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Background Recent studies of the Hiroshima and Nagasaki A-bomb survivors,
together with some (but not all) cohorts exposed occupationally or
medically to ionizing radiation, have found an increasing trend in
mortality from non-malignant disease with increasing radiation dose.
The aim of this study was to establish whether such a trend could be
found in a large cohort of employees in the UK nuclear industry.

Methods The cohort comprised 64 937 individuals ever employed at the study
sites between 1946 and 2002, followed up to 2005; radiation
exposures as measured by personal dosimeters (‘film badges’) were
available for 42 426 individuals classified as ‘radiation workers’.
Poisson regression models were used to investigate the relationship
between excess mortality rates and cumulative radiation exposure,
using both relative and additive risk models.

Results The cohort shows a pronounced ‘healthy worker’ effect. Overall,
socio-economic status as indicated by employment status has a
greater influence on mortality than does radiation exposure status.
For male radiation workers, there is an apparent dose response for
mortality from circulatory system disease [P< 0.001, ERR¼ 0.65
(90% CI 0.36–0.98) Sv�1]. However there is evidence for inhomo-
geneity in the apparent dose response (P¼ 0.016), arising principally
at cumulative doses in excess of 300 mSv, when the four categories of
employment and radiation exposure status are examined separately.

Conclusions We have found evidence for an association between mortality from
non-cancer causes of death, particularly circulatory system disease,
and external exposure to ionizing radiation in this cohort. However,
the tentative nature of biological mechanisms that might explain
such an effect at low chronic doses and the above inhomogeneities
in apparent dose–response, mean that the results of our analysis are
not consistent with any simple causal interpretation. Further work
is required to explain these inhomogeneities, and on the possible
role of factors associated with socio-economic status and shift
working, before any further conclusions can be drawn.
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Introduction
A causative link has long been established between
exposure to ionizing radiation and the risk of
mortality from many forms of cancer. More recently,
an association between radiation exposure and
non-cancer mortality has been shown for the survi-
vors of the A-bomb attacks on Hiroshima and
Nagasaki1–4 and also in some, but not all, occupa-
tionally and medically exposed cohorts.5,6 Evidence of
association is strongest for circulatory system disease,
although associations for other non-cancer diseases
are observed in the A-bomb survivors. Taking account
of the plausibility of possible biological mechanisms,
evidence for a causative link between acute high-dose
exposures (greater than about 5 Gy) and mortality
from circulatory system disease is convincing,
whereas that for lower acute doses, or chronic
exposure generally, is equivocal.5,7–9

The cohort of employees at sites formerly operated
by British Nuclear Fuels plc (BNFL) in the UK
comprises a large and important study group.
Ascertainment of vital status is high (99.3%); indi-
vidual external radiation exposures are well charac-
terized and include, particularly in the earlier years,
exposures at a substantial fraction of the regulatory
limits. The cancer mortality and morbidity experience
of this cohort have been studied extensively.10–16

In the present study, we examine the non-cancer
mortality experience of male radiation workers in this
cohort in relation to individual recorded exposures to
external sources of ionizing radiation.

This study was originally commissioned by BNFL,
with the approval of employees and their trade union
representatives. Since April 1, 2006 the study has
been overseen by a Governance Group with work-
force, employer, expert and funding body representa-
tives. The study has been given exemption from the
requirement for individual informed consent in
respect of all workers entering the cohort prior to
2003 by the Patient Information Advisory Group of
the UK Department of Health.

Methods
The cohort comprises 64 937 employees of BNFL,
the United Kingdom Atomic Energy Authority and
the former Ministry of Supply ever employed at the
Springfields, Sellafield, Capenhurst or Chapelcross
sites between the beginning of 1946 and the end of
2002. Of these, 119 were excluded from the analysis
because of incompleteness or inconsistency in their
personal data. Vital status was followed to December
31, 2005 through the Office for National Statistics
(ONS), Southport and the General Register Office
(GRO), Edinburgh. Deaths from 1991 onwards were
identified by electronic searches, and earlier deaths by
manual searches, accessing both the National Health
Services Central Register and (for deaths prior to
1952) the National Register. A further 434 individuals
were either unable to be flagged or lost to follow-up
during this process; those lost to follow-up are
included in the analysis up to their termination of
employment at the study sites. Underlying and
contributory causes of death were coded by ONS
according to the International Classification of
Disease (ICD) codes current at the time of death;
codes for the disease categories discussed in this
paper are given in Supplementary Data A.

Vital status was traced for 99.3% of the cohort and
1 894 225 person-years of experience were accumu-
lated (Table 1); the largest proportion of experience
by radiation workers is accumulated at Sellafield
(50.5%), followed by Springfields (37%), Capenhurst
(6.8%) and Chapelcross (5.6%).

