained with the three physiological signals.

2.7 | Statistical analysis and exclusion of
participants

The subjective affective state and the physiological data were
analyzed using two factorial repeated measures ANOVA for
investigating the effect of time, performance of relaxation,
and presence of a passenger. To do that, the mean tonic
EDA level, the heart rate, and the breathing rate, as well as
the positive and negative affect, during the different periods
of the experiment (baseline, relaxation, and driving) were
used. If Mauchly's test of sphericity indicated that the as-
sumption of sphericity was violated (p < 0.05), Greenhouse-
Geiser sphericity corrections were applied. Post hoc tests

with Bonferroni correction were done when the effect of
time was significant. The physiological signals of five par-
ticipants could not be processed, due to bad quality signal
(3) and data parsing issues (2). Hence, the statistical analysis
was run with the data corresponding to 55 participants.

3 | RESULTS

3.1 | Affective state of drivers
The repeated measures ANOVA indicated a significant ef-
fect of time on positive affect (F (2, 108) = 28.11, p < 0.001,
n* = 0.10). Post hoc tests indicate that compared to base-
line, positive affect decreased after the relaxation phase
(t (55) = 5.80, p < 0.001) and increased after driving
(t(55) = —7.02, p < 0.001) regardless the condition of partici-
pants. The presence of a passenger, performance of relaxa-
tion, and all interaction effects were not significant (p > 0.05).
Besides, no significant effect of time was found on neg-
ative affect (F(1.336, 71.06) = 3.30, p > 0.05, n* =0.02). The
presence of a passenger, performance of relaxation, and all
interaction effects were not significant either (p > 0.05).

3.2 | Physiological state of drivers

3.2.1 | Mean EDA tonic level

Data analysis showed a significant main effect of time on
the mean EDA tonic level (F (1.63, 83.33) = 39.52, p < 0.001,
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7> = 0.05). Post hoc tests revealed that drivers’ EDA was
higher while driving compared to relaxation (¢ (51) = —8.14,
p < 0.001) and baseline (¢ (51) = —7.16, p < 0.001) periods.

Data analysis also showed a significant main effect of
presence of passenger on the mean tonic EDA level (F (1,
51) = 5.20, p < 0.001, #* = 0.08). Figure 2 shows that par-
ticipants who drove with a passenger had a higher mean
EDA tonic level.

Besides, the analysis also showed a significant inter-
action effect of time and presence of passenger on EDA
(F (1.63, 83.33) = 10.61, p < .001, > = .01). Post hoc tests
revealed that the mean tonic EDA level was significantly
higher for the experimental group while driving than
for the control group (¢ (51) = —3.47, p < .05), while it
was not different between groups during the relaxation
(t(51) = —1.46, p > 0.05) and the baseline (¢t (51) = —1.63,
p > 0.05) phases.

Otherwise, relaxation and other interaction effects
were not significant on EDA (p > 0.05).
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3.2.2 | Mean heart rate
Data analysis showed a significant main effect of time on
the mean heart rate of individuals (F (1.43, 72.85) = 8.04,
p < 0.01, 7* = 0.01), after sphericity corrections. Post hoc
tests revealed that drivers’ heart rate was higher while
driving compared to relaxation (¢ (51) = —3.90, p < 0.001)
and baseline (¢t (51) = —2.75, p < 0.05) periods.

The presence of a passenger, performance of relax-
ation, and all interaction effects were not significant on
mean heart rate (p > 0.05).

3.2.3 | Mean respiratory rate

Data analysis showed a significant main effect of time
on the mean respiratory rate (F (1.61, 82.02) = 37.52,
p < 0.001, 772 = 0.04). Post hoc tests revealed that driv-
ers’ respiratory rate was higher while driving compared
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to relaxation (¢t (51) = —8.26, p < 0.001) and baseline (¢
(51) = —6.38, p < 0.001) periods.

Besides, the analysis also showed a significant interac-
tion effect of time and presence of passenger on respira-
tory rate (F (1.61, 82.02) = 13.03, p < 0.001, > = 0.01). Post
hoc tests revealed that compared to baseline, the respira-
tory rate was higher for the control group while driving (¢
(51) = —7.80, p < 0.001), but it was not significantly differ-
ent for the experimental group (¢ (51) = —1.16, p > 0.05).

