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Background: BIOGF1K, a fraction of Panax ginseng, has desirable antimelanogenic, anti-inflammatory, and
antiphotoaging properties that could be useful for treating skin conditions. Because its potential positive
effects on allergic reactions in skin have not yet been described in detail, this study’s main objective was
to determine its efficacy in the treatment of atopic dermatitis (AD).
Methods: High-performance liquid chromatography was used to verify the compounds in BIOGF1K, and
we used the (3-4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide method to determine its
cytotoxicity in RBL-2H3 and HMC-1 cell lines. RBL-2H3 cells were induced using both antieDNP-IgE/
DNP-BSA and calcium ionophore (A2187) treatments, whereas HMC-1 cells were induced using A2187
alone. To measure mast cell degranulation, we performed histamine (enzyme-linked immunosorbent
assay) and b-hexosaminidase assays. To quantify interleukin (IL)-4, IL-5, and IL-13 levels in RBL-2H3 cells,
we performed quantitative polymerase chain reaction (PCR); to quantify expression levels of IL-4 and IL-
13 in HMC-1 cells, we used semiquantitative reverse transcription polymerase chain reaction (RT-PCR).
Finally, we detected the total and phosphorylated forms of extracellular signal-regulated kinase, p-38,
and c-Jun N-terminal kinase proteins by immunoblotting.
Results: BIOGF1K decreased the AD response by reducing both histamine and b-hexosaminidase release
as well as reducing the secretion levels of IL-4, IL-5, and IL-13 in RBL-2H3 cells and IL-4 and IL-13 in
HMC-1 cells. In addition, BIOGF1K decreased MAPK pathway activation in RBL-2H3 and HMC-1 cells.
Conclusions: BIOGF1K attenuated the AD response, hence supporting its use as a promising and natural
approach for treating AD.
� 2019 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Atopic dermatitis (AD) is a skin condition with a relapsing and
inflammatory nature that affects many people around the world [1]
and is usually accompanied by itchy, scaly skin, and swollen
eczematous flares [2]. Risks of AD include a strong genetic back-
ground (a strong family history of type I allergies) [3], impaired
immunity, weakened skin barrier function, and environmental in-
fluences [4]. AD is also a direct consequence of an imbalance
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between T helper cells 1 and 2. In AD, the predominant cell type is T
helper 2 [4]; hence, cytokines produced by this cell type, including
interleukin (IL)-4, IL-5, and IL-13, are often found in high quantities
in AD acute lesions and greatly influence allergic response devel-
opment [5]. In general, IL-5 is associated with eosinophil recruit-
ment [6], whereas IL-4 and IL-13 are related to the inhibition of
antimicrobial peptides; the increase in both marks the probability
of Staphylococcus aureus infection and the exacerbation of skin
inflammation [7].
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In addition to this role, IL-4 provides positive feedback on T
helper 2 cells (which, as a consequence, release more IL-4) and
induces B isotype cell differentiation into IgE antibodyeproducing
cells [8]. Cross-linking between IgE antibodies and FCεRI, a
mast cellespecific receptor, triggers a signaling cascade, in which
the mitogen-activated protein kinase (MAPK) pathway is activated.
MAPK pathway activation, which includes the stimulation of pro-
teins such as p38, extracellular signal-regulated kinase, and c-Jun
N-terminal kinases, increases intracellular calcium, triggering mast
cell degranulation as well as histamine and b-hexosaminidase
secretion [9]. Histamine, one of the main mediators of allergic re-
action, is released along with the granule-stored enzyme b-hex-
osaminidase [10]. For this reason, both of them are useful
biomarkers for mast cell degranulation [11]. Intracellular calciume

increasing compounds such as calcium ionophore (e.g., A2187) are
also effective activators of the MAPK signaling pathway and mast
cell degranulation [12].

Topical corticosteroids and topical calcineurin inhibitors have
been commonly used for managing AD-associated inflammation
[13]. Although effective against the release of proinflammatory
cytokines, both corticosteroids [14] and calcineurin inhibitors [15]
can lead to serious secondary effects, therefore increasing the
importance of identifying less toxic and effective treatments for AD.
According to traditional Chinese medicine, P. ginseng has diverse
benefits for treating skin conditions including wound healing [16],
psoriasis, skin inflammation, and AD [17]. Currently, many re-
searchers are focusing their studies on individual ginsenosides
(steroid-like components abundant in ginseng species) [18] and
their mechanism of action, in hopes of optimizing treatments for
diverse diseases [17].