Operations at the sites studied include uranium pro-
cessing and nuclear fuel manufacture (Springfields);
uranium enrichment (Capenhurst); nuclear fuel repro-
cessing, radioactive waste management and plutonium
processing (Sellafield); nuclear power generation
(Sellafield and Chapelcross); and tritium produc-
tion and processing (Sellafield, Chapelcross, and
Capenhurst). The employment status of each individual
worker was classified as ‘industrial’ or ‘non-industrial’
according to whether they were weekly paid or salaried,

Table 1 Vital status of the cohort as of 31 December 2005

Male Female Total
NRW RW NRW RW

Ind Nonind Ind Nonind Ind Nonind Ind Nonind all

Alive 4073 3558 14 709 11 963 2006 3430 973 2348 43 060

Dead 5420 1221 8560 2460 1292 370 121 138 19 582

Embarked 357 204 605 334 79 105 13 45 1742

LTFU 126 81 102 46 35 35 3 6 434

Total 9976 5064 23 976 14 803 3412 3940 1110 2537 64 818

Person-years 331 596 160 428 667 316 414 254 116 140 121 027 24 762 58 703 1 894 225

LTFU: lost to follow-up; NRW: non-radiation workers; RW: radiation workers; Ind: industrial employees; Nonind: nonindustrial
employees.
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and the radiation exposure status as ‘radiation worker’
or ‘non-radiation worker’ according to whether mon-
itoring and recording of their radiation exposure for
regulatory purposes had been deemed necessary. All
radiation workers were issued with personal dosi-
meters, usually ‘film badges’, to measure external
radiation dose; detailed records are available for each
individual worker.

Radiation workers are further sub-categorized into
‘external radiation workers’ and ‘internal radiation
workers’. The latter category is defined as those
external radiation workers who had ever provided a
biological sample for the purpose of assessing internal
doses. Only the external doses are considered in this
analysis. The radiation doses accumulated by the
cohort are summarized in Table 2.

Only 8.6% of the radiation workers are female, and
they have accumulated only 7.1% of person-years
follow-up for radiation workers and 1.8% of the
collective dose. Accordingly, this study has concen-
trated on the analysis of the mortality experience of
male workers. The mortality experience of female
workers has been reported in a separate study.16

Standardized Mortality Ratios (SMRs) were calcu-
lated in order to compare mortality rates for male
workers with those expected on the basis of mortality
statistics for the northwest region of England,17 after
stratification for age, gender and calendar year.
Mortality experience in bands of cumulative radiation
dose was also compared with the background rate
estimated by stratification on gender, site of employ-
ment, employment status, radiation exposure status,
birth year and attained age. Details of the stratifica-
tion are provided in Supplementary Data B.

Poisson regression models were used to investigate
the relationship between cumulative radiation dose
and cause specific mortality for male radiation work-
ers, using a relatively simple model for excess relative
risk of the form:

Rðb,a,r,i,sÞ ¼ �ðb,a,r,i,sÞ 1 þ ERRðdÞ½ �

Here, R is the cause specific mortality rate and � is the
background mortality rate in the absence of any
effects from radiation exposure. The subscripts b, a, r,
i and s refer respectively to birth cohort, attained age,

radiation exposure status, employment status and site
of employment. ERR(d) is a function of lagged
cumulative external dose, d, describing the excess
relative risk.

The excess relative risks were investigated by use of
the AMFIT routine within the Epicure program,18

using stratification as the means of estimating back-
ground mortality rates in each cell of the person-year
matrix. This method was used to analyse mortality in
terms of both diseases as underlying cause and, for
certain conditions, diseases as either underlying or
contributory cause.

The results discussed below are for the simplest
model, in which excess relative risk is assumed to be
a linear time invariant function of lagged cumulative
radiation dose only. The results of some more
complex analyses, in which excess relative risk is
allowed to vary with attained age, or in which excess
additive risk models are assumed, are presented as
Supplementary Data D.

Results
Internal radiation workers have accumulated higher
external doses, both collectively and individually, than
external radiation workers (Table 2). This reflects the
fact that a high proportion of workers at the Sellafield
site, where both external radiation exposure levels
and the number of individuals exposed are high
relative to the other sites, are monitored for internal
exposure. Mean annual external radiation doses have
declined substantially since 1970 (Figure 1).

The performance of the radiation dosimeters used
has been reviewed as part of a large international
study.19,20 Prior to the early 1960s, the dosimeter type
in use was known to be inaccurate for low-energy
gamma radiation (<200 keV), although at that time
radiation of this energy only accounted for a small
proportion of the doses received by workers. The
newer dosimeters performed better at low energies,
but at the same time exposures to 17 and 60 keV
X-rays in plutonium processing facilities increased,
and in these areas the doses at depths410 mm in the
body are likely to have been overestimated.

Table 2 Distribution of cumulative external radiation dose (radiation workers only)

Male Female Total
Ext RW Int RW Ext RW Int RW

Ind Nonind Ind Nonind Ind Nonind Ind Nonind all

Number 10 717 8170 13 259 6633 622 1935 488 602 42 426

Mean (mS v) 32.8 18.4 85.0 87.1 9.0 6.2 25.8 18.0 53.0

Median (mS v) 5.0 3.9 32.6 33.2 3.7 2.3 13.3 10.7 12.1

99th% (mS v) 439.4 276.9 728.6 704.4 103.5 54.2 161.9 98.8 589.5

Person S v 351.4 150.7 1127.4 577.5 5.6 12.1 12.6 10.8 2248

Ext RW: external radiation worker; Int RW: internal radiation worker.
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Mortality rates for major causes of death (Table 3)
clearly show the expected ‘healthy worker’ effect,21

with SMRs for major causes of death being markedly
lower than standardized regional rates; the reduction
is most marked for respiratory disease. Within the
cohort the major discrimination in mortality rates is
seen for employment status, with industrial employ-
ees having significantly higher mortality, by a factor
of 1.3 (circulatory diseases) to 1.9 (respiratory
diseases), than non-industrial employees.

