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Forage grass growth under future 
climate change scenarios affects 
fermentation and ruminant 
efficiency
Elizabeth H. Hart1, Sarah R. Christofides2, Teri E. Davies1, Pauline Rees Stevens1, 
Christopher J. Creevey3, Carsten T. Müller2, Hilary J. Rogers2 & Alison H. Kingston‑Smith1*

With an increasing human population access to ruminant products is an important factor in global 
food supply. While ruminants contribute to climate change, climate change could also affect ruminant 
production. Here we investigated how the plant response to climate change affects forage quality 
and subsequent rumen fermentation. Models of near future climate change (2050) predict increases 
in temperature,  CO2, precipitation and altered weather systems which will produce stress responses 
in field crops. We hypothesised that pre‑exposure to altered climate conditions causes compositional 
changes and also primes plant cells such that their post‑ingestion metabolic response to the rumen 
is altered. This “stress memory” effect was investigated by screening ten forage grass varieties in 
five differing climate scenarios, including current climate (2020), future climate (2050), or future 
climate plus flooding, drought or heat shock. While varietal differences in fermentation were detected 
in terms of gas production, there was little effect of elevated temperature or  CO2 compared with 
controls (2020). All varieties consistently showed decreased digestibility linked to decreased methane 
production as a result of drought or an acute flood treatment. These results indicate that efforts to 
breed future forage varieties should target tolerance of acute stress rather than long term climate.

Forage crops for livestock are essential for ruminant production, with grazing land accounting for approximately 
60% of global agriculture  land1. Continued human population growth predicts an increase to 9.7 billion by 
2050, which will lead to an increase in demand for animal products together with pressure to decrease pollut-
ant output. Increases in ruminant production have been achieved to date through continual improvement of 
the forage feed germplasm focusing mainly on traits such as yield and  digestibility2. It can take over 10 years 
from breeding to release of a new variety and so current varieties are tailored to perform well under current 
environmental conditions. However, it is recognised that climate is changing; climate change models of the near 
future (2050) predict increases in temperature of 4–6 °C in the UK, atmospheric  CO2 from 400 to 500  ppm3, 
increases in precipitation (up to 33% more), and altered weather systems (e.g. extreme drought and  flooding4). 
The forage varieties currently used in UK are adapted to current conditions. However, growth under elevated 
temperature, drought or flood can induce stress responses in the  grass5 that could affect not just production 
but also composition, and thereby nutritive value to ruminants; for instance forage quality has been shown to 
declines with rising  temperatures6. Therefore, to secure future productivity of livestock the development of new 
forage varieties should take account of the environmental effects on grass production and quality parameters.

Ruminants have the ability to convert fibrous feed unable to be utilised by humans, into easily digestible meat 
and milk  products7,8 due to the presence of a complex rumen  microbiome9. However, perturbation of the rumen 
can be brought about by diet and diet based effects have been observed on both the core microbial  community10 
and overall rumen microbial  community11–14. Previous research has indicated improvement of rumen efficiency 
could be achieved by manipulating animal diet, improving host-microbial interactions and plant microbial 
interactions to maximise productivity whilst reducing environmental  costs15.

Ingested conserved forages are broken down in the rumen by the action of enzymes from the attached 
rumen microbiota, but when fresh forage is ingested in addition to microbial activity the possibility exists for a 
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contribution to feed degradation from plant metabolism caused by initiation of innate plant stress  responses16–19. 
When fresh forage is fed to ruminants the cells are still metabolically active, and respond to the conditions of 
the rumen, including by inducing plant hormone-mediated stress responses resulting in autolytic  breakdown20. 
These post-ingestion changes in plant-based metabolism have the potential to alter substrate composition and 
as a consequence could affect fermentation profiles in forages with apparently similar chemical  composition2. 
It is currently unclear what the relative contributions of plant and microbial proteolysis to overall rumen func-
tion are. However, the possibility that there is a contribution from the plant cells offers an exciting opportunity 
to exploit natural variation in endogenous plant proteolysis. Selecting for grass varieties that have slow rates of 
endogenous proteolysis might at least partially mitigate against environmental  pollution21,22. However, evidence 
is limited on the effect of climate change scenarios on the fermentation characteristics of plants which have been 
challenged by these stresses.

Plants respond to abiotic and biotic stresses by physiological, biochemical, metabolic and molecular 
 mechanisms23. Previous studies have focussed on the characterisation of physiological changes of forage plant 
varieties under climate change conditions. For example, elevated levels of  CO2 have been shown to improve 
the rate of photosynthesis in  plants24 and alleviate the effects of drought stress by conserving water, increasing 
carbon fixation and increasing fructan  accumulation25. However high temperatures have been shown to inhibit 
 photosynthesis26 by altering the structure of chloroplasts and by inactivating chloroplast enzymes through oxida-
tive  stress27. Drought stress has also been shown to affect water soluble carbohydrate (WSC) levels. Concentra-
tion of fructans in forage grasses had a higher degree of polymerisation in drought than in control conditions, 
although the increase in WSC reserves to the level of 40 to 50% at the end of drought were not thought to improve 
drought tolerance in the plants  overall28. Previous studies have also demonstrated that drought can decrease 
the protein concentration due to an increase in protein degradation, a decrease in nitrogen assimilation and a 
decrease in protein  synthesis29. During flooding oxidative pathways within the plant move towards  fermentation30 
and  CO2 levels within plants can become reduced. This leads to a decreased electron sink for light energy and, 
potentially, oxidative damage of plant  cells31 from excess light energy not used in  CO2  fixation32. In flooding 
scenarios where both root and shoot are submerged, aerobic respiration and photosynthesis is reduced due to 
low light levels and limited gaseous exchange leading to an energy crisis within the  plant33.

