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Candida oleophila is an effective biocontrol agent used to control post-harvest
diseases of fruits and vegetables. C. oleophila I-182 was the active agent used in
the first-generation yeast-based commercial product, Aspire R©, for post-harvest disease
management. Several action modes, like competition for nutrients and space, induction
of pathogenesis-related genes in host tissues, and production of extracellular lytic
enzymes, have been demonstrated for the biological control activity exhibited by
C. oleophila through which it inhibits post-harvest pathogens. In the present study,
the whole genome of C. oleophila I-182 was sequenced using PacBio and Illumina
shotgun sequencing technologies, yielding an estimated genome size of 14.73 Mb.
The genome size is similar in length to that of the model yeast strain Saccharomyces
cerevisiae S288c. Based on the assembled genome, protein-coding sequences were
identified and annotated. The predicted genes were further assigned with gene ontology
terms and clustered in special functional groups. A comparative analysis of C. oleophila
proteome with the proteomes of 11 representative yeasts revealed 2 unique and 124
expanded families of proteins in C. oleophila. Availability of the genome sequence will
facilitate a better understanding the properties of biocontrol yeasts at the molecular level.

Keywords: biocontrol agent, Candida oleophila, genome assembly, genome annotation, post-harvest disease
management

INTRODUCTION

The use of biocontrol yeasts to manage post-harvest diseases of fruits and vegetables has been
actively investigated (Droby et al., 2016; Wisniewski et al., 2016; Contarino et al., 2019). Among
the antagonistic yeasts, Candida oleophila has been reported to be an effective biocontrol agent
against several post-harvest pathogens that cause decay in a variety of fruits, including apple
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(El-Neshawy and Wilson, 1997), grapefruit (Droby et al.,
2002), kiwifruit (Wang et al., 2018), banana (Bastiaanse et al.,
2010), and pear (Nie et al., 2019). C. oleophila I-182 was
the active agent in the first yeast-based commercialproduct,
Aspire R©, for the management of post-harvest diseases (Droby
et al., 1998). Although the product is no longer available,
another strain, C. oleophila strain O, has since been used
to develop a new post-harvest biocontrol product, Nexy R©

(Massart and Jijakli, 2014). Several modes of action for the
biocontrol activity of C. oleophila I-182 have been demonstrated,
including competition for nutrients and space (El-Neshawy
and Wilson, 1997), induction of pathogenesis-related genes
and proteins (Droby et al., 2002; Liu et al., 2013), oxidative
stress tolerance (Wang et al., 2018), production of extracellular
lytic enzymes (Bar-Shimon et al., 2004) and superoxide anion
production (Macarisin et al., 2010). Additionally, a suppressive-
subtractive hybridization (SSH) cDNA library that identified
several antioxidant genes associated with biocontrol activity and
stress tolerance in C. oleophila I-182 was also constructed (Liu
et al., 2012). Information on its genome sequence, assembly, and
annotation, however, is currently lacking.

The genome sequences of two biocontrol yeasts
Metschnikowia fructicola (strains 277 and AP47) (Piombo
et al., 2018), and a plant growth-promoting endophytic yeast,
Rhodotorula graminis (strain WP1) (Firrincieli et al., 2015) have
been previously reported. Genome sequence information is a
valuable reference for determining the sequences of putative
“biocontrol/growth-promoting related” genes in different
species of yeasts, characterizing gene clusters with known
and unknown functions, as well as for identifying global
changes in the expression of gene networks rather than just
specific, targeted genes. A full genome sequence also enables
one to conduct comparative genomic analyses among closely
related yeast species that do not exhibit biocontrol properties
(Massart et al., 2015).

In the present study, the whole genome of C. oleophila strain
I-182 was sequenced and assembled using a combination of both
PacBio and Illumina sequencing platforms. Results indicate that
the size of the C. oleophila genome is approximately 14.13 Mb and
contains 5,615 protein-encoding genes. The genome sequence,
assembly, and annotation can be used to further elucidate the
molecular mechanism underlying the biocontrol activity of yeast
antagonists against several higher fungi responsible for causing
decay in harvested fruits and vegetables.