Much less variation is seen with radiation exposure
status, although there is some indication that the
mortality for non-radiation workers is higher than
that for external or internal radiation workers,
particularly for respiratory disease.

Exploratory analyses22 indicated that higher levels of
significance were attached to trends when calculated
with cumulative doses lagged between 10 and 20
years, and that there was significant inhomogeneity
between the excess relative risks for doses accumu-
lated over the preceding 10–15 years when compared
with that for doses accumulated over the preceding

15–20 or 20þ years. A 15-year lag in cumulative dose
has therefore been used in all the main analyses. For
underlying causes of death in male radiation workers,
strong evidence for trends with cumulative dose were
seen for diseases of the circulatory system [5319
deaths, P (one-sided) < 0.001], driven largely by
ischaemic heart disease (3567 deaths, P< 0.001) and
particularly acute myocardial infarction (2051 deaths,
P< 0.001). When deaths were analysed by both
underlying and contributory cause, evidence for
trends was also observed for cerebrovascular disease
(1365 deaths, P¼ 0.0085), chronic ischaemic heart
disease (2752 deaths, P¼ 0.0023) and diabetes (359
deaths, P¼ 0.0029). The trend for cerebrovascular
disease was driven by ‘ill-defined cerebrovascular dis-
ease’, probably reflecting the lack of precision in
death certificates of distinguishing between ischaemic
and haemorrhagic strokes. Based on these observa-
tions, we consider that most weight should be placed
on the results for excess relative risk of mortality from
circulatory system disease in this cohort as a func-
tion of cumulative radiation dose, although we also
present results for other disease groupings to aid
comparison with other studies.

For all male radiation workers, the excess relative
risk for mortality from circulatory system disease is
0.65 (90% CI 0.36–0.98) Sv�1 on 5319 deaths, and
that for ischaemic heart disease is 0.70 (0.33–1.11)
Sv�1 on 3567 deaths (Table 4). The excess relative
risk of mortality from all non-cancer causes, at 0.52
(0.29–0.77) Sv�1 on 7345 deaths, is driven largely by
that for circulatory system disease.

As internal radiation workers will have also received
doses from internally incorporated radionuclides, and
as our stratification according to industrial or non-
industrial employment status may only crudely reflect
differences in background mortality due to socio-
economic factors, we have also examined the mortal-
ity experience of the four subgroups of radiation
exposure and employment status separately (Table 5,
Supplementary Data C).

Table 3 Standardized mortality ratios for major causes of death in male workers

Standardized mortality ratio (compared with rates for NW England)

All non-cancer Circulatory diseases Respiratory diseases

SMR 95% CI SMR 95% CI SMR 95% CI

Male industrial employees 85 83.1–86.5 89 86.7–91.0 72 68.9–76.2

Non-radiation workers 85 82.7–88.2 87 83.8–90.8 78 72.0–84.0

External radiation workers 85 82.1–88.6 91 86.8–95.2 69 62.2–75.9

Internal radiation workers 84 80.8–86.5 89 85.4–92.8 69 63.2–75.5

Male non-industrial employees 62 59.5–64.4 70 66.5–73.0 38 33.4–42.8

Non-radiation workers 66 61.5–70.5 75 69.4–81.6 41 33.3–50.4

External radiation workers 62 57.9–65.9 69 63.7–74.6 34 26.7–41.7

Internal radiation workers 58 54.3–62.5 65 59.8–70.8 39 31.3–48.4

All male employees 79 77.3–80.1 84 82.1–85.7 64 61.1–67.0
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Table 4 Poisson regression analysis for all male radiation workers, with background stratified on birth cohort, attained age, employment status, site of employment
and radiation exposure status

Observed deaths [expected deaths] by cumulative external dose (mSv), 15-year lag

<10 10–20 20–50 50–100 100–200 200–400 4400 Total
P(H0:

ERR¼ 0)
ERR Sv�1

(90% CI)

Underlying causes

All non-cancersa 3054 [3122.14] 825 [795.10] 1276 [1254.68] 878 [813.52] 596 [551.48] 429 [359.01] 287 [224.80] 7345 [7120.73] <0.001 0.52 (0.29–0.77)

All non-cancersa

ex circulatory
disease

847 [840.94] 225 [225.11] 367 [364.52] 236 [237.48] 168 [155.56] 99 [103.00] 84 [69.03] 2026 [1995.95] 0.28 0.24 (�0.11–0.66)

Respiratory diseases 431 [429.21] 119 [121.85] 200 [199.62] 137 [130.79] 86 [82.10] 55 [51.21] 44 [35.04] 1072 [1049.81] 0.30 0.33 (�0.17–0.99)

Lung Cancer 442 [439.94] 108 [104.56] 154 [161.04] 96 [106.47] 86 [76.45] 56 [53.81] 28 [32.99] 970 [975.26] 40.5 �0.09 (�0.53–0.49)