Plants have the ability to “remember” past occurrences to adapt to new  environments34. Pre-exposure to 
environmental stresses primes the plant cells such that the subsequent response is  altered35. This stress memory 
is now understood to be a key factor determining progression of microbial disease in crops mediated by salicylic 
 acid36 and abiotic responses to  temperature37. Salicylic acid has been implicated in the response of plant cells to 
the  rumen20, and thus, pre-exposure of forage plants to stress during growth may prime the cells, such that the 
stress response is altered once ingested and in the  rumen19. Hence an active response may have important effects 
on rumen fermentation efficiency and subsequently host nutrient uptake in addition to direct effects of climate 
on the chemical composition of the forage.

Despite extensive study of responses of crop and forage species to adverse environmental conditions, there 
has been relatively little research into how forage adaptation to climate change will affect ruminant production 
systems, and the appropriateness of current and future forage varieties for animal production in the future. 
The aim of this work was therefore to determine how responses to the growth environment, including “stress 
memory” may affect the subsequent forage degradation in the rumen and, therefore, to understand how ruminant 
feeding strategies might be affected by climate change.

Materials and methods
Plant material. Ten different current commercial varieties of forage grasses (Table  1) were grown for 
3 months in five different climate scenarios, replicated three times at 1-week intervals. Studies on these plant 
materials were undertaken in compliance with local and national regulations. Climate conditions were simulated 
in growth chambers and consisted of present-day conditions and future potential climate scenarios as described 
by Ref.38 (Table 2).

Table 1.  Forage grass varieties.

Forage grass Type

AberClyde Tetraploid perennial ryegrass, high sugar (Lolium perenne)

AberDart Diploid perennial ryegrass, high sugar (Lolium perenne)

AberEcho Tetraploid hybrid ryegrass, high sugar (Lolium x boucheanum)

AberGlyn Tetraploid perennial ryegrass (Lolium perenne)

AberNiche Tetraploid festulolium (Italian ryegrass × meadow fescue) (Lolium multiflorum × Festuca pratense)

AberRoot Perennial tetraploid festulolium, high sugar (perennial ryegrass × Atlas fescue) (Lolium perenne × Festuca mairei)

AberZeus Diploid perennial ryegrass, high sugar (Lolium perenne)

Barolex Allohexaploid, tall fescue (Festuca arundinacea)

Davinci Diploid Italian ryegrass (Lolium multiflorum)

Premium Diploid perennial ryegrass (Lolium perenne)
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Forage characterisation. For each climate scenario, after the 3-month growth period and before harvest, 
leaves of each variety were analysed for Fv/Fm (Handy PEA, Hansatech Instruments, UK) to determine photo-
chemical efficiency of each plant in each  environment39. Chlorophyll content was determined by the addition of 
80% acetone to 1 g of fresh plant tissue, which was placed in the dark for 1 h. The sample was then centrifuged for 
5 min at 15,000×g and the absorbance at λ = 663 nm  (A663) and 645 nm  (A645) of the supernatant was determined 
spectrophotometrically (Pharmacia Biotech). Chlorophyll content was calculated from absorbencies accord-
ing to Ref.40 and also used as proxy for stress response. Plant dry matter and crude protein were determined 
according to methods 930.15 and 968.06 respectively  (AOAC41), and water-soluble carbohydrates (WSC) spec-
trophotometrically using the anthrone  method42. Dried plant material was analysed sequentially for neutral 
detergent fibre (NDF), acid detergent fibre (ADF) and acid detergent lignin (ADL)43,44 by using a fibre analyser 
(ANKOM). Leaf samples of each grass were also freeze dried and ground to a fine powder in a ball mill (MM 30, 
Retsch Gmbh, Haan,Germany) at speed 30 for 2 min with the inclusion of 2 tungsten beads previously washed 
in acetone. Ground leaf material was subjected to Fourier transform infrared spectroscopy (FTIR) (Equinox 55 
HTS-XT FTIR Spectrophotometer, Bruker UK Ltd, Coventry, UK). This enabled non-targeted analysis (profil-
ing) of biochemical changes within the plant tissue during growth conditions.

In vitro batch fermentation. Collection and preparation of microbial inoculum. All experiments involv-
ing animals were performed in accordance with relevant guidelines and regulations. Experimentation was con-
ducted under the authority of licenses under the U.K. Animals (Scientific Procedures) Act, 1986. Experimenta-
tion was approved by the Aberystwyth University Animal Welfare and Ethical Review Body (AWERB). Methods 
are reported here in accordance with Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines 
(https:// arriv eguid elines. org). Rumen fluid was collected on the morning of each plant harvest from each of four 
non-lactating Holstein–Friesian dairy cows which had been previously prepared with rumen cannulae (Bar Dia-
mond, Parma, ID), and fed ad-lib perennial ryegrass (L. perenne). The rumen samples were mixed and filtered 
through two layers of muslin under a  CO2 stream and the filtrate used to prepare a 10% rumen fluid inoculum 
in anaerobic  buffer44.

Analysis of gas production. Each gas production run consisted of triplicate samples from each of 50 treatments 
with the addition of inoculum blanks and was repeated over three consecutive weeks. On the day prior to harvest 
a subsample of each plant was dried to a constant weight to determine DM. Fresh leaves from grass varieties 
grown in each climate scenario (n = 50) were cut into approx. 1 cm lengths and accurately weighed in triplicate 
into 140 mL serum bottles to supply fresh matter equivalent to 1 g DM, which were then filled with  CO2 prior to 
and during the addition of 100 mL 10% rumen fluid inoculum. The bottles were back filled with  CO2 and sealed 
with butyl rubber bungs. Bottles were then placed in an incubator at 39 °C in the dark. Measurements of total gas 
production,  CO2 and methane were taken at time intervals of 0, 4, 8, 12, 18, 24, 30 and 48 h. For each sampling 
point, the head space of the bottles was collected and measured into a 50 mL syringe, informed by a pressure 
transducer (Bailey and Mackey Ltd, Birmingham, UK)45. The gas composition was analysed by an IRGA (Infra-
Red Gas Analyser, ADC, Bioscientific Ltd, UK)45. At the end of the time course (48 h) the contents of the serum 
bottles were strained, and the remaining grass solid constituents were flash frozen in liquid nitrogen for FTIR 
analysis and following further freeze drying for dry matter degradation. The pH of the rumen inoculum was 
measured for each bottle and two aliquots of 1 mL rumen inoculum was sampled for measurements of volatile 
fatty acid (VFA) and ammonia levels. Samples of the rumen inoculum were also used for end point FTIR analysis 
in order to explore differences in metabolite production due to the fermentation of the forages incubated at a 
system level.