MATERIALS AND METHODS

Sample Collection and Cell Culture
The type-culture of the biocontrol yeast, C. oleophila I-182
(ATCC R© MYA-1208TM), originally isolated from the surface of
tomato fruit (Wilson et al., 1993), was grown in a yeast-peptone-
dextrose (YPD) broth (10 g of yeast extract, 20 g of peptone, and
20 g of dextrose in 1 L of distilled water). Twenty milliliters of
YPD broth was placed in 50-mL conical flasks and inoculated
with C. oleophila at an initial concentration of 105 cells/mL. Yeast
cultures were incubated at 25◦C for 48 h at 200 r.p.m. The yeast

cells were pelleted by centrifugation at 8,000 g for 2 min, and
subsequently washed three times with sterile distilled water to
remove any residual medium. Approximately, 2 g (fresh weight)
of yeast cells were used for DNA extraction as described below.

DNA Extraction and Genome Sequencing
PacBio sequencing-genomic DNA of C. oleophila was prepared
as previously described (Pirone-Davies et al., 2015). High
molecular weight (HMW) genomic DNA was extracted and
sheared into fragments approximately 20 kb in size using
g-Tubes (Covaris, Inc., Woburn, MA, United States) according
to the manufacturer’s instructions. The fragment ends were
subsequently repaired and ligated with the connector of a hairpin
structure to form a dumbbell structure called SMRTbell. The
SMRTbell library was constructed using a DNA Template Prep
Kit 1.0 and the 20-kb insert library protocol (Pacific Biosciences,
Menlo Park, CA, United States). Size selection was performed
with BluePippin (Sage Science, Beverly, MA, United States). The
resulting library was sequenced using P6/C4 chemistry on a
PacBio R© RS II Sequencer System (Pacific Biosciences), with a
240-min collection protocol along with stage start.

For next-generation sequencing (NGS), genomic DNA was
extracted and fragmented into random sizes using CovarisTM

S2 (Covaris, Inc.). The overhangs generated from fragmentation
were converted into blunt ends using Illumina’s Genomic DNA
Sample Preparation kit (Illumina, San Diego, CA, United States).
After adding an ‘A’ base to the 3′ end of the blunt phosphorylated
DNA fragments, adapters were ligated to the ends of the
DNA fragments. The desired DNA fragments were selected
by gel-electrophoresis and amplified by PCR. Two, paired-end
Illumina libraries with insert sizes of 300 and 10,000 bp were
prepared and subsequently sequenced on an Illumina HiSeq 2500
system (Illumina).

Genome Assembly and Error Correction
Prior to genome assembly, the size of the genome, degree of
heterozygosity and the level of gene duplication were estimated
by k-mer analysis using GenomeScope (Vurture et al., 2017). The
genome was assembled using a de novo approach. Illumina reads
of different insert size were first trimmed with Trimmomatic
v. 0.36 to remove low quality reads (Bolger et al., 2014).
Sequence data obtained from the PacBio long-read sequencing
were analyzed using the SMRT Link pipeline version 5.1.0 and
the HGAP program version 3.0 (Chin et al., 2013). In the HGAP
protocol, the parameters of minimum sub-read length cutoff
and target coverage were set at 5,000 kb and 20X, respectively.
The obtained contigs were corrected and assembled using Canu
version 1.7 (Koren et al., 2017). Finally, the assembly was polished
using the Quiver tool (Chin et al., 2013) and further corrected
using the high-quality, cleaned Illumina reads and Pilon version
1.22 (Walker et al., 2014).

Genome Annotation
After obtaining the assembled genome, the distribution of
functional elements was primarily annotated using homology-
based predictions. The repeat-masked genome sequences were
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identified by RepeatMasker (Saha et al., 2008), and protein-
coding genes were predicted by GeneScan (Burge and Karlin,
1997). A homologous sequence search was performed through
alignment with the yeast S288c genome downloaded from
Saccharomyces genome database (SGD1) using the BLASTN
program with an E-value cutoff 1e-5. Annotation of the predicted
genes was performed by querying against a number of nucleotide
and protein databases, including non-redundant (nr), Swiss-Prot,
TrEMBL, KEGG, COG, P450, VFDB, ARDB, TF, CAZY, PHI,
IPR, and T3SS (E-value = 1e-5). Gene ontology (GO) terms were
assigned to the annotated genes using the Blast2GO pipeline
(Ashburner et al., 2000). Conserved domains within the predicted
protein sequences of C. oleophila were identified by comparison
against datasets from the Pfamand InterPro databases. Secondary
metabolite clusters were predicted using the antiSMASH tool
(Weber et al., 2015). Non-coding RNAs were also identified
using the Infernal tool (Nawrocki and Eddy, 2013). To ensure
the biological relevance, the results with the highest quality
alignment were selected and retained for the annotation of all of
the identified genes.

