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Abstract Obstructive sleep apnea (OSA) is a highly preva-
lent sleep-related breathing disorder which is associated with
patient morbidity and an elevated risk of developing hyper-
tension and cardiovascular diseases. There is ample evidence
for the involvement of bone marrow (BM) cells in the patho-
physiology of cardiovascular diseases but a connection be-
tween OSA and modulation of the BM microenvironment
had not been established. Here, we studied how chronic inter-
mittent hypoxia (CIH) affected hematopoiesis and the BM
microenvironment, in a rat model of OSA. We show that
CIH followed by normoxia increases the bone marrow hyp-
oxic area, increases the number of multipotent hematopoietic
progenitors (CFU assay), promotes erythropoiesis, and in-
creases monocyte counts. In the BM microenvironment of
CIH-subjected animals, the number of VE-cadherin-
expressing blood vessels, particularly sinusoids, increased,
accompanied by increased smooth muscle cell coverage,

while vWF-positive vessels decreased.Molecularly, we inves-
tigated the expression of endothelial cell-derived genes
(angiocrine factors) that could explain the cellular phenotypes.
Accordingly, we observed an increase in colony-stimulating
factor 1, vascular endothelium growth factor, delta-like 4, and
angiopoietin-1 expression. Our data shows that CIH induces
vascular remodeling in the BM microenvironment, which
modulates hematopoiesis, increasing erythropoiesis, and cir-
culating monocytes. Our study reveals for the first time the
effect of CIH in hematopoiesis and suggests that hematopoi-
etic changes may occur in OSA patients.
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Introduction

Hematopoiesis has long been known to be affected by envi-
ronmental hypoxia [64]. Despite numerous reports relating
hypoxia with hematopoietic modulation [3, 5, 44, 46, 48, 49,
61, 64] and the great attention currently given to hypoxia-
inducible factor (HIF) [34], the current scientific knowledge
largely relies on of studies performed under acute hypoxia
stimulation in isolated systems. Therefore, the role of chronic
systemic hypoxia in the bone marrow (BM) microenviron-
ment and hematopoiesis is still unknown.

Here, we studied the role of environmental hypoxia using a
clinically relevant chronic intermittent hypoxia (CIH) model,
which consists of exposing the experimental animals to a par-
adigm of CIH for 30–35 days, as a model of obstructive sleep
apnea syndrome (OSA) [25]. OSA is an increasingly preva-
lent condition affecting children and adults, which is re-
nowned as a frequent secondary cause of hypertension [16].
There is ample evidence for the involvement of BM-derived
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cells in the pathophysiology of hypertension [78] but a rela-
tion between OSA and modulation of the BM microenviron-
ment had not been shown and is the subject of the present
study. The clinical hematological aspects of OSA are still
largely unknown, with several studies reporting mainly plate-
let activation and increased hematocrit, but not assessing BM
or circulating blood cell alterations [22]. Furthermore, these
studies typically compared groups of patients with differing
disease phenotypes [32] or treated versus untreated patients
[42] but not healthy controls versus patients and do not ex-
plore the mechanisms involved [22].

Mechanistically, we focused on the vascular compartment
of the BM, because it mediates the differentiation and prolif-
eration of hematopoietic cells, as well as their egress from the
BM microenvironment [40]. Furthermore, one of the most
striking effects of hypoxia is the promotion of angiogenesis,
which results from hypoxia inducible factor (HIF)-mediated
increase in vascular endothelial growth factor (VEGF) expres-
sion [62].

The causal relationship between intermittent hypoxia and
increased VEGF expression is known in both OSA patients
[43] and healthy volunteers [7], but the relevance of this find-
ing is still unknown.

The present work aims to explore for the first time whether
CIH induce changes in the BM vascular compartment, which
might in turn modulate hematopoiesis.

Our data suggests that CIH may promote erythropoiesis,
increase the multipotential progenitor cell-derived CFUs ac-
companied by an increase in BM myeloid and B lymphocyte
counts and a decrease BM T cells. Additionally, CIH also
induces expansion of the blood monocyte compartment and
perturbs the BM microenvironment by interfering with the
vascular niche. Together, our results reveal hematopoietic
and hematological complications of CIH which need to be
validated and evaluated in a clinical setting.

Methods

Animals

Experiments were performed in twelve (12) male Wistar rats,
aged 8–12 weeks, obtained from the NOVA Medical School
animal facility. Animals were housed in polycarbonate cages,
under 12-h light/dark cycles (8 am–8 pm) at a room tempera-
ture 22±2.0 °C and relative humidity 60±10 %. Rats were
maintained one or two per cage with ad libitum access to food
and water. Applicable institutional and governmental regula-
tions concerning ethical use of animals were followed, accord-
ing to the NIH Principles of Laboratory Animal Care (NIH
Publication 85–23, revised 1985), the European guidelines for
the protection of animals used for scientific purposes
(European Union Directive 2010/63/EU), and the

Portuguese Law n° 113/2013. Experimental procedures were
previously approved (nr. 21/2013/CEFCM) by the
Institutional Ethics Committee of the NOVA Medical School
for animal care and use in research.