Volatile organic compound (VOC) analysis. Non-targeted analysis of volatile organic compounds (VOCs) was 
used to assess entire gaseous fermentation profiles in addition to targeted measurements of the major volatile 
fatty acids produced by rumen fermentation (acetate, butyrate, propionate). VOCs were collected from the head 
space of the serum bottles 24  h after the start of in  vitro fermentation using inert coated SafeLok tubes for 
Odour/Sulphur analysis (Markes International, Llantrisant, UK) fitted to the IRGA. Tubes were dry purged 
prior to sample desorption for 1 min with 20 mL/min nitrogen at room temperature. Tube desorption (primary 
desorption) was conducted by thermal desorption using a TD 100 (Markes International, Llantrisant, UK) for 
10 min with 40 mL/min at 280 °C to trap at 25 °C. Trap desorption was then conducted for 6 min with 6.5 mL/
min helium at 300 °C (max heating rate) 1.5 mL/min onto the column (split ratio 1:4.3). Samples were then re-
collected onto sample tubes. Gas Chromatography (GC 7890A, Agilent Technologies) was conducted initially at 

Table 2.  Climate conditions.

Climate condition Description

1 Control 2020 400 ppm  CO2, 16–18 °C night/day temperature for an 8-h photoperiod and watered regularly

2 Control 2050 500 ppm  CO2, 21–23 °C night/day temperature for an 8-h photoperiod and watered regularly

3 Flood As for control 2050 but flooded for 1 week prior to harvesting

4 Drought As for control 2050 but no water for 1 week prior to harvesting

5 Heat Shock As for control 2050 but temperature increased to 35 °C 2 days prior to harvesting

https://arriveguidelines.org
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40 °C for 4 min followed by 4 °C/min to 250 °C then 20 °C/min to 300 °C and final hold for 2 min (62 min total). 
Separation was done over 60 m × 0.32 mm × 0.5 mm MEGA-5 MS with 1.5 mL/min helium under a constant flow 
condition. Mass spectrometry was carried out using a BenchTOFdx (Markes International, Llantrisant, UK) in 
EI + mode. Spectra were recorded from m/z 35 to 450 (at 1970 scans/scanset) with a transfer line temperature 
250 °C and an ion source temperature of 250 °C. A retention time standard (C8–C20, Sigma Aldrich) was used, 
injecting 1 μL onto a collection tube (Tenax TA, Sulficarb) and analysed as described for the samples.

Chemical analysis. Samples for VFA analysis were acidified by the addition of 4% orthophosphoric acid (final 
concentration)46 and analysed by gas chromatography with 4 mM ethylbutyric acid as an internal  standard47. 
Ammonia was analysed from end point samples by acidifying with the addition of concentrated hydrochloric 
acid (5% v/v final concentration)48. Aliquots of incubation buffer and rumen inoculum were analysed by FTIR 
(Equinox 55 HTS-XT FTIR Spectrophotometer, Bruker UK Ltd, Coventry, UK), where 10 μL of sample was 
spotted onto a 96 well silicone plate dried to 40 °C before scanning. Remaining plant material was treated as with 
initial plant material prior to in vitro batch fermentation. All samples were analysed individually with 10% of the 
samples analysed again for quality control purposes. The FTIR spectra obtained were converted to XY data. The 
generation of XY data matrices from FTIR analysis were exported in ASCII format. The spectra were  mined49 
and data were examined using principal components analysis (PCA) using Pychem  software50.

Grass physiological characteristics and gas production analyses. Data analysis was conducted in R version 3.6.0 
using  RStudio51,52. Packages agricolae53, car54, ggplot255, lsmeans56 and rcompanion57 were used. All data were 
analysed using 2-way ANOVA, further using Tukey mean separation, with the exception of the gas production 
data. These were analysed using general linear models; in each case, the response was log-transformed to meet 
parametric assumptions, and the predictors were grass variety, climate scenario, the variety-climate interaction, 
starting mass of dry matter (DM) and biological replicate number. Pairwise comparisons were performed using 
least-squares means with Tukey adjustment. Biological replicate number was included in the model to account 
for non-independence between samples taken on the same date. It was also necessary to include the starting 
mass of dry matter, as this inevitably varied slightly between samples. The relationship between dry matter and 
gas production changes over time, such that simply expressing the data as ml gas/g DM does not accurately 
account for the correlation as fermentation progresses. Instead, using dry matter as an independent variable 
allows the model to estimate and control for the effect of dry matter at the time of sampling (48 h). The model 
predictions were obtained for all samples based on 1 g DM.