Gene Family Identification and Genome
Evolution
The OrthoFinder package ver. 2.2.7 (Emms and Kelly, 2015)
was used to identify and compare gene families present in
C. oleophila I-182 and 11 other representative yeast species,
including Candida maltosa Xu316, Candida tenuis ATCC 10573,
Debaryomyces hansenii CBS 767, Lachancea thermotolerans CBS
6340, M. fructicola CBS 8853, Pichia kudriavzevii str. 129, Pichia
membranifaciens NRRL Y-2026, Saccharomyces cerevisiae S288c
R64-1-1, Tetrapisispora phaffii CBS 4417, Torulaspora delbrueckii
CBS 1146, and Wickerhamomyces anomalus NRRL Y-366-8. The
protein sequences of these species were downloaded from the

1https://www.yeastgenome.org/

TABLE 1 | Summary of the sequencing data obtained with PacBio and Illumina
technology and used for the genome assembly of C. oleophila I-182.

Sequencing PacBio RS II Illumina

platform
300 bp library 10,000 bp library

Raw data 1,516 Mb 862 Mb 1,259 Mb

Clean data 1,509 Mb 741 Mb 699 Mb

Read number 103,064 5,749,278 8,397,144

TABLE 2 | The details of genome assembly statistics for C. oleophila.

Assembly Scaffold Contig

Total number 8 10

Total length 14,129,745 14,129,104

N50 length 2,030,489 1,848,245

N90 length 1,455,442 1,455,442

Maximum length 3,488,600 2,315,880

Minimum length 74,302 1,795

GC content 39.39 39.39

EnsemblFungi database2. Species-specific proteins, as well as their
protein families, were determined based on their presence or
absence in a given species. The dynamic evolution (expansion
and contraction) of orthologous protein families was explored
with Computational Analysis of gene Family Evolution (Café
3.1) (de Bie et al., 2006) using probabilistic graphical models.
Evolutionary relationships among the 12 examined yeast species
were resolved with the Randomized Accelerated Maximum
Likelihood package (RAxMLversion 8) (Stamatakis, 2006) using
538 single-copy and high-quality orthologous members. The
generated phylogenetic tree was visualized using MEGA version
10 (Kumar et al., 2018).

RESULTS AND DISCUSSION

Sequence Data
The availability of the whole genome sequence of microbial
biocontrol agents will facilitate a more comprehensive
understanding of the mode of action at a molecular level
(Druzhinina et al., 2011). In the present study, an assembly of
the genome of C. oleophila I-182 was achieved by combining
the long but relatively low-quality PacBio reads, with the shorter
but higher quality Illumina reads using a complex approach. As
a result, a high-quality genome sequence of C. oleophila I-182
was constructed. The assembled gapless and near-complete
genome is equivalent in length to that of the model yeast species,
S. cerevisiae S288c (∼12.2 Mb3), but much less than the size of
another biocontrol species M. fructicola (∼26 Mb; Piombo et al.,
2018). Three SMRT cells were constructed and sequenced on the
PacBio RS II Sequencer providing up to 1,516 Mb of sequence
data. A total of 103,064 reads with a mean and median length
of 14,713 and 21,808 bp, respectively were generated. Illumina
sequencing technology of two paired-end Illumina libraries with

2https://fungi.ensembl.org/
3https://www.yeastgenome.org/

TABLE 3 | Annotation of the predicted genes using a variety of databases.