BIOGF1K, a novel fraction of P. ginseng whose previous analysis
revealed high contents of compound K and compound Y [19], has
shown significant antioxidant, anti-inflammatory [20], photo-
protective, and antimelanogenic activities [19]. However, its effect
on allergic reactions has not yet been described in detail. Therefore,
in this study, we aimed to determine if BIOGF1K has the potential to
treat AD and its related symptoms.
2. Materials and methods

2.1. Materials

RBL-2H3, a rat basophil cell line, and HMC-1, a human mast cell
line, were obtained from the American Type Culture Collection
(Manassas, VA, USA). Fetal bovine serum (FBS), (3-4-5-
dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide (MTT),
streptomycinepenicillin solution, Dulbecco’s modified Eagle’s me-
dium, and Roswell Park Memorial Institute medium were pur-
chased from Gibco (Grand Island, NY, USA). Calcium ionophore
(A2187), 4-nitrophenyl n-acetyl-b-d-glucosaminide, and antie
DNP-IgE antibody (D8406) were obtained from Sigma Aldrich (St.
Louis, MO, USA). 2,4-Dinitrophenyl albumin from bovine serum
(DNP-BSA) was purchased from Invitrogen (Waltham, MA, USA).
The enzyme-linked immunosorbent assay (ELISA) kit for histamine
detection (BA E�1000) was acquired from Labor Diagnostika Nord
(Nordhorn, Germany). TRIzol was purchased from Thermo Fisher
Scientific (Waltham, MA, USA). RT-PCR premix was purchased from
Bio-D Inc. (Seoul, Korea), and SyGreen mix for quantitative PCR was
purchased from PCRBIO (London, UK). The primer sets used in both
polymerase chain reactions were synthetized by Macrogen (Seoul,
Korea). Antibodies acquired from Cell Signaling Technology (Bev-
erly, MA, USA) were used to detect the total and phosphorylated
forms of extracellular signal-regulated kinase, p38, c-Jun N-termi-
nal kinase, and b-actin.
2.2. Cell culture

RBL-2H3 cells were sustained in Dulbecco’s modified Eagle’s
medium supplemented with 1% penicillinestreptomycin and 10%
FBS, whereas HMC-1 cells were sustained in Roswell Park Memorial
Institute media supplemented with 1% penicillinestreptomycin
and 10% FBS. Both cell lines were kept in a 5% humidified incu-
bator at 37�C.

2.3. Analysis and preparation of BIOGF1K

In accordance with previous reports [21], high-performance
liquid chromatography (HPLC) was performed to analyze the
phytochemical compounds existing in BIOGF1K. BIOGF1K was
prepared following previously reported methods [22]. The HPLC
profile of BIOGF1K is included in Supplementary Figure 1. To pre-
pare a 100-mg/mL BIOGF1K stock solution, the compound was
dissolved using dimethyl sulfoxide. To prepare the BIOGF1K target
concentrations used in this study (12.5, 25 and 50 mg/mL), we used
a serial dilution method, in which an initial concentration was
diluted continuously until obtaining each of the working concen-
trations [20,23].

2.4. Cell viability assay

A density of 5 � 105 cells per mL was used to seed RBL-2H3 cells
in a 96-well plate. After being cultivated for 24 h, cells were treated
with concentrations from 0 to 50 mg/mL of BIOGF1K for 24 h. HMC-
1 cells were seeded in a 96-well plate to a cell density of 1 � 106

cells per mL. After being cultivated for 24 h, cells were also treated
using the same conditions. Cell viability for both cell lines was
determined using the MTT method following previously reported
procedures [19,24].