Analysis of VOC data. Initial deconvolution and peak identification were carried out in AMDIS v2.72, using 
the NIST database v2.2 (2014). A custom compound library was built using a training dataset of one sample 
from every treatment-variety combination, distributed across biological replicates. Components were included 
in the library if they hit against the database (score > 80) and a retention index (RI) ± 30 the database value. 
Where the top compound produced a convincing spectrum match but fell outside the RI range, the component 
was added to the library and named by chemical group, e.g. Acid1. All samples were then run against this library 
with settings as recommended by Ref.58. The AMDIS results were validated and backfilled in Gavin 3.9759 using 
the parameters given in Table S1; raw outputs from Gavin are given in Table S2. All data analysis was carried 
out in R version 3.5.2 ‘Eggshell Igloo’ using  RStudio51,52 and packages metacoder60,61, mvabund62, randomFor-
est63 and vegan64. R code to reproduce the analyses is available as a Rmarkdown file at https:// github. com/ ecolo 
gysar ah/ lolium- rumen- voc65. Known contaminant compounds were removed from the peak table, along with 
compounds corresponding to those present in machine blanks and any compounds that did not occur in all 
three replicates of at least one treatment-variety combination. Peaks were normalised to percentage area per 
sample, to account for differences in intensity. Normalised peak data was log10 transformed to meet parametric 
assumptions, and modelled using a multivariate linear model (manylm62 with grass variety, climate scenario, 
biological replicate number and the variety-climate scenario interaction as predictors. Pairwise comparisons 
were conducted by splitting the data into subsets, running manylm on each one, and adjusting the P values 
with the Benjamini–Hochberg  correction66. Data were visualised by organising the compounds into hierarchical 
groups and plotting heat  trees60. Random Forest™ analysis was undertaken to assess classification of data by vari-
ety, treatment or experiment, and to identify which compounds were most informative for  classification67. The 
proximity scores created in the process were used as a distance matrix for multi-dimensional scaling (MDS) to 
plot the outputs. For each forest, the 25 compounds that contributed the largest mean decrease in accuracy when 
excluded) with a z-ratio ≥ 7 were extracted from the data and used to create a new random forest.

Results
Effect of growth conditions on physiological characteristics of grass varieties at harvest. Over-
all, the grass varieties were clearly affected by the climate scenarios imposed during growth, indicating that the 
extent of the stress imposed was sufficient to elicit a physiological response (Fig. S1). Mean biomass values for 
grasses in each climate scenario (control 2020, control 2050, 2050 + flood, 2050 + drought and 2050 + heat shock) 
were 14.4 g, 10.2 g, 8.6 g, 6.0 g and 5.8 g DM respectively (SD = 3.61). There was no significant effect of grass 
variety on Fv/Fm ratio (P = 0.328), chlorophyll (P = 0.118) or crude protein (P = 0.702), with mean values of 0.79 
(Fv/Fm), 8.86 ug/mL and 23.8% respectively (Supplementary Table S1). However, there was a significant effect 
of grass variety on water-soluble carbohydrate (WSC) (P = 0.030), with Aber Niche having a higher (P = 0.031) 
WSC compared to Aber Root, although there were no differences amongst any of the other grass varieties. The 
fibre values for NDF, ADF and ADL varied (P < 0.001) between grass varieties, however the mean values were 

https://github.com/ecologysarah/lolium-rumen-voc
https://github.com/ecologysarah/lolium-rumen-voc
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38.7%, 15.3% and 2.2% respectively (Table S1). Taking all the varieties together, there was an effect (P < 0.05) of 
climate scenario on crude protein, WSC, chlorophyll, Fv/Fm ratio, NDF, ADF and ADL (Table 3).

Discriminant functional analysis (DFA) of Fourier Transform infra-red spectroscopy (FTIR) spectra to deter-
mine differences in the plant chemistry at harvest showed no clustering by grass variety. However, clustering 
was observed for climate scenario, with heat shock FTIR spectra differing from all remaining scenarios except 
drought (Fig. 1).

Cumulative gas production. Total cumulative gas production measurements were taken 48 h from the 
start of the in vitro rumen fermentation experiments (Fig. 2A): a greater amount of gas produced during the 
48 h indicates more extensive fermentation. There was a significant effect of grass variety (P = 0.041) on gas 
production, driven by lower gas production in the Aber Zeus samples (Fig S2). There was a significant effect of 
climate on gas production (P = 0.002), and pairwise comparisons showed that the flooding treatment produced 
significantly less gas than the 2020 controls (P = 0.014), 2050 controls (P = 0.038) and the heat shock treatment 
(P = 0.016) (Fig. 2A). There was no significant interaction between variety and climate scenario.

There was no effect of grass variety on  CO2 production (P = 0.114), nor any significant interaction between 
variety and climate scenario. However different climate scenarios did result in differences (P = 0.016) in  CO2 
production which was lowest in the drought treatment compared to heat shock (Fig. 2B). Methane  (CH4) produc-
tion during in vitro fermentation showed no effect due to grass variety (P = 0.111), nor any significant interaction 
between variety and climate scenario. However, growth under different climate scenarios did have an effect on 
methane production (P = 0.016; Fig. 2C), which was again lowest in the drought scenario compared to control 
2020.

In vitro rumen fermentation parameters. FTIR analysis at the end fermentation after 48 h showed a 
separation of clusters for the liquid fraction with the flood treatment resulting in differentiation from 2020 cli-
mate condition (Fig. 3A). However, there was no differentiation of clusters within the pellet (Fig. 3B).

Table 3.  Mean values for dry matter% (DM) crude protein (as a % of DM), water soluble carbohydrate (WSC 
as a % of DM), chlorophyll content, Fv/Fm ratio NDF, ADF and ADL in each climate scenario. Lower case 
letters indicate significant difference based on ls means with Tukey adjustment (P < 0.05).

Analysis 2020 2050 2050 + flood 2050 + drought 2050 + heat shock S.D.