Database Full name Count %

nr Non-redundant protein database 4,779 85.11

Swiss-Prot The UniProtKB/Swiss-Prot database 2,839 50.56

KEGG Kyoto encyclopedia of genes and genomes 3,162 56.31

GO Gene ontology 3,745 66.69

COG Cluster of orthologous groups of proteins 727 12.94

P450 Fungal cytochrome P450 349 6.21

VFDB Virulence factors of pathogenic bacteria 37 0.65

ARDB Antibiotic resistance genes database 1 0.01

TF Transcription factor database 255 4.54

TrEMBL Translated EMBL nucleotide sequence data library 4,751 84.61

CAZY Carbohydrate-active enzymes database 103 1.83

PHI Pathogen host interactions 468 8.33

IPR The interpro database 4,881 86.92

T3SS Type III secretion system effector protein 2,072 36.9

Total 5,356 95.38
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FIGURE 1 | (A) Percent distribution of E-value from the alignment of Candida oleophila predicted genes with available sequences in the nr database. (B) Species
distribution of the top BLAST hits for the best alignment of C. oleophila predicted genes against the nr database.

insert sizes of 300 and 10,000 bp was also utilized producing a
total of862 and 1,259 Mb of raw sequence data for the small and
large fragments, respectively comprising 5,749,278 and 8,397,144
reads respectively. After removal of the adaptor sequences and
filtering out low quality reads, approximately 741 and 699 Mb
high-quality cleaned sequences were obtained for the small and
large fragments (Table 1). The raw sequencing data have been
deposited at the Sequence Read Archive of NCBI database, under
the accession number PRJNA5114094.

Genome Size and Assembly
A k-mer analysis of the sequence data indicated that the estimated
size of the C. oleophila genome was 14.73 Mb. Thus, the
clean data generated from the PacBio and Illumina sequencing
platforms represented 107 × and 101 × coverage of the
genome, respectively.

The clean, high-quality sequences from each platform were
first independently assembled and optimized after multiple

4http://www.ncbi.nlm.nih.gov/bioproject/PRJNA511409

adjustments. The two assemblies were then merged to improve
contiguity using the Quickmerge tool (Chakraborty et al., 2016).
This resulted in the construction of a high-quality genome
consisting of 10 contigs with an N50 of 1,848,245 bp. The
resulting contigs were then further assembled into 8 scaffolds by
mapping the genome against the yeast S288c reference genome
(SGD5). Thefinal size of the C. oleophila genome in the released
version was 14.13 Mb. Details of the genome assembly statistics
are presented in Table 2.

Gene Prediction and Annotation
Functional genes were predicted based on homologous sequence
searching. As a result, 5,615 protein-encoding genes with 8,004
exons were identified. The average length of these gene sequences
is 1,683 bp, and the average number of exons per gene is 1.43.
Of the 5,615 genes identified in the C. oleophila genome, 4,779,
2,839, 3,162, 3,745, and 727 were aligned to the nr, Swiss-Prot,
KEGG, GO, and COG databases, respectively, using an E-value

5https://www.yeastgenome.org/
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cutoff of 1e-5. The statistics regarding gene annotation from
the P450, VFDB, ARDB, TF, TrEMBL, CAZY, PHI, IPR, and
T3SS databases are also listed in Table 3. After eliminating the
redundancy of genes listed in different databases, a total of 5,356
genes were annotated at least once, covering up to 95.39% of the
identified gene sequences.

A total of 4,779 of the annotated genes were present in
the nr database, accounting for approximately 89.23% of the
total number of annotated genes. A statistical analysis of
the distributed E-value revealed that 83.89% of the mapped
sequences have strong homologies (E-value < 1e-80) to
sequences available in the nr database (Figure 1A). The
species distribution of the top BLAST hits for the best
alignment in the nr database is presented in Figure 1B.
The species with the highest percentage of homologous
genes were D. hansenii CBS767 (29.65%), Debaryomyces
fabryi (28.75%), Scheffersomyces stipitis CBS 6054 (11.84%),
Meyerozyma guilliermondii ATCC 6260 (6.32%), Millerozyma
farinosa CBS 7064 (3.98%), Clavispora lusitaniae ATCC 42720
(2.43%), Spathaspora passalidarum NRRL Y-27907 (2.41%),
C. tenuis ATCC 10573 (1.84%), C. maltosa Xu316 (1.36%), and
Candida auris (1.34%).