Digestive diseases 160 [155.89] 30 [34.43] 56 [50.50] 34 [29.86] 15 [19.84] 12 [12.85] 11 [6.91] 318 [310.30] 0.42 0.50 (�0.40–1.95)

Circulatory disease 2207 [2279.60] 600 [569.50] 909 [889.23] 642 [575.17] 428 [394.90] 330 [255.29] 203 [155.64] 5319 [5119.33] <0.001 0.65 (0.36–0.98)

IHD 1532 [1574.35] 394 [375.71] 585 [577.44] 420 [374.77] 287 [258.55] 221 [167.62] 128 [100.43] 3567 [3428.86] <0.001 0.70 (0.33–1.11)

CeVD 387 [401.62] 119 [112.51] 200 [186.28] 120 [121.97] 91 [82.14] 59 [53.25] 42 [32.80] 1018 [990.57] 0.196 0.43 (�0.10–1.12)

Other circulatory
diseases

288 [303.18] 87 [81.16] 124 [125.33] 102 [78.29] 50 [54.04] 50 [34.34] 33 [22.32] 734 [698.66] 0.07 0.83 (�0.10–1.12)

Circulatory ex CeVD 1820 [1877.49] 481 [456.88] 709 [702.81] 522 [453.09] 337 [312.61] 271 [201.97] 161 [122.78] 4301 [4127.62] <0.001 0.72 (0.39–1.10)

Underlying and contributory causes

Diabetes 125 [133.13] 48 [35.68] 54 [57.60] 42 [39.86] 40 [28.99] 26 [20.85] 24 [14.54] 359 [330.64] 0.038 1.15 (0.20–2.56)

Circulatory
diseases

2663 [2731.73] 732 [692.83] 1106 [1095.65] 769 [717.81] 549 [496.16] 400 [327.50] 257 [203.17] 6476 [6264.83] <0.001 0.54 (0.30–0.82)

IHD 1745 [1786.72] 473 [439.96] 678 [682.23] 492 [448.09] 354 [312.77] 259 [204.48] 164 [123.20] 4165 [3997.44] <0.001 0.70 (0.37–1.07)

CeVD 506 [521.21] 152 [146.90] 261 [244.80] 169 [164.34] 130 [110.50] 79 [72.25] 68 [46.97] 1365 [1306.96] 0.02 0.66 (0.17–1.27)

Respiratory diseases 1060 [1086.44] 327 [314.05] 522 [513.13] 356 [344.74] 259 [228.95] 164 [152.59] 125 [99.04] 2813 [2738.93] 0.04 0.40 (0.07–0.79)

IHD: ischaemic heart disease; CeVD: cerebro vascular disease.
aExcluding accidents and violence.
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Table 5 Linear excess relative risk coefficients for the four categories of employment and radiation exposure status

ERR Sv�1 (number of deaths, 90% CI)

External Internal

Cause of death Male Ind Male non-Ind Male Ind Male non-Ind

Test for
homogeneity
�2 (3 df) [P]

Underlying causes

All non-cancersa 0.63 (2600, 0.12–1.22) 0.51 (848, �0.48–1.79) 0.70 (3155, 0.38–1.08) �0.03 (742, �0.39–0.44) 4.49 [0.21]

All non-cancersa

ex circulatory disease
�0.60 (745, <�1.63–0.18) �0.68 (214, <�1.72–0.96) 0.55 (880, 0.006–1.27) 0.61 (187, �0.19–1.92) 5.35 [0.15]

Respiratory disease �1.00 (398, <�1.00–�0.11) 1.41 (83, �1.02–6.71) 0.94 (505, 0.10–2.14) 0.28 (86, <�0.66–2.02) 6.50 [0.090]

Lung cancer 0.06 (348, <�1.2–1.98) 3.78 (72, �0.31–12.29) �0.22 (468, �0.69–0.45) �0.11 (82, <�1.10–1.65) 2.45 [0.49]

Digestive diseases 1.48 (117, <�0.86–5.72) �1.54 (45, <�1.54–0.35) 0.30 (124, �0.77–2.49) 2.20 (32, �0.43–18.01) 3.91 [0.27]

Circulatory disease 1.25 (1855, 0.56–2.08) 1.38 (634, �0.05–3.27) 0.76 (2275, 0.37–1.23) �0.29 (555, <�0.66–0.21) 10.3 [0.016]

IHD 1.69 (1261, 0.78–2.82) 1.45 (434, �0.28–3.91) 0.52 (1494, 0.09–1.06) 0.05 (378, �0.48–0.84) 5.94 [0.11]

CeVD �0.20 (362, �0.94–1.04) 0.31 (105, <�1.99–4.49) 1.47 (456, 0.49–3.00) �0.61 (95, <�0.61–0.11) 8.07 [0.045]

Other circulatory disease 2.23 (232, 0.25–6.44) 2.53 (95, <�1.62–10.33) 0.83 (325, 0.02–2.40) �0.61 (82, <�0.61–0.45) 5.63 [0.13]

Circulatory disease
ex CeVD

1.81 (1493, 0.94–2.87) 1.68 (529, �0.02–3.94) 0.60 (1819, 0.20–1.10) �0.12 (460, �0.56–0.52) 9.62 [0.022]