Fv/Fm 0.81b 0.81b 0.80ab 0.78ab 0.76a 0.05

Chlorophyll 11.12c 9.08ab 6.19a 10.05bc 7.84ab 2.90

WSC %DM 4.24b 3.04ab 2.57a 3.52b 3.64b 1.17

Crude protein% DM 23.2ab 22.5a 21.6a 26.7b 25.0ab 3.72

Dry matter% 15.6bc 13.1ab 10.2a 18.3c 15.7bc 3.42

NDF %DM 36.0a 40.0b 44.1c 37.4a 37.5a 4.5

ADF %DM 12.8a 16.4d 18.0e 15.0c 14.4b 3.6

ADL %DM 2.3c 2.4d 3.3e 1.2a 2.0b 1.2
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Figure 1.  DFA analysis of grass variety based on FTIR analysis, showing no distinct clustering between 
varieties (AC Aber Clyde, AD Aber Dart, AE Aber Echo, AG Aber Glyn, AN Aber Niche, AZ Aber Zeus, B 
Barolex, BX Aber Root, DV Da vinci, P Premium (A); climate scenarios (B), showing distinct clustering between 
environmental conditions (DFA circles around the mean group centres with 95% confidence circles for DF1 vs 
DF2; HS heat shock).
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There was no effect of grass variety on total VFA production (P = 0.401), ammonia production (P = 0.580) or 
pH (P = 0.700) with mean values of 251 mM/g DM, 43 mg/g DM and 6.8 respectively. However, climate change 
scenario affected fermentation profiles of all the parameters analysed (P < 0.001; Table 4).

There was no difference between plant variety Dry Matter Degradation (DMD), mean value of 65.0 g/100 g, 
however climate scenario significantly affected DMD with future scenarios, flood, drought and heat shock, 
being significantly less than control 2020 (Table 4). Climate scenario affected VFA production with there being 
no difference between control 2020 and control 2050 but all other treatments resulted in a lower (P < 0.05) 
value compared to control 2020. Ammonia concentration was lowest (P < 0.05) in control 2020 and control 
2050 compared to all other climate scenarios. The pH in the 2020 and 2050 controls was lower than in all other 
climate scenarios, however this small change is considered not biologically significant. Acetate production was 
lowest (P < 0.05) in 2050 + drought compared to all other climate scenarios, whereas propionate concentration 
was highest (P < 0.05) in control 2020 with decreasing values for control 2050, 2050 + heat shock, 2050 + drought 
and 2050 + flood respectively. The iso butyrate concentrations were different (P < 0.05) between climate scenarios 
but a difference of 2 mM was again considered not biologically significant. Butyrate concentration was highest 
(P < 0.05) in control 2020 and 2050 + drought and lowest in 2050 + flood and 2050 + heat shock with an interme-
diate value for control 2050. The acetate to propionate ratio (C2:C3) was lowest (P < 0.05) in control 2020 and 
2050 + drought and highest in 2050 + flood with intermediate values for control 2050 and 2050 + heat shock.

Figure 2.  Effect of climate scenario on total gas production (A), total  CO2 production (B) and total methane 
production (C) at 48 h fermentation as affected by climate change scenario (all corrected for starting weight 
of dry matter); HS heat shock). Raw data points are overlaid on boxplots, coloured by replicate experiment. 
Notches represent 95% confidence intervals. Lower case letters indicate significant difference based on ls means 
with Tukey adjustment (P < 0.05).
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Figure 3.  DFA analysis of liquid (A) and pellet (B) FTIR as affected for each climate scenario at the end of 48-h 
fermentation (DFA circles around the mean group centres with 95% confidence circles for DF1 vs DF2; HS heat 
shock).
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Volatile organic compounds (VOCs). Across the entire dataset, 175 distinct VOCs were detected. Cli-
mate scenario was a significant predictor of VOC profiles overall  (LR4,134 = 5372, P = 0.002), and all pairwise 
comparisons were also significantly different from each other (P < 0.05) (Table 6).

Random forest analysis correctly classified at least 66% of samples in each climate scenario, despite only partial 
separation on the MDS plot (Table 5, Fig. 4A). Climate scenarios could be successfully differentiated despite 
marked and significant differences between biological replicates  (LR2,134 = 9833, P = 0.002; Table S4; Fig. 4B). No 
grass varieties could be separated from each other (Fig. 4C).

Random forests using subsets of only the 25 most discriminatory compounds performed comparably to 
the originals in their respective classifications (Table 6, Table S4), indicating that these subsets captured much 
of the relevant information from the full dataset. Within each growth condition, the most important com-
pounds in classification were not necessarily the most abundant and vice versa (Table 6). Only seven compounds 

Table 4.  Fermentation profile values for VFA, ammonia and pH end point analysis. Lower case letters indicate 
significant difference based on ls means with Tukey adjustment (P < 0.05).

2020 2050 2050 + flood 2050 + drought 2050 + heat shock S.D.

DMD g/100 g 77.5a 74.2ab 55.4c 54.6c 63.3bc 18.0

VFA mM/g DM 315a 284ab 229bc 202c 227bc 51.6

Ammonia mg/g DM 28b 32b 52a 51a 53a 26.6

pH 6.7a 6.8a 6.9b 6.9b 6.9b 0.11

Acetate mM/g DM 174a 166a 148a 109b 145a 26.4

Propionate mM/g DM 66a 58ab 40c 41c 43bc 15.6

Isobutyrate mM/g DM 5a 4ab 3b 3b 3b 1.0

Butyrate mM/g DM 47a 38ab 25b 35a 23b 9.7

Acetate: propionate 2.8a 3.1ab 3.9c 2.9a 3.6bc 0.86

Table 5.  Results from random forest classification of VOC samples by growth condition at 24 h post 
incubation. Rows represent the number of samples from each true class that were allocated to each of the 
predicted classes (columns). The error rate is the percentage of samples that were misclassified from each 
group. The predicted class for each given sample was determined by a simple majority of votes from the trees 
in which that sample was out-of-bag (OOB). Correct classifications are shown in bold.