Homologies within the Swiss-Prot database were also assessed
by manual curation, consequently representing high quality
and accuracy. As a result, 2,839 genes were identified and
annotated within the Swiss-Prot database, all of which had
also been identified and annotated within the nr database.
Additionally, 3,162 and 727 genes were mapped to 372 KEGG
pathways and 21 COG categories, respectively. The KEGG
pathways for ‘metabolic pathways’ represented the largest group,
followed by ‘biosynthesis of secondary metabolites,’ ‘biosynthesis
of antibiotics,’ ‘microbial metabolism in diverse environments,’
and ‘biosynthesis of amino acids’ (Supplementary Table S1).
The categories of genes most frequently mapped to the21

COG categories, included ‘translation, ribosomal structure, and
biogenesis,’ ‘amino acid transport and metabolism,’ ‘energy
production and conversion,’ ‘post-translational modification,
protein turnover, chaperones,’ and ‘carbohydrate transport and
metabolism’ (Figure 2).

A total of 3,745 genes could be assigned to at least one
GO category using the Blast2GO pipeline. Among them,
2,618 genes were classified in the biological process category,
1,400 genes were classified in the cellular component category,
and 3,152 genes were classified in the molecular function
category. A total of 44 functional GO terms were annotated
(Figure 3). For each of the three main categories, the dominant
GO terms were ‘metabolic process’ (in ‘biological process’),
‘cell or cell part’ (in ‘cellular component’) and ‘binding’
(in ‘molecular function’). In contrast, relatively few genes
representing ‘locomotion’ (in ‘biological process’), ‘nucleoid’
(in ‘cellular component’) and ‘molecular carrier activity’ (in
‘molecular function’) were identified.

In addition to protein-encoding genes, non-coding sequences
are also involved in many cellular processes. In the present
study, rRNA, tRNA, sRNA, snRNA, and miRNA sequences
present in C. oleophila were identified using the Infernal
tool (Nawrocki and Eddy, 2013). The statistics of their
copy number and sequence length is shown in Table 4.
Additionally, a total of 431.35 kb repeat sequences were also
identified in the genome of C. oleophila by RepeatMasker
(Saha et al., 2008).

The high integrity of the assembled genome enabled the
identification and annotation of a large number of protein-
coding genes through the use of multiple annotation approaches.
A comparison of annotated genes between I-182 and S288c
revealed a number of variations in protein-coding genes, which
could be relevant to functional properties and gene evolution
in C. oleophila.

FIGURE 2 | Distribution of 727 predicted genes in C. oleophila and 21 different COG functional categories.
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FIGURE 3 | GO classification of all the identified genes in C. oleophila was summarized as three main categories: biological process, molecular function and cellular
component.

Frontiers in Microbiology | www.frontiersin.org 6 February 2020 | Volume 11 | Article 295

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00295 February 22, 2020 Time: 12:13 # 7

Sui et al. Genome of Antagonistic Yeast

TABLE 4 | Statistics of different types of ncRNA in the C. oleophila genome.

Type Copy Average length (bp) Total length (bp) % in Genome

tRNA 246 79 19,159 0.1356

rRNA 19 1,900 36,107 0.2555

sRNA 100 72 7,219 0.0511

snRNA 38 110 4,162 0.0295

miRNA 132 56 7,417 0.0525

FIGURE 4 | Venn diagram indicating the number of shared and specific gene
families among C. oleophila and 11 other representative yeast species. The
number in the middle white circle indicates the number of shared families (no
parentheses) and the number of shared genes (parentheses). In each of the
colored section the number of unique gene families (no parentheses) is
indicated and the number of genes within the species-specific families
(parentheses) is indicated. Three-letter acronym for the abbreviation of
each species.