Underlying and contributory causes

Diabetes 4.88 (111, 1.26–11.50) 0.58 (37, <�2.71–7.87) 0.73 (169, �0.21–2.27) �0.15 (42, <�0.15–3.66) 3.94 [0.27]

Circulatory disease 0.92 (2256, 0.34–1.59) 1.67 (750, 0.38–3.33) 0.55 (2801, 0.22–0.92) �0.007 (669, �0.36–0.86) 6.37 [0.095]

IHD 1.69 (1462, 0.89–2.69) 1.22 (495, �0.24–3.22) 0.50 (1763, 0.11–0.98) 0.14 (445, �0.44–1.03) 6.65 [0.084]

CeVD �0.35 (464, <�1.00–0.68) 0.20 (145, <�1.67–3.41) 1.52 (625, 0.63–2.73) 0.16 (131, �0.51–1.39) 5.86 [0.12]

Respiratory disease 0.24 (1010, �0.43–1.11) 1.55 (266, �0.23–4.24) 0.38 (1301, �0.03–0.88) 0.42 (236, �0.28–1.54) 1.09 [40.5]

IHD: ischaemic heart disease; CeVD: cerebro vascular disease.
aExcluding accidents and violence.
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There is evidence for inhomogeneity in apparent
dose–response for circulatory disease (P¼ 0.016) and
cerebrovascular disease (P¼ 0.045) although the
directions of the differences within the four employ-
ment and radiation exposure status categories vary;
there is no evidence of inhomogeneity in the apparent
dose–response for circulatory system disease amongst
industrial external, industrial internal and non-
industrial external workers [�2(2 df)¼ 1.13, P40.5]
and for these three groups the common ERR is 0.93
(0.52–1.40) Sv�1.

It can be seen that much of the inhomogeneity dis-
cussed above is driven by the mortality experience of
non-industrial employees, particularly in the case of
non-industrial internal radiation workers at high
cumulative dose (Figure 2). It should be noted that,
because of the dose distributions at the different sites,
person-years of follow-up for non-industrial employees
at cumulative doses above 300 mSv are accumulated
almost entirely at Sellafield, particularly for internal
workers, and account for only 0.36% and 2.8% of
the follow-up for external and internal workers,
respectively.

For circulatory system disease, we have examined the
sensitivity of the result to use of differing lag periods

and the alternatives of stratifying for length of service,
or not stratifying for employment status (Table 6). The
results are relatively insensitive to these changes, with
the exception of the results for the four cohort
subcategories when analysed without stratification for
employment status; the differences here simply reflect
the different background mortality rates for industrial
and non-industrial employees, and the proportionally
greater contribution of industrial employees to person-
years of follow-up at high cumulative doses.

We have undertaken numerous additional analyses
to explore alternative empirical descriptions of the
data. These include consideration of attained age as
an effect modifier for excess relative risk, and the use
of excess additive risk models. Details are provided in
Supplementary Data D. However, none of these
satisfactorily resolve the observed inhomogeneity in
apparent dose–response according to employment and
radiation exposure status.

Discussion
SMRs
As already noted, the overall SMRs for the cohort
show clear evidence of a ‘healthy worker’ effect, and
there is a clear difference in the mortality experience
of the industrial and non-industrial employees. In
terms of the definitions from the UK census office in
the 1990s, industrial and non-industrial grades would
correspond broadly to social classes II and IIIM;23 the
observed factor of 1.3–1.9 difference in mortality
between employment grades is consistent with that
reported for these social classes in NW England.24 The
somewhat more marked ‘healthy worker’ effect for
respiratory disease, together with the reduced mor-
tality from respiratory disease in radiation workers
compared with non-radiation workers, suggests that
the restriction placed on smoking in the workplace for
radiation workers has been a significant factor in
reducing the mortality of the cohort. Overall, it is
clear that socio-economic status has a more signifi-
cant influence on mortality in the cohort than does
radiation exposure status.

Table 6 Sensitivity analyses for lag period and stratification

Circulatory disease ERR Sv�1 (90% CI)

Cohort subdivision Main analysis 10-year lag
Stratification on

length of servicea
No stratification on
employment statusb

Industrial external 1.25 (0.44–2.25) 0.89 (0.32–1.57) 1.25 (0.44–2.25) 1.85 (1.10–2.72)

Non-industrial external 1.38 (�0.28–3.70) 1.42 (0.12–3.13) 0.54 (�0.72–2.40) 0.01 (�0.86–1.11)

Industrial internal 0.76 (0.30–1.32) 0.58 (0.25–0.97) 0.76 (0.28–1.34) 1.02 (0.62–1.46)

Non-industrial internal �0.29 (<�0.73–0.33) �0.25 (<�0.76–0.22) �0.39 (<�0.86–0.11) �0.51 (<�0.77–�0.19)

All radiation workers 0.65 (0.31–1.05) 0.50 (0.26–0.79) 0.54 (0.21–0.92) 0.65 (0.36–0.97)

aTwo strata used <15 years or 4¼ 15years service.
bBackground rates determined from all radiation workers, with no stratification for employment status.
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Analysis for trend, linear excess relative risk
co-efficients and linear excess additive risk
co-efficients
The results of the analysis for male radiation workers
show evidence for an association between cumulative
external radiation dose and mortality from circulatory
system disease.