Predicted class

Error rate (%)Control 2020 Control 2050 2050 + drought 2050 + flood 2050 + heat shock

True class

Control 2020 26 4 0 0 0 13

Control 2050 1 23 1 2 3 23

Drought 0 3 21 4 2 33

Flood 1 2 2 24 1 20

Heat 1 0 5 0 24 20

Figure 4.  MDS ordination of VOC profiles of grass varieties exposed to rumen fluid, based on proximity values 
from random forest classification by (A) climate scenario; (B) biological replicate; and (C) variety of grass.
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(2,4-dimethylfuran, butan-2-one, 3-methylbutan-1-ol, 3-methylpentan-2-one, methylsulfonylmethane, heptane 
and 1,1’-oxydibenzene) were shared between the discriminatory subsets for climate scenario and biological 
replicate, further indicating that the effects of climate are robust to background variability (Table S3).

By relative area (normalised per sample), the most abundant group was sulphurous compounds (33% of total 
area), followed by alkenes (20%), acids (11%) and ketones (11%) (Fig. 5, main panel). By number of compounds, 
the largest group was alkenes (47 compounds), followed by sulphurous compounds (24 compounds) and alco-
hols (20 compounds). The relative abundance of alkenes decreased in the future scenarios compared to the 2020 
control, while acids increased (Fig. 5).

Discussion
Grass physiological changes in current and future environmental conditions. Climate change 
involves multiple parameters which individually and in combination can alter plant physiology. It is currently 
unclear if these changes would be beneficial or detrimental to forage quality and hence the impact on ruminant 
production. During abiotic stresses plants alter their biomass allocation. In this work the lowest total biomass 
was from the droughted grasses and those subjected to heat stress, which correlates with previous work where 
biomass allocation decreased with the abiotic stresses of drought and  temperature68. Water soluble carbohydrate 
levels (WSC) in the control 2020, 2050 as well as the drought and heat shock climate scenarios were higher than 
the flood scenario, which correlates with previous work where drought and heat stress conditions have been 
shown to generally elevate WSC as a part of a protective  mechanism28. However, the combination of drought 
with elevated levels of  CO2 may also have an effect on the drought response resulting in slightly higher WSC and 
dry matter  levels25. Flooding resulted in a negative effect on crude protein levels and water-soluble carbohydrate 
levels as might be expected, due to reduced photosynthetic capacity and increased the proportion of fibre. How-
ever, protein concentrations were found to be in higher in the drought and heat shocked grasses than in controls, 
in contrast to previous  studies69,70. Drought stress reduces photosynthetic activity and Rubisco  activity71 and 
hence lowers protein levels. However, these effects have been demonstrated not to occur until severe or long-
term drought stress has  occurred72,73 and indeed in the experiments reported here the chlorophyll level and 
Fv/Fm were not significantly affected by the duration of 2050 drought treatment. The ratio of Fv/Fm showed a 

Table 6.  Top 25 compounds most important for random forest classification of climate scenario, ranked in 
order of their importance in discriminating each climate scenario at 24 h post incubation (see Table S2 for 
raw importance scores). Based on 100,000 trees. Abundance is the mean relative abundance of the compound 
in each growth condition (based on total area normalisation). Compounds are shown in order of decreasing 
importance to the overall classification (the relative reduction in random forest performance when the values 
for a given compound are randomly permuted). Rank represents order of importance for each growth category.

Control 2020 Control 2050 2050 + drought 2050 + flood 2050 + Heat shock

Abundance Rank Abundance Rank Abundance Rank Abundance Rank Abundance Rank

(2Z,4E)-hexa-2,4-diene 0.0207 13 0.00981 16 0.00573 6 0.00661 7 0.00612 9

Octa-1,3-diene 0.0161 5 0.0532 2 0.0499 5 0.0165 16 0.022 14

3-Ethylocta-1,5-diene 0.0172 14 0.0109 15 0.0115 7 0.0219 9 0.008 8

Pentan-3-ol 0.156 3 0.0652 6 0.0251 16 0.0298 13 0.0168 15

Methanethiol 0.386 4 0.296 3 0.152 17 0.2 3 0.0959 12

Penta-1,3-diene 0.116 1 0.0463 8 0.0149 14 0.0279 18 0.0114 5

2,4-Dimethylfuran 0.237 6 0.15 7 0.11 9 0.12 15 0.0878 4

Acid1 0.0217 2 0.0272 23 0.0428 19 0.0471 5 0.0441 3

Pent-1-en-3-ol 0.0841 9 0.0392 9 0.0218 4 0.0249 19 0.0152 1

Dodecane-1-thiol 0.00961 10 0.0113 10 0.0152 3 0.016 20 0.0149 2

Methylsulfonylmethane 1.07 8 1.82 11 1.2 1 1.46 8 1.38 17

2-Ethylthiophene 0.0499 18 0.0669 1 0.0421 18 0.0392 1 0.0353 16

1,1′-Oxydibenzene 0.0412 16 0.0528 18 0.065 8 0.0723 12 0.0626 7

2-Methylbut-1-ene 0.563 11 0.257 24 0.144 2 0.247 10 0.104 6

Ethanol 2.02 15 2.27 20 1.49 13 1.49 6 1.15 10

3-Methylpentan-2-one 5.68 17 4.97 5 4.93 20 4.32 11 5.46 13

Butan-2-one 5.28 20 4.72 13 4.69 10 4.13 4 5.2 19

Decanal 0.0546 21 0.0511 22 0.0927 22 0.0844 2 0.0863 20

3-Methylthiophene 0.639 23 0.629 12 0.195 15 0.253 14 0.284 11

(3E)-1,3-hexadiene 0.0192 24 0.0227 17 0.0122 21 0.0115 22 0.0112 21

Dimethyltrisulfane 0.777 7 0.903 4 0.658 12 0.899 17 0.371 24

3-Methylbutan-1-ol 0.0245 22 0.0281 25 0.0204 23 0.0252 21 0.0172 23

(Z)-oct-2-ene 1.37 12 1.61 14 1.71 11 1.4 25 1.57 25

Heptane 0.822 19 0.944 21 0.648 25 0.35 23 1.23 18

(E)-oct-4-ene 1.38 25 1.61 19 1.7 24 1.4 24 1.57 22
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significantly lower value for grasses subjected to the heat shock climate scenario. This was found to be below the 
optimal value for most plants, indicating plant stress by the photoinhibition of photosystem  II74. Chlorophyll 
measurements can also indicate how photosynthesis is affected during  stress75. Chlorophyll levels were highest in 
the control 2020 scenario and the lowest in grasses subjected to heat shock and flood climate scenarios, indicat-
ing that photosynthesis was affected by both these treatments, which is consistent with previous  studies26,32,33,75.