2.5. b-Hexosaminidase assay

RBL-2H3 cells were seeded at a density of 5�105 cells per mL in
a 12-well plate. After being harvested for 24 h, cell sensitizationwas
achieved by treating the cells overnight with 0.1 mg/mL anti-DNP
IgE. Sensitized cells were washed with phosphate-buffered saline,
pretreated with BIOGF1K in concentrations from 0 to 50 mg/mL for
30min, and induced for 2 h with 1 mg/mL of DNP-BSA. In the case of
A2187-mediated induction, RBL-2H3 cells were pretreated with
BIOGF1K in concentrations from 0 to 50 mg/mL for 30 min and then
treated with 1 mg/mL of A2187 for 24 h [25]. A b-hexosaminidase
release assay was performed as previously described [26], in which
60 mL of the supernatant was combined with 60 mL of 7.5-mM 4-
nitrophenyl n-acetyl-b-d-glucosaminide (in 80 mM of citric acid
buffer, pH 4.5) in a 96-well plate. The solution was maintained at
37�C for 2 h. Then, 120 mL of 0.2-M concentrated glycine buffer (pH
10.7) was added to stop the reaction, and the absorbance was
determined at 405 nm. Finally, b-hexosaminidase release was
calculated as a percentage of control according to the normal values
(absorbance sample-absorbance media/absorbance normal-
absorbance media*100).

2.6. Histamine production assay (ELISA)

A density of 5 � 105 cells per mL was used for seeding RBL-2H3
cells in a 12-well plate. After being maintained for 24 h, RBL-2H3
cells were pretreated for 30 min with BIOGF1K in concentrations
from 0 to 50 mg/mL and then inducedwith A2187 (1 mg/mL) for 24 h.
For inducing cross-linking with IgE/DNP-BSA in RBL-2H3 cells,
sensitizationwas achieved by treating the cells overnight with anti-
DNP IgE (0.1 mg/mL), followed by a rinse with phosphate-buffered
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saline, pretreatment for 30 min with BIOGF1K (0-50 mg/mL), and
induction with DNP-BSA (1 mg/mL) for 2 h. For the histamine ELISA
assay, 50 mL of supernatant was collected and the assay was per-
formed as instructed by the manufacturer [Labor Diagnostika Nord
(LDN)].
2.7. Quantitative real-time and semiquantitative PCR analysis of
mRNA levels

A density of 5 � 105 per mL was used for seeding RBL-2H3 cells
in a 12-well plate. After being maintained for 24 h, BIOGF1K pre-
treatment and both calcium ionophore (A2187)e and IgE/DNP-
BSAemediated inductions were performed as mentioned previ-
ously (section 2.6). Real-time and semiquantitative PCR were car-
ried out according to previously published reports [27]. The
sequences of the primers used for performing this experiment can
be found in Table 1.
A

2.8. Immunoblotting

RBL-2H3 cells were seeded at a density of 5�105 cells per mL in
a 6-well plate. After 24 h, calcium ionophore (A2187)emediated
induction, IgE/DNP-BSAemediated induction, and BIOGF1K pre-
treatment were performed as formerly mentioned in section 2.6.
HMC-1 cells were seeded at a density of 1 �106 cells per mL in a 6-
well plate. After 24 h, HMC-1 cells were induced with calcium
ionophore (A2187) and pretreated with BIOGF1K as formerly
mentioned in section 2.6. Cell lysates were prepared in accordance
with the previously described procedures used by Park et al [28,29],
in which the lysates were separated based on size using sodium
dodecyl sulfateepolyacrylamide gel electrophoresisand later
transferred to a polyvinylidene fluoridemembrane. Finally, through
the use of specific antibodies and chemiluminescence reagents,
target proteins (total and phosphorylated forms) were detected.
B

2.9. Statistical analysis

The values of are presented as mean � standard deviation of a
minimum of three independent experiments in this article. The
ManneWhitney test was performed to evaluate differences be-
tween the experimental and control groups; a p value < 0.05 was
considered to be statistically significant. Analyses were performed
using SPSS (SPSS, Chicago, IL, USA).
Table 1
Primer sequences (human) used in real-time and semiquantitative PCR

Name Direction Primer

Real-time
IL-4 Forward TGTACCGGGAACGGTATCCA

Reverse ACATCTCGGTGCATGGAGTC
IL-5 Forward AGAATCAAACTGTCCGAGGGG

Reverse ACTCATCACGCCAAGGAACTC
IL-13 Forward GCTCTCGCTTGCCTTGGTGG

Reverse CATCCGAGGCCTTTTGGTTA
GAPDH Forward GTTACCAGGGCTGCCTTCTC

Reverse GATGGTGATGGGTTTCCCGT
Semiquantitative
IL-4 Forward ATCTTTGCTGCCTCCAAGAACA