The interaction effect of time and relaxation was mar-
ginally significant on drivers’ respiratory rate (F (1.61,
82.02) = 3.14, p = 0.06, 772 = 0.004). Post hoc tests re-
vealed that between the baseline and relaxation phases,
the respiratory rate did not change for the control group (¢
(51) = —0.38, p > 0.05), while it significantly decreased for
the experimental group (¢ (51) = 3.02, p < 0.05).

The effect of passenger and relaxation alone, as well as
other interaction effects were not significant mean respi-
ratory rate (p > 0.05).

3.3 | Classification of drivers’ condition
3.3.1 | Task 1: Presence of passenger
while driving

For all possible combinations of physiological signals,
Table 2 shows the best performance achieved by the
model to predict drivers’ condition while driving (passen-
ger vs. no passenger). The best performance was achieved
with the EDA and respiration signals as inputs of a KNN
classifier (90% accuracy, SD = 9%). The second-best result
was achieved with the three signals as input signals of a
RF classifier (86% accuracy, SD = 13%).

3.3.2 | Task 2: Practice of relaxation

Table 3 presents the best performance achieved by the
model to predict the performance of relaxation (relaxa-
tion vs. audiobook), based on features calculated during
the relaxation phase. The best performance was achieved
with the three signals as input of a NN classifier (80% ac-
curacy, SD = 9%). The second-best result was achieved by
a KNN classifier using EDA and ECG signals (78% accu-
racy, SD = 13%).

3.3.3 | Task 3: Practice of relaxation based on
features during the driving phase

Table 4 shows the performance of the model to predict
drivers’ condition during the relaxation phase (relaxation

TABLE 2 Best performance achieved for each combination of
selected signals to predict the presence of a passenger. Bold values
indicate the best score (with classifier) across all combinations of
signals

Best

Selected signal(s) Best classifier score

EDA RF 0.73(0.03)
ECG KNN 0.75 (0.10)
RESP RF 0.80 (0.07)
EDA + ECG KNN 0.83 (0.12)
EDA + RESP KNN 0.90 (0.09)
ECG + RESP RF 0.82(0.09)
EDA + ECG + RESP RF 0.86 (0.13)

TABLE 3 Best performance achieved for each combination of
selected signals to predict pre- driving relaxation, based on features
calculated during the relaxation phase. Bold values indicate the
best score (with classifier) across all combination of signals

Best

Selected signal(s) Best classifier  score

EDA RF 0.63(0.12)
ECG KNN 0.70 (0.13)
RESP NN 0.78 (0.14)
EDA + ECG KNN 0.78 (0.13)
EDA + RESP NN 0.75 (0.10)
ECG + RESP RF 0.74 (0.14)
EDA + ECG + RESP NN 0.80 (0.09)

TABLE 4 Best performance achieved for each combination of
selected signals to predict pre- driving relaxation, based on features
calculated during the driving phase. Best accuracy column is the
mean (with standard deviation) and Features is the number of
features used for the classification task. Bold values indicate the
best score (with classifier) across all combination of signals

Best
Selected signal(s) Best classifier accuracy
EDA RF 0.42 (0.09)
ECG RF 0.56 (0.13)
RESP KNN 0.50 (0.10)
EDA + ECG KNN 0.70 (0.16)
EDA + RESP NN 0.60 (0.09)
ECG + RESP RF 0.56 (0.07)
EDA + ECG + RESP NN 0.64 (0.15)

vs. audiobook), based on physiological features computed
from the driving session. The best score achieved for each
combination of signals is summarized in Table 4. The best
accuracy was achieved by the KNN classifier using EDA
and ECG as inputs (70% accuracy, SD = 16%).
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3.3.4 | Most important features for each 4 | DISCUSSION
classification task

4.1 | Change of physiological and

To understand the decision of the models and to find out
the most relevant features as indicators of the physiologi-
cal activation induced by the presence of a passenger and
relaxed state, Figures 3-5 show the 10 most impacting in
the respective classification Tasks 1, 2, and 3. Each point
on the graph is the Shapley value of a feature for a given
participant. Points to the right of the median axis most in-
fluence the model's decision to predict the experimental
group condition (passenger and relaxation), while those
to the left influence most the decision for predicting the
control condition (no passenger and audiobook).

affective state over time

Data analysis revealed that compared to baseline, the driv-
ers’ positive affect decreased after relaxation and then in-
creased after driving. Participants may have felt that the
relaxation/audiobook phase was boring while driving in
the simulator was more entertaining. However, no change
in negative affect was observed during the experiment.
Data analysis also showed that the physiological state of
participants changed during the experiment. Participants’
mean tonic EDA level, heart rate, and respiratory rate