Again, the elevated  CO2 imposed together with the drought, as well as the short drought period may have 
mitigated the negative effects on protein content. The clustering of the FTIR data based on treatment further 
indicates that the treatments were sufficient to elicit a response, and the separation of the heat-shocked material 
from the controls fits with the reduced chlorophyll and Fv/Fm elicited for this treatment indicating a high level 
of imposed stress.

Effects of climate condition of grass growth on rumen fermentation. Growth of these grasses 
under different climate conditions was shown to have an impact on fermentation. It is suggested that the plant 
response to climate has a consequence for the activity of the rumen microbiota; altering the nutrient provision 
to the colonising microbiota affects colonisation community profiles and in consequence, forage degradation 
 parameters12,76. This is likely to be a result of differences in forage chemistry due to acclimation responses during 
growth but could also be a result of changes caused by active plant stress responses to the rumen environment, as 

Figure 5.  Comparisons between VOC profiles from grass varieties exposed to rumen fluid, broken down by 
climate scenario. Compounds are classified into hierarchical classes, and every node represents on the heat 
trees one compound or parent class. Node size is proportional to relative abundance for that class/compound. 
Each of the small heat trees represents a comparison between two climate scenarios. Node colour is on a scale 
representing the mean abundance change between conditions as a proportion of the total abundance of that 
compound: orange indicates that the compound had higher relative abundance in the ‘column’ treatment, grey 
indicates no difference, and blue indicates higher relative abundance in the ‘row’ treatment. Relative abundance 
is on an arbitrary scale where each sample sums to 100. For ease of viewing, compounds are only included 
if their relative abundance at least doubled in at least one comparison. For this reason, in some cases a node 
will show a different direction of change to its parent nodes (i.e. other compounds, not included in the plot, 
contribute to the parent node’s direction of change).
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has been previously demonstrated to occur in grass and  clover16–18,76. The effects of pre-harvest climate scenarios 
on rumen fermentation are in agreement with previous work indicating that plants have a ‘stress memory’ or 
‘defence priming’ and that stress responses are influenced by previous  exposure34,77,78. The in vitro gas produc-
tion technique is a method for analysing fermentation of feeds by a rumen microbial inoculum. The analysis of 
loss of dry matter (DM) and amount of gas  (CO2 and  CH4) produced as a result of fermentation of the grass feed 
indicated that the growth conditions could affect how the grasses would be digested by the animal. Flood had 
the greatest effect in reducing total gas production, compared to both the control climate scenario for 2020 and 
2050. This is probably linked to the decreased WSC and increased NDF content of flooded grasses compared 
with those grown under 2020 or 2050 conditions. This suggests that breeding forage grasses for resilience to a 
future climate in which there are periods of flooding during the growth period may be important for maximising 
its nutritional value.

The in vitro DMD values observed in this study for control 2020 are typical of those expected in high quality 
pastures for  ruminants79. The reduced in vitro DMD caused by future climate scenarios, especially periods of 
flooding or drought, would lead to reduced animal performance and would require higher intakes to maintain 
the level of  production80,81. Interestingly, methane levels were lower from fermentative grasses that had been 
previously subjected to flood, drought or heat shock compared to the 2020 and 2050 controls, potentially due to 
physiological damage caused by flood, drought and heat shock. Different silages have been shown to affect rumen 
fermentation and the microbial community due to differences their chemical  composition82. For example, meth-
ane production was higher in grass silage compared to corn silage and feeding ruminants with a more digestible 
forage reduced methane  production79,83,84. Thus, the lower levels of methane produced from grass subjected to 
2050 + drought, in this study combined with the lower DMD indicate that the stress treatment affected in vitro 
rumen fermentation compared to the current climate model. Based on the model-predicted data, the acetate: 
propionate ratio was 3.26 and the propionate: butyrate ratio was 1.54. This closely matched the expected values 
of 3.25 and 1.33,  respectively85. Hydrogen production and therefore methanogenesis was suggested to be altered 
by the partitioning of degraded DM between microbial synthesis and rumen  fermentation86. The manipulation 
of the level of carbohydrate from feed that goes directly into microbial growth rather than fermentation can alter 
methanogenesis by the hexose partitioning of the  feed87. The volume of methane production in vivo has been 
shown to be lowest when animals were fed high sugar  diets88. Further work confirmed in vivo that partitioning 
of hexose into fermentation end products (including methane) and microbial biomass is influenced by dietary 
carbohydrate and by increasing the proportion of WSC in the diet can significantly reduce the amount of meth-
ane  produced89. Although decreased methane production has been linked to increased  WSC89, this does not 
explain the results obtained in the present study since WSC remained relatively unaffected by the pre-harvest 
stress treatments.

FTIR profiles after 48 h of digestion discriminated between plants grown in the flood climate scenario com-
pared to the control 2020 but did not discriminate amongst the different grass varieties. This is in contrast with 
previous  work2 where variety did influence the FTIR after 24 h of fermentation. However, it is possible that 
differences observed after 24 h were not visible after 48 h because of a more extensive degradation by that time. 
Typically, in fresh forages an increase in acetate is highly correlated to increased methane production, however 
here while acetate increased, methane was reduced. However, due to the lower DMD values of the stressed for-
ages this may not be reflected in the animal hence further investigation is required.