If this association were to reflect a causal effect of
ionizing radiation, it would be a significant factor to
be taken into account in radiation protection as the
implied co-efficient of excess relative risk for mortal-
ity from circulatory system disease amongst all male
radiation workers (0.65 Sv�1, 90% CI 0.36–0.98) is
several times higher than that seen in the A-bomb
survivors, and comparable with the co-efficient of
excess relative risk for mortality from all solid cancers
in the survivors,1 on which current radiological
protection standards are largely based.

However, the inhomogeneity we have observed in
the apparent dose–response amongst the subgroups
divided according to employment and radiation
exposure status requires explanation if a causal
interpretation is to be made. Additional analyses,
including attained age as an effect modifier, and
using an excess additive risk model, rather than an
excess relative risk model, do not satisfactorily resolve
the inhomogeneity (Supplementary Data D). It there-
fore seems unlikely that the inhomogeneity is an
artefact of our approach to the analysis.

We have considered a number of other possible
explanations for these differences in apparent dose–
response. First, it is important to recognize that the
differences in dose–response for non-industrial
employees arise primarily during the person-years of
follow-up at cumulative external doses in excess
of 300 mSv. As already noted, this is only a small
proportion of the total follow-up of the cohort and is,
moreover, accumulated almost entirely by workers at
Sellafield. As a result, factors uncontrolled for in the
present analysis need only act on a specific and
relatively small proportion of the cohort to produce
the inhomogeneity observed.

The cohort shows evidence of a pronounced healthy
worker effect. Whilst the initial effects of selection
into employment may diminish with time,21 there
may also be a continuing selection process such that
those who remain employed tend to be healthier than
those who leave employment (the ‘healthy worker
survivor effect’), leading to attenuation of the
exposure–response relationship.25 Internal radiation
workers tend to have greater length of service than
external workers and could be more affected by this
differential selection, but stratification on length of
service has no material effect either on the overall
dose–response for circulatory system disease, or the
apparent differences in dose response between groups
(Table 6).

As the radiation dose from internally incorpo-
rated radionuclides has not been included in the

present analysis, there may well be a greater degree
of exposure misclassification for the internal
workers than is the case for the external workers.
Substantial non-differential misclassification of expo-
sure often (but not always) attenuates the association
between exposure and mortality,26,27 so this effect
may at least contribute to the apparent discrepancy.
However, as the cumulative radiation doses to
internal workers must be negatively biased due to
the exclusion of their internal dose, and the currently
estimated excess relative risk coefficients therefore
positively biased by this effect, it seems unlikely that
exposure misclassification alone could explain the
inhomogeneity.

As already noted, it is likely that the external doses
recorded for workers in plutonium plants at Sellafield
from the 1960s onwards are likely to be overestimates
of the true dose at depth in the body; levels of
individual dose were reduced substantially in the
1980s as newer process plant with better shielding
against low-energy X-rays was introduced. This would
certainly be an important effect for some of the
internal workers with high cumulative doses, as the
recorded dose rates in the older plutonium process
plants were close to the statutory limit of 50 mSv a�1.
If non-industrial employees from these areas made a
disproportionate contribution to follow-up at high
cumulative doses, this may provide a partial explana-
tion for the observed inhomogeneity.

Selection effects may provide an alternative expla-
nation for the observed inhomogeneity. During the
early 1980s employees who had been working in a
number of areas at the Sellafield site, and previously
classified as external radiation workers, were desig-
nated as requiring monitoring for internal exposure to
plutonium. As a consequence, in terms of our
analysis, they changed from ‘external’ to ‘internal’
workers. Although the number of individuals involved
is small relative to the cohort as a whole, it is just
possible that selection effects from this change may
have influenced the mortality statistics for internal
radiation workers with high cumulative doses.

These latter two possible explanations cannot be
investigated rigorously with the current structure of
our database, as details of the work location of
individuals are not captured; further work is required
to investigate these issues.

Possible confounding factors not controlled for in
the present analysis
Confounding may account for some or all of the
apparent dose–response for ionizing radiation, and if
that were to be the case it would not be surprising to
see inhomogeneities in the apparent response to
radiation for the four subgroups.

The absence of a trend in lung cancer mortality with
external radiation dose makes it unlikely that smok-
ing is a significant confounder in the trend for
circulatory system disease, particularly as smoking
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increases the risk of lung cancer by a much greater
factor than it increases the risk of circulatory system
disease.28 As diabetes and ischaemic heart disease
have many lifestyle risk factors in common, the
significant trend for diabetes as an underlying and
contributory cause of death for all radiation workers
does raise the possibility of confounding by lifestyle
factors other than smoking.

As already noted, socio-economic status as indi-
cated by the employment status of ‘industrial’ or
‘non-industrial’ is an important discriminating factor
for mortality experience in this cohort. Socio-eco-
nomic status is an important indicator for many of
the known risk factors for circulatory system disease,
including smoking, diabetes, obesity, elevated blood
pressure and high levels of blood low-density lipo-
protein.7 In the absence of detailed information on
these specific risk factors, the present study has
controlled for socio-economic status to some degree
by using the two categories of employment status, but
there will inevitably be gradation within them that
may lead to residual confounding.