High
RRV_MadBB_Dr-BI . oo = oo
EDA_tonic_max_Dr Lad IREY
EDA filtered_max_Dr e | ce
EDA_tonic_mean_Dr-BI comy So o o
>
EDA_filtered_mean_Dr-BI e bkl [
g
EDA_tonic_max_Dr-BlI - e o %
()
. EDA filtered_max_Dr-BI Setem o =
FIGURE 3 Most important features
in the classification process of task 1 RSP_Phase_Duration_Expiration_Dr-BI 3ee o
(presence of passenger), based on SHAP EDA_tonic_min_Dr-Bl .
values calculated on the test set. The
meaning/description of each feature can RRV_MCVBB_Dr-Bl e
be found in Table 1. Bl, with baseline low
correction; EDA, electrodermal activity; —0.6 —0.4 0.2 0.0
RRV, respiratory rate variability SHAP value (impact on model output)
High
RRV_LFHF_Dr e ¢ oo o eo oo o .
RRV_MCVBB_Dr-BI ¢ o comdm . .
RSP_Phase_Duration_Ratio_Dr e o esgel =
HRV_HFn_Dr-BI R "
=}
HRV_LFn_Dr-BI o omn oee ©
g
HRV_HFn_Dr L R 2
. (]
FIGURE 4 Most important features RSP_Rate Mean Dr-Bl B X, u
in the classification process of task 2
(relaxation practice), based on SHAP EDA_tonic_min_Dr-BI oo oqume
values calculated on the test set. The RSA_P2T Mean log Dr-BI . -
meaning/description of each feature can
be found in Table 1. Bl, with baseline HRV_PAS_Dr-BI * o .
correction; HRV, heart rate variability; v

RRV, respiratory rate variability; RSP,
respiration

T

-0.2 0.0 0.2 0.4 0.6
SHAP value (impact on model output)



METEIER ET AL.

12 0f 17 . . .
0—I—Physwloglcal Reports g /s

HRV_DFA_alphal_ExpMean_Dr o e e @ oo
SCR_Peaks_freq_Dr oo o oemd
HRV_DFA_alphal_ExpRange_Dr . o eom ot
HRV_DFA_alphal_DimRange_Dr-Bl . ® wloem o
HRV_DFA_alphal_ExpMean_Dr-Bl o mesgocs o
HRV_CVI_Dr-BI see e Humoe
HRV_MCVNN_Dr-BI o comfe oo
HRV_DFA_alphal_ExpRange_Dr-BI e
HRV_CVNN_Dr-BI o empos o
HRV_CVSD_Dr-BI o Spee

High FIGURE 5 Most important features
in the classification process of Task 3
(relaxation practice based on features
calculated during the drive), based on
SHAP values calculated on the test set.
The meaning/description of each feature
can be found in Table 1. Bl, with baseline
correction; HRV, heart rate variability;
SCR, skin conductance response

Feature value

Low

0.2 0.0

0.4

SHAP value (impact on model output)

increased significantly during the driving phase compared
to baseline and relaxation, demonstrating the stimulating
nature of this task (Healey & Picard, 2005).

4.2 | Presence of passenger
4.2.1 | Change in physiological and
affective state.

Data analysis showed that the presence of a passenger was
linked with an increase in the mean tonic EDA level of
participants, but not on the mean heart rate or respira-
tory rate. Since EDA can be considered related to arousal
(Boucsein, 2012), the results show that the presence of
a passenger is associated with an increase in arousal.
Interestingly, the respiratory rate increased for the con-
trol group while driving, compared to baseline, but it was
not the case for participants driving with a passenger. The
drivers’ vocal interaction with the passengers may have
affected their breathing pattern and hence reduced the
increase in respiratory rate of the experimental group.
Besides, the presence of a passenger did not have any ef-
fect on drivers’ affective state. It indicates that drivers did
not feel subjectively affected by the presence of a passen-
ger, whereas it affected their physiological activation.