Changes in VOC profiles during rumen fermentation due to differing climate conditions. This 
is one of the first experiments analyse VOCs in relation to plant material under simulated rumen conditions, 
and it showed that it is possible to distinguish an effect of plant growth conditions from rumen VOCs. The 
unexpected differences between biological replicates most likely represent differences in the rumen fluid on 
each occasion and suggests that the exact composition of rumen fluid is a key influence on the volatile bouquet. 
Despite efforts to keep the replicates as consistent as possible, rumen fluid is affected by diet, health, time since 
last feed and stochastic changes in  microbiota10,90 although here animals were on the same diet, fed at the same 
time, and rumen fluid was also collected at the same time. Thus, changes in VOCs must be affected by very small 
changes in diet composition or animal physiology. That the effects of stress growth condition could nonetheless 
be picked out from this high background variability indicates that there are consistent patterns associated with 
different plant growth conditions. Although none of the ten varieties of grass could be reliably differentiated 
from the rest, this does not preclude the possibility that a larger sample size would be able to detect subtle dif-
ferences amongst varieties.

The most abundant VOCs in fresh L. perenne have been reported as benzeneacetaldehyde, 2,5-dimethyl-
pyrazine, hexanal and  benzaldehyde91. Of these four, all but 2,5-dimethyl-pyrazine were detectable in the present 
samples, indicating that grass volatiles could be clearly distinguished in the rumen. In total, eleven of the 58 VOCs 
listed in Ref.91 were also identified here, and for a further seven, closely related compounds were present (i.e. 
different isomers or branching patterns). In addition, the samples contained 18 of the 50 compounds previously 
listed in rumen  headspace90 with another 10 close matches. This included nine of the 16 compounds which were 
highlighted as major rumen fermentation products or characteristic components of rumen odour: acetic acid, 
propanoic acid, pentanoic acid, hexanoic acid, dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide, 
phenol and 3-methyl-thiophene90. There was a prevalence of dienes in the present study: 16 in total, of which 
five were among the 25 compounds most discriminatory between treatments. This abundance of unsaturated 
compounds is indicative of the reducing environment within the rumen.

Eight of the 25 VOCs identified as major discriminators across the stress growth conditions (Table 6) have 
been previously associated with plant stress responses. The 3-pentanol activates pathogen defence responses 
via salicylic acid, jasmonic acid and ethylene signalling  pathways92,93. The 1,3-octadiene is negatively associated 
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with drought in  flowers94, while 3-ethyl-1,5-octadiene is an autolysis product and is possibly linked to her-
bivore  defence95,96. It is known that 1-penten-3-ol is produced following stresses such as wounding, drying 
or  freezing97,98 and has been associated with mown  grasslands99. It possesses anti-fungal  properties100, but its 
formation is oxygen-dependent101, suggesting that it was produced prior to rumination. Ethanol, another of 
the key discriminatory VOCs, is produced by plant cells when anoxia forces them to switch to fermentative 
 metabolism20. Ethanol is also produced by microbial fermentation but is a minor component in the healthy 
 rumen102; it constituted on average 1.7% total area in the present samples. The compound 3-methyl-2-pentanone 
is associated with herbivore  defence103 while 2-ethylthiophene was negatively associated with increased  CO2 
levels in  broccoli104. Also, 2-butenal is a discriminatory compound worth mentioning, even though it was not 
in the top 25. This is because 2-butenal strongly induces abiotic stress-related transcription  factors105 but also 
causes irreversible damage to  chloroplasts106.

Both 2-methyl-1-butene and 3-methyl-1-butene are produced from the reduction of isoprene under anaerobic 
 conditions107. This is of particular interest as isoprene is used as an electron acceptor during acetogenesis and 
inhibits the production of  methane107. Thus, the association of these VOCs with the stress growth conditions 
and the reduction in methane may be metabolically linked. Isoprene is a major component of plant volatile 
emissions and offers protection from heat stress and oxidative  damage108,109. Although only 2-methyl-1-butene 
featured in the top 25 compounds, isoprene and both its breakdown products were important in differentiating 
the control 2020, drought and heat shock growth conditions. Isoprene was most abundant in the control 2020 
growth condition, which would fit with the general pattern of inhibited isoprene production at increased  CO2 
 concentrations109.

Several of the discriminatory compounds were also associated with microbial metabolism. Methanethiol is 
produced by the microbial breakdown of S-containing amino  acids110 and also plays an important role in anaero-
bic methane  cycling110,111. The compound 1-butanol, 3-methyl is a by-product of amino acid  fermentation112. This 
compound has also been detected in plant  leaves100 but given that it is produced by various fungal endophytes it 
is not necessarily  endogenous113,114, indeed, it is inhibitory to germination and growth in  Arabidopsis114.

Summary and conclusions
It is currently not clear what the impact of climate change on rumen fermentation will be. Consideration of the 
effect of altered environmental conditions on both plant growth and animal physiology is required. Here we have 
investigated the former, to explore whether forage growth under an altered climate would produce legacy effects 
in forage that would impact on rumen fermentation when ingested. Although there was relatively little variation 
between grass varieties, consistent effects due to growth under severe weather events were detected. Notably acute 
flood and drought caused decreased digestibility in those forages. As these conditions are predicted to increase 
in frequency over the next decades, unless addressed this will have a limiting effect on production efficiency. 
The detection of VOCs associated with plant stress responses during fermentation is further evidence that post-
ingestion plant metabolism is a component of the functional rumen system. Together, these data indicate that 
forage breeding strategies should consider response to future as well as current climates to ensure economic and 
environmental sustainability of production.
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