Reverse CTCTGGTTGGCTTCCTTCACA
IL-13 Forward AGAATCCGCTCAGCAATCCTC

Reverse ATTGCTCTCACTTGCCTTGG
GADPH Forward CACTCACGGCAAATTCAACGGCAC

Reverse GACTCCACGACATACTCAGCAC

IL, interleukin; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.
3. Results

3.1. BIOGF1K analysis and effects on cell viability

According to the cell viability (MTT) assay, cell viability in RBL-
2H3 cells was not affected by BIOGF1K up to a concentration of
50 mg/mL, but appeared to be slightly toxic at the same concen-
tration in HMC-1 cells (Fig. 1A and B). HPLC was used to verify the
main compounds present in the BIOGF1K fraction, which corre-
sponded to compound K and compound Y (Supplementary Fig. 1).
3.2. BIOGF1K decreased mast cell degranulation

BIOGF1K decreased the release of b-hexosaminidase in con-
centrations up to 50 mg/mL in calcium ionophore (A23187) (Fig. 2A)
while decreasing it dose dependently from 12.5 to 50 mg/mL in IgE/
DNP-BSAeinduced RBL-2H3 cells (Fig. 2B). The ELISA assay showed
there was a decrease in histamine release while using a BIOGF1K
concentration of 50 mg/mL in both calcium ionophore (A23187)
(Fig. 2C) and IgE/DNP-BSA (Fig. 2D) treatments.
Fig. 1. Cell viability of RBL-2H3 and HMC-1 cells after BIOGF1K treatment. (A and B)
RBL-2H3 and HMC-1 cells were incubated with BIOGF1K in concentrations from 0 to
50 mg/mL for 24 h. MTT assay was used to determine their cell viability. (C) HPLC
analysis and profile of the phytochemical compounds present in BIOGF1K. MTT, (3-4-
5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide; HPLC, high-performance
liquid chromatography.
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Fig. 2. BIOGF1K decreased the effect of mast cell degranulation. A density of 5 � 105 cells per mL was used to seed RBL-2H3 cells in a 12-well plate. (A, C) After 24 h of incubation
time, RBL-2H3 cells were pretreated for 30 minwith BIOGF1K (0-50 mg/mL), then induced with 1 mg/mL of A2187 for 24 h. (B, D) RBL-2H3 cell sensitization was performed overnight
with IgE (0.1 mg/mL), washed with PBS, pretreated for 30 min with BIOGF1K (0-50 mg/mL), and treated with 1 mg/mL of DNP-BSA for 2 h. (A, B) For the b-hexosaminidase secretion
assay, 60 mL of the supernatant was mixed with 60 mL of p-NAG and kept for 2 h in a 96-well plate at 37�C. Glycine buffer (120 mL) was added, and the absorbance was measured at
405 nm. (C, D) 50 mL of supernatant was collected and a histamine release assay (ELISA) was performed using the manufacturer’s specifications. ##p < 0.01 versus a normal
(untreated) group, **p < 0.01 versus a control (induced) group. DNP-BSA, 2,4-dinitrophenyl albumin from bovine serum; p-NAG, 4-nitrophenyl n-acetyl-b-d-glucosaminide; PBS,
phosphate-buffered saline; ELISA, enzyme-linked immunosorbent assay.
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3.3. BIOGF1K diminished the expression of AD-related cytokines

BIOGF1K decreased the expression of IL-4, IL-5, and IL-13 in a
dose-dependent manner in RBL-2H3 cells previously induced using
calcium ionophore (A23187) (Fig. 3A, C, and E). However, in the IgE/
DNP-BSAeinduced RBL-2H3 cells, BIOGF1K reduced the secretion
of IL-4, IL-5, and IL-13 in concentrations up to 50 mg/mL (Fig. 3B, D,
and F). BIOGF1K also decreased the expression of both IL-4 and IL-
13 cytokines in HMC-1 cells previously induced with calcium
ionophore (A23187) (Fig. 3G).
3.4. BIOGF1K lessened MAPK pathway activation