Gene Families and Evolution
To explore the genomic basis of species adaptation during
evolution, the identified proteome of C. oleophila was
compared to the proteome of 11 other representative
yeasts. The yeast species were selected based on their use
as a model organism (S. cerevisiae) or because of their
reported use as a biocontrol agent against a variety of
plant diseases. The latter includes C. maltosa, C. tenuis,
D. hansenii, L. thermotolerans, M. fructicola, P. kudriavzevii,
P. membranifaciens, T. delbrueckii, T. phaffii, and W. anomalus.
The analysis identified a total of 6,383 orthologous protein
families comprising 66,461 proteins. The comparison further
identified 36,833 proteins belonging to 2,529 families that
were shared among all 12 yeasts, representing a core set of
ancestral clusters. In contrast, 229 proteins belonging to two
different families were found to be specific to C. oleophila,
suggesting that they may play a unique biological function

FIGURE 5 | Expansion and contraction of gene families among the 12 yeast
species. Phylogenetic tree was constructed based on 538 high-quality 1:1
single-copy orthologous genes. The numerical values on each branch of the
tree represent gene families undergoing gain (red) or loss (green) events. Gene
families predicted in the most recent common ancestor (MRCA) was 6,383.
Three-letter acronym for the abbreviation of each species name.

or have a specific phytochemical property within this species
(Figure 4). Functional enrichment analysis based on the GO
annotation revealed that the specific proteins in C. oleophila
tended to possess NADH dehydrogenase (ubiquinone) activity
(GO:0008137) and glutathione peroxidase activity (GO:0004602)
(Supplementary Table S2).

The expansion and contraction of gene families in yeast
species are crucial driving forces of lineage splitting and
physiological diversification (Papp et al., 2003). Therefore,
gene families that had experienced discernible changes
and adaptive evolution along divergent branches were
characterized. Particular emphasis was placed on C. oleophila
as representing a biocontrol agent. A phylogenetic analysis
was also performed to discern the evolutionary relationships
among multiple species. Results indicated that among the
6,383 gene families inferred to be present in the most recent
common ancestor (MRCA) of the 12 examined species
of yeasts, 124 families were expanded in C. oleophila
(Figure 5). GO annotation of 346 genes from 69 families
with significant expansions (P < 0.05) revealed that they
were primarily enriched in functional categories related
to cell adhesion (in ‘biological process’) and coenzyme
binding (in ‘molecular function’), which provided interesting
information on the metabolic network architecture in this species
(Supplementary Table S3).

Functional analysis of the specific and expanded gene
families could potentially provide important information
on the biocontrol mechanisms of C. oleophila. For example,
yeast biofilms formed by the secretion of a extracellular
matrix that provides protection and helps yeast adhere to
the surface of host cells and tissues will directly influence
environmental persistence and attachment capability, and
ultimately biocontrol activity (Freimoser et al., 2019).

Frontiers in Microbiology | www.frontiersin.org 7 February 2020 | Volume 11 | Article 295

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00295 February 22, 2020 Time: 12:13 # 8

Sui et al. Genome of Antagonistic Yeast

In addition, enzymes involved in the antioxidant system
of yeast, such as glutathione peroxidase, catalase, and
superoxide dismutase, have been reported to be associated
with biocontrol efficacy in C. oleophila (Liu et al., 2012),
as well as several other yeast, including Cystofilobasidium
infirmominiatum (Liu et al., 2011), and Pichia caribbica
(Li et al., 2014).

Enzymes Involved in Carbohydrate
Metabolism
The cell walls of vascular plant hosts consist of a complex
network of carbohydrate components, including cellulose,
hemicellulose, and pectin. These carbohydrates have the
potential to be catalyzed into oligomers and simple monomers
that can be used as nutrients by microbes (Cantarel et al., 2009).
Bacteria and fungi have evolved a variety of carbohydrate-
active enzymes (CAZymes) in response to their interaction
with their plant hosts (Kolton et al., 2013). Our analysis
indicates that C. oleophila encodes 103 genes representing
CAZymes. These include54 polysaccharide lyases (PLs), 37
glycosyl transferase (GTs), 1 glycoside hydrolases (GHs), 5
carbohydrate esterases (CEs), and 5 carbohydrate-binding
modules (CBMs). All of the identified CAZymes have the
potential to be involved in the degradation of the cell walls,
which is an important attribute of yeasts as biocontrol agents
against fungal pathogens. For instance, CoEXG1, which
encodes a secreted 1,3-β-glucanase in C. oleophila I-182, was
cloned, and its role in biocontrol was characterized (Segal
et al., 2002; Yehuda et al., 2003; Bar-Shimon et al., 2004).