4.2.2 | Classification and the most
relevant features

Results indicate that the presence of a passenger can be
detected with 90% accuracy, based on 20 features ex-
tracted from EDA and respiration signals. The model

has consistently achieved 70% accuracy in predicting the
presence of a passenger, regardless of the physiological
signals selected. Sensor fusion improved the accuracy of
the model. According to the results obtained in this study,
the accuracy achieved is lower than that achieved in the
works of Healey and Picard (2005) and Chen and col-
leagues (2017). The latter showed that signals of ECG and
EDA collected from the foot yielded higher performances
than the EDA signal collected from the hand. Different
features and classification procedures were used in our
study, so it is difficult to compare the results and argue
that the physiological activation induced by the presence
of a passenger is more difficult to classify than that in-
duced by the driving environment.

Post hoc analysis of feature importance in the classifi-
cation process suggests that features calculated from the
EDA and respiration signals should be used to predict
the presence of a passenger with machine learning tech-
niques. The presence of a passenger is associated higher
skin conductivity and longer exhalations, likely due to
the vocal interaction between the driver and the passen-
ger (see Figures 2 and 3). Results are consistent with the
findings of Healey and Picard (2005), who found that the
mean EDA level correlated most with stress in the context
of driving.

In summary, the model implemented in this work was
able to detect the presence of a passenger in a controlled
environment, mainly due to an increase in drivers’ arousal
(measured through EDA indicators). In real driving situ-
ations, a significant increase of arousal could be detected
in young drivers, using machine learning models as the
one proposed in this work. Young drivers could be warned
when an increase in arousal is detected, which could help
prevent them from taking more risks behind the wheel
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(Centifanti et al., 2016; Chen, 2000). The physiological
changes detected by the model can be interpreted as a
form of social stress, due to being observed while perform-
ing a task by an unknown individual (Schrier, 1992).

4.3 | Practice of relaxation
43.1 | Change in physiological and
affective state

Interestingly, the results of relaxation before driving did
not show the expected effect pattern. No effect of relaxa-
tion was found on drivers’ physiological and affective state.
Only the manipulation check revealed that participants
following a mindfulness exercise reduced their respira-
tory rate compared to participants listening to an audio-
book, although this effect was only marginally significant.
However, this potential beneficial effect did not carry over
the driving situation, regarding the statistical analysis. This
remains to be confirmed by the classification task.

4.3.2 | Classification results and relevant
features of a relaxed state

In the classification Task 2, relaxation could be predicted
with 80% accuracy using all signals as input to a neural
network classifier. Again, sensor fusion allowed the model
to perform better. Considering each physiological signal
alone, EDA showed the lowest accuracy. Classification
task 3 was the most challenging because no physiological
data collected during the relaxation phase was used. Still,
the model achieved 70% accuracy using EDA and ECG as
input signals. This shows that the effect of relaxation car-
ried over the driving phase, in contrast with the statistical
analysis above. This shows that it is relevant to use ma-
chine learning techniques in some contexts, even when the
statistical analysis is not significant. However, the results
show that the model still has difficulty predicting the con-
dition of subjects who performed relaxation before driving.
The physiological change on the drivers’ state while driv-
ing was probably not significant enough. This implies that
a longer phase of mindfulness meditation might be neces-
sary before driving if one wants to benefit from the effect of
such a stress management technique while driving.

The post hoc analysis of the significance of features re-
vealed that the participants in the manipulation group cor-
rectly practiced the relaxation. Indeed, they exhale longer,
which led to a decrease in their breathing rate (see Figures
2 and 4). The analysis showed that features such as the ratio
of low to high frequencies of the respiratory signal, fre-
quency measures in the low- and high-frequency bands of
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the HRV (with baseline correction) and the minimum level
of skin conductance (see Figure 4) were among the most
useful features for predicting a relaxed state. Besides, it
seems that the effect of pre-driving relaxation might mainly
be observed via heart rate variability indicators in the non-
linear domain, calculated by (multifractal) detrended fluc-
tuation analysis (DFA, see Table 1 and Figure 5).

4.4 | Limitations
4.4.1 | Presence of passenger and
young drivers

In this study, the model can detect the presence of a pas-
senger in a simulated environment. However, it has yet to
be confirmed that the model would also be able to do so in
a more complex real-world driving environment, includ-
ing other stressors (such as bad weather or heavy traffic).
It is very likely that this model detects some mere physi-
ological activation but not specifically the presence of a
passenger. Future research might address the question
whether different stressors could be distinguished based
on specific physiological reactions. As mentioned earlier,
results showed that respiration features were useful in pre-
dicting the presence of a passenger. However, vocal inter-
action between confederates and participants might have
played a role in the difference in breathing behavior be-
tween the two experimental groups. For further research,
the mere presence of a passenger and the vocal interaction
between the driver and the passenger should be carefully
controlled in separate experimental condition.