BIOGF1K diminished the activation levels of MAPK signaling
pathway proteins in RBL-2H3 cells previously induced with A23187
(Fig. 4A) or antieDNP-IgE/DNP-BSA cross-linking (Fig. 4B). BIOGF1K
also reduced MAPK signaling pathway expression in HMC-1 cells
induced with A23187 (Fig. 4C) .
4. Discussion

Because of its healing properties, P. ginseng has been used for
centuries in Asian medicine for treating many different skin con-
ditions, including skin inflammation, psoriasis, and AD [17].
Nonetheless, relatively few studies investigated P. ginseng’s use in
the treatment of AD. Recent studies with Korean Red
Ginseng extract showed an improvement in AD-related symptoms
in patients [30], whereas in vivo studies carried out with AD-
induced Balb/c mice (compound 40/80) showed a decrease in
allergy-related cytokine expression, IgE content in serum, and
MAPK pathway activation in phorbol myristate acetateeinduced
and A23187-induced HMC-1 cells [31].

The main component present in the BIOGF1K fraction was
previously found to be compound K or 20-O-b-d-glucopyranosyl-
20(S)-protopanaxadiol (Fig. 1C, Supplementary Fig.1) [19]. GDP has
previously shown important antiallergic activity: a GDP-fortified
ginseng extract ameliorated the AD response in NC/Nga mice
induced with Dermatophagoides farinae body extract [32]. Because
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Fig. 3. Downregulating effect of BIOGF1K on atopic dermatitiserelated cytokines expression. A density of 5 � 105 cells per mL was used for seeding RBL-2H3 cells in a 12-well plate.
(A, C, and E) After 24 h, RBL-2H3 cells were pretreated for 30 min with BIOGF1K (0-50 mg/mL), then treated with 1 mg/mL of A2187 for 24 h. (B, D, and F) RBL-2H3 cell sensitization
was performed overnight with IgE (0.1 mg/mL), then the cells were washed with PBS, pretreated for 30 min with BIOGF1K (0-50 mg/mL), and finally induced using 1 mg/mL of DNP-
BSA for 2 h. The secretion level of IL-4, IL-5, IL-13, and GADPH were determined by quantitative PCR. (G) A density of 1 � 106 cells per mL was used for seeding HMC-1 cells in a 6-
well plate. After 24 h, cells were pretreated for 30 min with BIOGF1K (0-50 mg/mL), then treated with 1 mg/mL of A2187 for 24 h. RT-PCR was used to quantify the expression of IL-4
and IL-13 and GADPH. ##p < 0.01 versus a normal (untreated) group, **p < 0.01 versus a control (induced) group. DNP-BSA, 2,4-dinitrophenyl albumin from bovine serum; IL,
interleukin; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; PBS, phosphate-buffered saline.

L.R. Lorz et al / Antiatopic dermatitis activity of BIOGF1K 457
of its high compound K content as well as its promising antioxidant,
anti-inflammatory [19], antiphotoaging, and antimelanogenic
properties [20], we predict that BIOGF1K can be useful in the
treatment of AD. Concentrations up to 50 mg/mL of BIOGF1K
exhibited low cytotoxicity in RBL-2H3 cells (Fig. 1A) but reduced
cell viability slightly in HMC-1 cells (Fig.1B). This observationmight
be due to HMC-1 being a suspended, more sensitive cell line [33].
Research to determine toxicity in each cell line as well as trials
using in vivo models are needed.

As previously mentioned, the MAPK pathway can activate
transcription factors involved in the secretion of AD cytokines,
including IL-4, IL-5, IL-13, and an increase in intracellular Ca2þ that
triggers mast cell degranulation [12]. Therefore, many studies have
focused on compounds that downregulate the MAPK pathway [34].
The fact that BIOGF1K decreased the activation level of MAPK
proteins in RBL-2H3 cells induced using calcium ionophore
(A23187) (Fig. 4A) and antieDNP-IgE/DNP-BSA (Fig. 4B) as well as
the HMC-1 cells induced using the calcium ionophore (A23187)
(Fig. 4C) suggests BIOGF1K may have beneficial properties for AD
treatment.