Other antagonistic fungi, such as Aureobasidium pullulans
JYC1291, Galactomyces candidum JYC1146, and Trichoderma
harzianum CECT 2413, produce and secrete different types
of CAZymes, that play an important functional role in
the degradation of the cell wall of fungal pathogens (Ait-
Lahsen et al., 2001; Chen et al., 2018). Whether the CAZymes
produced by biocontrol agents have a detrimental effect
on host tissues, however, has not been explored. Notably,
there are no existing reports of selected biocontrol yeast
species causing infection in the hosts they protect or related
hosts, although admittedly, comprehensive studies have
not been conducted.

Secondary Metabolite Clusters
Secondary metabolites play an important role in the cell
viability of yeasts, including biocontrol yeasts such as
W. anomalus, Metschnikowia pulcherrima, Aureobasidium
pullulans, and Saccharomyces cerevisiae (Abdel-Kareem
et al., 2019; Contarino et al., 2019). The prediction and
annotation of protein-encoding genes in this study revealed
that the genome of C. oleophila encodes a series of secondary
metabolite genes. Among them, two distinct secondary
metabolite clusters were identified using the antiSMASH
online tool, a non-ribosomal peptide synthetase (NRPS)-
like cluster and a terpenecluster. The NRPS-like and
terpene clusters were composed of 18 and 9 functional
genes, respectively (Figure 6). NRPS-like proteins are key
enzymes in microorganisms that function in the assembly
of peptide backbones of biologically-active natural products

FIGURE 6 | Identification of two distinct secondary metabolite clusters in the genome of C. oleophila. (A) The non-ribosomal peptide synthetase (NRPS)-like cluster
is composed of 18 functional genes. (B) The terpene cluster is composed of nine functional genes. The rectangle denotes a functional gene, while the red arrow on
the top indicates the transcriptional direction of each functional gene.
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(Hühner et al., 2018). Terpenoids comprise a variety of
compounds serving different functions in yeasts. For example,
they facilitate attachment of proteins to membranes by thioether
bonds in the form of prenyl-anchors (Wriessnegger and Pichler,
2013; Santiago-Tirado and Doering, 2016). The classification of
various terpene synthases and their catalytic mechanisms have
been recently reviewed (Gao et al., 2012). The antimicrobial
activity of most terpenoids is linked to their functional
groups, and it has been shown that the hydroxyl group of
phenolic terpenoids and the presence of delocalized electrons are
important for antimicrobial activity (Hyldgaard et al., 2012). For
instance, a putative terpene cyclase, vir4, has been reported to be
responsible for the biosynthesis of volatile terpene compounds
in the biocontrol fugus, Trichoderma virens, thus contributing
to its biocontrol efficacy (Crutcher et al., 2013). In the present
study, we assume that the NRPS-like and terpene clusters within
C. oleophila may play a role in their ability to attach to fungal and
plant cell walls directly affecting its biocontrol efficacy. The ability
of the biocontrol yeasts, Pichia guilliermondii and Rhodotorula
glutinis, to attach to and parasitize the post-harvest pathogen
Botrytis cinerea has also been reported (Wisniewski et al., 1991;
Li et al., 2016).

CONCLUSION

The genome of C. oleophila I-182, the active agent in the first-
generation commercial yeast product Aspire R© developed for
the biocontrol of post-harvest disease of fruits and vegetables
was sequenced, assembled, and annotated. The genome size
(14.73 Mb), along with the identification of CAZymes and
secondary metabolite clusters, provides important genetic
information on this biocontrol agent that can be used to better
understand the various modes of action reported for this yeast,
including competition for space and nutrients, hydrolysis of

fungal cell walls, and induction of host disease resistance, at a
molecular level. As the genome sequence of more biocontrol
yeasts become available, it is hoped that the identification of
“biocontrol” genes can be pursued. Such knowledge would help
to identify traits that can be used to select effective biocontrol
agents rather than by empirical selection methods alone.
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