Many studies have associated shift work with
an increased risk of mortality from circulatory
disease.29–32 Although socio-economic status may
account in whole or in part for this association33,34

there is evidence that shift work affects metabolism,
leading to low levels of HDL cholesterol and elevated
levels of triglycerides in blood, which are important
markers of risk for circulatory system disease.35 Shift
work is also commonly associated with elevated levels
of stress,36 which is an additional risk factor for
circulatory system disease. Although a case–control
study of employees at Sellafield failed to find evidence
of enhanced circulatory system mortality in shift
workers,37 the number of cases studied was only a
small fraction of the total number of deaths from
circulatory system disease in the present cohort. Shift
work is likely to be correlated with radiation dose,
and is therefore a potential confounder in this study;
information on shift work status is not held in our
present database.

In addition to shift work and workplace stress,
linkages between occupational exposure and circula-
tory system disease have been identified, or sug-
gested, for low-frequency electromagnetic fields,38,39

carbon disulphide,40–43 carbon monoxide, polycyclic
aromatic hydrocarbons and airborne particulates,44–49

solvents,50–55 noise,56,57 lead58,59 and (for environ-
mental exposure) arsenic.60,61 However, there is no
reason to suppose that exposures of the cohort to
these substances are both substantial and correlated
with external radiation dose. For the earliest joiners,
the linkage between exposure to nitroglycerine and
nitrotoluenes in munitions manufacture and heart
disease31,62 may be of some relevance as the sites
were all either used for, or located close to, major
World War II munitions facilities. However, it appears
that effects may not persist for long after exposure

ceases63–65 so that a lasting effect on the mortality
experience of the cohort is unlikely.

In summary, it is possible that a combination of
gradation in the adverse lifestyle factors associated
with socio-economic status, together with stress and
other factors possibly associated with shift work, may
at least contribute to the apparent dose–response for
cumulative external radiation dose. Significant con-
founding by other occupational factors is unlikely.

Relationship to other studies of non-cancer
mortality and ionizing radiation
The principal evidence for an association between
radiation dose and non-cancer mortality comes from
the Life Span Study of the survivors of the A-bomb
attacks at Hiroshima and Nagasaki.1–4 The A-bomb
survivors were acutely exposed to gamma and
neutron radiation, with doses in the study group
ranging up to 4 Sv. For those exposed closest to the
hypocentres of the explosions, a pronounced ‘healthy
survivor’ effect, in which baseline mortality rates were
markedly reduced in the first two decades following
the attacks, was seen. Having adjusted for this effect,
the dose–response was adequately described by a
linear excess relative risk model, and risk coefficients
were comparable with the major non-cancer causes of
death, with coefficients (Sv�1) and 90% confidence
intervals as follows: heart disease, 0.17 (0.08–0.26);
cerebrovascular disease 0.12 (0.02–0.22); respiratory
disease 0.18 (0.06–0.32); digestive disease 0.15
(0.00–0.32).1 This broad pattern of response is similar
to that seen for all male radiation workers, albeit with
higher-risk co-efficients, in the present study
(Table 4).

The radiation doses received by the A-bomb survi-
vors were acute and ranged up to an order of
magnitude higher than the chronic cumulative exter-
nal exposures received in the present study. Three
recent reviews have examined the epidemiological
evidence on circulatory system disease at low and
moderate doses of radiation, including chronic expo-
sures.5,7,8 In essence, the epidemiological evidence is
not consistent. Thus, McGale and Darby5 conclude
that out of the six studies identified with appreciable
power to detect effects comparable with those seen in
the atomic bomb survivors, and apparently free of
substantial bias or confounding, only one66 shows
clear evidence of a trend in circulatory system disease
with increasing radiation dose. Whilst some limited
support is provided by other studies with lower power
and/or the possible presence of confounding fac-
tors,67–69 McGale and Darby were unable to reach
any firm conclusion on the evidence then available.
Likewise, Little et al.7 find the epidemiological
evidence inconsistent. Considering many of the
studies reviewed by McGale and Darby, they note
that the risk co-efficients derived, or implied, by the
studies vary over two orders of magnitude. Little et al.
draw particular attention to the lack of adjustment for
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socio-economic status in the majority of the studies
reviewed, which leaves them vulnerable to confound-
ing. UNSCEAR8 conclude that the scientific data are
not at present sufficient to conclude that there is a
causative relationship between circulatory system
disease and exposure to ionizing radiation at doses
less than about 1–2 Gy; in its most recent review the
US Committee on the Biological Effects of Ionizing
Radiation concluded that non-cancer risks at low and
moderate doses were especially uncertain, and devel-
oped no risk estimates for them.9