As previously mentioned, IL-4, IL-5, and IL-13 cytokines are
known to takepart inADpathogenesis [5]. The downregulating effect
of BIOGF1K on AD responses was further confirmed by dose-
dependent (up to a concentration of 50 mg/mL) lessened secretion
of IL-4, IL-5, and IL-13 cytokines in calcium ionophore (A23187)e
inducedRBL-2H3 cells (Fig. 3A, C and E) and IL-4, IL-5, and IL-13 levels
in antieDNP-IgE/DNP-BSAeinduced RBL-2H3 cells (Fig. 3B, D and F).
In the case of calcium ionophore (A23187)einducedHMC-1 cells, IL-4
and IL-13 secretion was also reduced dose dependently (Fig. 3G).

It has been well documented that histamine, serotonin, b-hex-
osaminidase, and other granule components released upon mast
cell degranulation play a central role in the progression of allergic
reactions [11]; thus, efforts have been made to try to reduce their
secretion. Previous reports suggested that ginsenosides derived
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Fig. 4. Downregulation effect of BIOGF1K on the atopic dermatitiseactivated MAPK pathway. A density of 5 � 105 cells per mL was used to seed RBL-2H3 cells in a 12-well plate. (A)
After 24 h of harvesting time, RBL-2H3 cells were pretreated for 30 min with BIOGF1K (0e50 mg/mL) and induced with A2187 (1 mg/mL) for 24 h. (B) RBL-2H3 cell sensitization was
performed overnight with IgE (0.1 mg/mL), and then the cells were washed with PBS, pretreated for 30 min with BIOGF1K (0-50 mg/mL), and treated with DNP-BSA (1 mg/mL) for 2 h.
(C) A density of 1 � 106 cells per mL was used for seeding HMC-1 cells in a 6-well plate. Cells were incubated for 24 h, pretreated for 30 min with BIOGF1K (0-50 mg/mL) and then
treated with A2187 (1 mg/mL) for 24 h. Phosphorylated and total forms of ERK, p-38, and JNK proteins were determined using immunoblotting. ERK, extracellular signal-regulated
kinase; JNK, c-Jun N-terminal kinase; DNP-BSA, 2,4-dinitrophenyl albumin from bovine serum; PBS, phosphate-buffered saline; MAPK, mitogen-activated protein kinase.
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from P. ginseng reduced mast cell degranulation. Among them,
gintonin lessened histamine’s secretion in DNFB-induced NC/Nga
mice [35], whereas other ginsenosides, including (G)-Rf, (G)-Rh2,
and (G)-Rg3, diminished b-hexosaminidase’s release in previously
IgE-sensitized RBL-2H3 cells [36].

Because BIOGF1K lessened the MAPK pathway’s activation, a
reduction in mast cell degranulation was also expected. In accor-
dancewith these expectations, we detected a decrease in histamine
secretion at a concentration of 50 mg/mL in both calcium ionophore
(A23187)e (Fig. 2C) and antieDNP-IgE/DNP-BSAeinduced RBL-2H3
cells (Fig. 2 D). A reduction in b-hexosaminidase secretion was also
detected in both calcium ionophore (A23187)einduced (Fig. 2A)
and antieDNP-IgE/DNP-BSAeinduced RBL-2H3 cells (Fig. 2 B). This
suggests BIOGF1K may have a positive effect on AD.

Conclusively, because of its effect on MAPK pathway down-
regulation, the lessened secretion of AD-associated cytokines (IL-4,
IL-5, and IL-13)and thedecrease inmast celldegranulationconfirmed
by a decrease in histamine and b-hexosaminidase secretion as



Fig. 5. Schematic pathway summarizing the effect of BIOGF1K on atopic dermatitis induction. Antigen/IgE cross-linking with the mast cellespecific receptor FCεRI and calcium
ionophore (A23187) induction activates the MAPK pathway. BIOGF1K decreases MAPK pathway protein activation, decreasing intracellular calcium signaling and therefore
diminishing mast cell degranulation, histamine release, and interleukin production. DNP-BSA, 2,4-dinitrophenyl albumin from bovine serum; IL, interleukin; MAPK, mitogen-
activated protein kinase.
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summarized in Fig. 5, we predict that BIOGF1Khas the potential to be
used in the treatment of AD. However, more research regarding its
toxicity in other cell lines and in vivomodels and more details on its
mechanisms of action are needed to optimize its utility in the phar-
macological industry.
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