Another limitation of this study may be the focus on
young adults. While this work is an interesting jigsaw
piece for understanding the physiological responses of
young drivers related to the presence of a passenger, it
would be interesting to learn if a similar effect could be re-
ported for older, more experienced drivers. Given that they
appear to show an opposite effect pattern to young drivers
(i.e., fewer accidents with a passenger present (Williams
et al., 2007)) it remains unclear which role age and driving
experience play in moderating the relationship between
arousal and risky driving behavior. Future experimental
studies should address this issue by comparing the conse-
quences of passenger presence among drivers of different
age groups and driving experiences.

4.4.2 | Experience with meditation

Concerning the interesting but unexpected findings on re-
laxation (e.g., higher increase in physiological indicators
while driving), the data indicate that there was an effect
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of the intervention. The term relaxation was chosen in
this research, even though the intervention applied in this
study was listening to a guided mindfulness meditation
exercise. It can be argued that (mindfulness) meditation is
considered a very specific technique that requires exten-
sive training and experience (e.g., Barinaga (2003); Moore
and Malinowski (2009)). However, in the present study,
most participants had no prior experience with medita-
tion techniques. Although a guided-mindfulness medi-
tation training was used in this study, especially those
new to meditation, cannot be expected to enter a self-
regulatory meditative state that includes full control of
the components of enhanced attention control, improved
emotion regulation, and altered self- awareness (c.f. Tang
et al. (2015)).

In addition, some participants may have been more
interested in practicing relaxation than others. Thus, the
effect of relaxation may have been reduced on the phys-
iological state of those who lost interest in the relaxation
task. Future studies that attempt to replicate the findings
of this experiment should consider the experience of par-
ticipants in meditation to assess its potential moderating
influence on the long-term consequences of meditation
before driving.

4.4.3 | Experimental setting and procedure
For the experimental settings of that study, driving in a
simulator could have reduced the sense of danger com-
pared to a real-world driving situation and thus the be-
havior exhibited in this artificial environment could,
despite the highly immersive nature of the installation,
be different from behavior in a real-world environment as
it was the case in the study of Healey and Picard (2005).
Although this lack of ecological validity in driving simula-
tor studies might be considered a limitation, a more valid
methodological approach to address this research ques-
tion in a more natural environment would be linked to
severe safety issues and ethical implications. Indeed, it
is ethically unjustifiable to conduct experimental studies
on research questions in which participants are placed in
risky situations. Therefore, a combination of correlational
studies referring to real-world accident statistics data and
experimental studies to investigate cause and effect rela-
tionships may be the best solution in this area of research.
According to the experimental procedure employed in
this study, the practice session was done just before the
main driving session. Although it was short, this may
have affected the physiological and affective state of the
drivers and thus reduced the effect of the relaxation done
just before. In other similar studies, the relaxation should
be performed just before the main driving period, and the

practice in the simulator should be performed at the very
beginning of the experimental procedure.

Finally, the same audiobook was used for all partici-
pants. Some of them might have been more interested
than others by the story. Hence, these participants were
possibly more focused on listening the audiobook, which
could have affected their physiological state (i.e., increased
mental load).

5 | CONCLUSION

Findings of this piece of research show that drivers ex-
perience a higher increase in physiological activation
when driving with a passenger, which can be predicted
with 90%-accuracy by a k-nearest neighbors classifier.
A short relaxation phase (10 min) before driving could
be recognized with 80%-accuracy based on three physi-
ological signals. According to the statistical analysis, the
potential beneficial effect of relaxation did not subse-
quently affect the driver's state during driving, although
the classification task suggested the opposite. Indeed, a
k-nearest neighbors classifier was able to recognize with
70% accuracy the participants who exercised relaxation
before driving, based on the features of heart rate vari-
ability and electrodermal activity. In addition, some of
the most relevant physiological indicators associated with
the presence of a passenger and a relaxed state are pro-
posed in this study. The finding of this study suggest that
skin conductivity characteristics should be used to detect
physiological activation associated with the presence of
a passenger, while cardiac and respiratory variability in-
dicators are better at predicting relaxation. Finally, the
results suggest that the effect of relaxation on the driver's
state later during driving might be observed via the car-
diac variability indicators. In the perspective of making
future cars smarter and safer, machine learning models
implemented in this study could be used to assess the
driver's state continuously, by selecting the physiological
features suggested in this study.
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