Most recently, Vrijheid et al.6 have reported on the
non-cancer mortality experience of a combined cohort
of occupationally exposed subjects from 15 countries;
the mortality experience of external radiation workers
within the BNFL cohort over the period 1955–1992 is
included within the UK subcohort in their study.
Vrijheid et al. report apparent excess relative risks per
Sv of cumulative exposure that are positive, but with
confidence intervals that include zero [at 15 years lag
all non-cancer causes 0.53 (95% CI –0.09–1.25) Sv�1;
circulatory diseases 0.48 (95% CI –0.23–1.31) Sv�1].
They conclude that their study gives little evidence for
a relation between mortality from non-malignant
diseases and external radiation dose in these occupa-
tionally exposed cohorts, but that risks of the same
order of magnitude as those found in the A-bomb
survivors cannot be excluded. Our results for the
apparent excess relative risk per Sv, whilst higher
than those of Vrijheid et al., appear to be statistically
compatible with them. Vrijheid et al. exclude workers
monitored for internal radiation from their analysis;
these workers contribute a high proportion of the
experience at high cumulative dose in our study.
Moreover, our follow-up period is more extended than
that of Vrijheid et al.; a per caput average of 27.5
compared with 14.8 years, and a mean age at end of
follow up of 57.6 years, compared with 46 years.

Consideration of possible biological mechanisms for
non-cancer mortality arising from radiation exposure,
as addressed in two recent reviews,7,70 has been
limited to cardiovascular disease. For acute radiation
doses above 1–2 Gy a number of mechanisms,
including damage to the endothelial cells in capillaries
or larger blood vessels and the up-regulation of
inflammatory processes that initiate or promote the
process of atherosclerosis, can account for the
enhanced mortality seen in both the A-bomb survi-
vors with higher doses and patients receiving high
doses to the heart in radiotherapy procedures.
Mechanisms that could account for increases in
cardiovascular mortality arising from protracted expo-
sure at occupational levels are at present tentative.
Those that have been suggested include the observa-
tion that the proliferation of smooth muscle cells in
atherosclerotic plaques is monoclonal in nature,71,72

raising the possibility that radiation induced muta-
genesis may be a causative pathway;7 or the finding
that atherosclerotic plaques unrelated to radiation

show evidence of genomic instability,73–75 raising the
possibility that radiation induced genomic instability
may be a causative pathway.70 Against these possible
mechanisms, it may also be significant that, whilst
acute doses above 1 Gy are pro-inflammatory, lower
doses have long been recognized as having a
beneficial anti-inflammatory action and could con-
ceivably slow the progression of circulatory system
disease.7,76

In summary, epidemiological evidence for enhanced
non-cancer mortality in other studies of chronic
exposure to radiation is inconsistent, and biological
mechanisms that could account for such enhance-
ment, whilst conceivable, are at present tentative.

Conclusions
We have found evidence for an association between
mortality from non-cancer causes of death, particu-
larly circulatory system disease, and external exposure
to ionizing radiation in this cohort. As such, this adds
to the evidence of similar associations from other
studies. However, the tentative nature of biological
mechanisms that might explain such an effect at low
chronic doses, and the inhomogeneity in apparent
dose–response according to employment and radiation
exposure status, mean that the results of our analysis
are not consistent with any simple causal interpreta-
tion. Before any firm conclusions can be drawn,
further work is required; this is likely to involve a
detailed investigation of the possible role of factors
associated with socio-economic status and shift work-
ing, more detailed examination of work histories and
the potential for measurement biases in dosimetry,
and consideration of the dose from internally incor-
porated radionuclides.

Supplementary data
Supplementary data are available at IJE online.
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There is compelling evidence that ionizing radiation
can increase the risk of heart disease. An overview of
63 trials including 32 800 women with early breast
cancer1 found that the death rate from heart disease
in women randomized to radiotherapy was 27%
higher than that for women randomized to no radio-
therapy (SE 7%, 2p¼ 0.0001). Irradiated women
in these trials received 1–20 Gy mean cardiac dose,2

depending on the technique used and the laterality of
the tumour, typically in about 20 fractions.

Breast cancer radiotherapy techniques have changed
since many of the women in these trials were irradi-
ated and mean cardiac doses have reduced. However,
the heart still usually receives some dose. A detailed
study of cardiac doses from adjuvant tangential breast
cancer radiotherapy in 2006 in a major UK radio-
therapy centre found that about half the women with
left-sided tumours received doses of 20 Gy or more to
a small part of the heart, usually including the left
anterior descending coronary artery.3 In addition,
most of the heart volume received 41 Gy dose from

scattered irradiation in both left- and right-sided
breast cancer. In this study of breast cancer
patients in 2006, mean dose to the whole heart was
2.3 Gy on average for left-sided breast cancer
and 1.5 Gy on average for right-sided breast cancer.
The long-term implications of such doses are, as
yet, unknown.

Breast cancer is the commonest cancer in women,
with around a million new cases diagnosed each year
worldwide. Five-year survival is �80% in many
countries and there are now many millions of breast
cancer survivors. Radiotherapy has been shown to
reduce the risk of recurrence and death from breast
cancer. The trials have also shown that radiotherapy
can reduce 15-year overall mortality following breast
conserving surgery and following mastectomy in
node-positive disease,1 but much uncertainty still
remains regarding the long-term overall effect from
modern breast cancer radiotherapy. If the relationship
between cardiac radiation dose and the long-term risk
of heart disease were known, then it would be
possible to compare the likely long-term benefit of
radiotherapy on the breast cancer with the likely
long-term risk of radiation-induced heart disease, and
tailor the treatment accordingly. For example, if the
risk of radiation-induced heart disease were judged to
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