In vivo experiments

Rats were divided into two groups: normoxia and CIH.
Animals were kept in a eucapnic atmosphere, inside of medi-
umA-chambers (76×51×51 cm, A-60274-P, Biospherix Ltd,
NY, USA) with ad libitum food and water access. The cham-
bers were equipped with gas injectors and sensors for oxygen
(O2) and carbon dioxide (CO2) levels in order to ensure the
accuracy of CIH cycles. Accumulation of CO2 was prevented
by the continuous flow of the gas mixtures through vent holes
and the presence in the chamber of self-indicating soda lime,
which absorbs the expired CO2. The CO2 levels inside the
chambers never exceeded 1 %. A silica gel container was also
placed inside the chambers in order to absorb water. Oxygen
concentration inside the chambers was controlled using 100%
nitrogen (N2) and 100 % O2 by an electronically regulated
solenoid switches in a three-channel gas mixer, which gradu-
ally lowered oxygen in the chamber from 21 to 5 % O2

(OxyCycler AT series, Biospherix Ltd, NY, USA). The cham-
bers were infused with 100 % N2 for 3.5 min to briefly reduce
the O2 concentration to 5 % and then with 100 % O2 for 7 min
to restore oxygen to ambient levels of 21 %, until the start of
the next CIH cycle. Each CIH cycle lasted 10.5 min, and rats
were exposed during their sleep period (light phase of light/
dark cycle) to 5.6 CIH cycles/h, 10.5 h/day for 32 days and
analyzed 3 days after the hypoxic period. During the remain-
ing hours of the day, the chambers were ventilated with a
constant flow of room air to keep oxygen levels at 21 %. O2

was purchased as regular gas bottles (Gasin, Portugal), while
N2 was generated from the air by pressure swing adsorption
technology using a high-output nitrogen generator (Nitrogen
15 Plus, PSATechnology, Sysadvance, Maia, Portugal).

Sample collection

After exposing rats to 32 days of hypoxia followed by 3 days
in normoxia, rats were sacrificed by intraperitoneal injection
with medetomidine (0.5 mg/kg body weight, Domitor®,
Pfizer Animal Health) and ketamine (75 mg/kg body weight,
Imalgene 1000®, Mérial, Lyon, France), and cardiac puncture
was performed to collect peripheral blood. Blood was collect-
ed in EDTA-coated tubes (Multivette 600, Sarstedt), and plas-
ma sampling and complete blood counts were performed.
Femur BM cells were flushed out with PBS 2 % FBS, and
the total BM cell count was assessed using a Burker hemocy-
tometer (Blau Brand).
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Hypoxia quantification in bone marrow sections

Three days after the hypoxic period, the subjects were intra-
venously injected (via tail vein) with 60-mg/kg pimonidazole
hydrochloride (Hypoxyprobe, Inc, Burlington, USA), a
misonidazole-based compound, which forms adducts with thi-
ol groups of proteins, peptides, and amino acids specifically in
hypoxic cells (pO2<10 mmHg) (81). Two hours later, rats
were euthanized using 60-mg/kg sodium pentobarbital IV
(Eutasil, Ceva Santé Animale, Libourne, France) and
transcardially perfused with PBS. Quantification of BM hyp-
oxic areas was performed using the ImageJ software in 10
high-power fields (×400 magnification) per animal.

Flow cytometry

Bone marrow and peripheral blood cells were treated with red
blood cell lysis buffer (Biolegend) for 15 min in the dark and
were then stained for anti-CD90 (HIS51) fluorescein isothio-
cyanate (FITC), anti-CD11b (WT.5) allophycocyanin (APC)
(BD Biosciences), anti-CD117 (2B8) APC, anti-CD19 (1D3)
PE-cyanine 7 (PE/Cy7) (eBiosciences), and anti-CD3 (17A2)
APC-cyanine 7 (APC/Cy7) (BioLegend). Flow cytometric
analyses were carried out using an LSR Fortessa flow
cytometer equipped with FACS Diva 6.2 Software (BD
Biosciences). Data were analyzed with a FlowJo 9.8.2
software.

In vitro colony forming assay

Femur BM cells were flushed with PBS 2 mM EDTA, treated
with red blood cell lysis buffer (Biolegend) for 15 min in the
dark and plated onto petri dishes for 2 h. Non-adherent cells
(105 cells) were collected and plated onto a semi-solid cyto-
kine-supplemented methylcellulose medium (MethoCult GF
M3434) (Stemcell Technologies). Each colony formed in this
semi-solid medium is single-cell derived and represents the
identity of the original progenitor cell [6, 15]. The resulting
colonies were scored after 1–2 weeks of culture, according to
manufacturer’s instructions.

Immunostaining and imaging

Femurs were formalin-fixed, decalcified with formic acid for
3 days, and processed for routine histopathology.
Immunohistochemistry staining was performed on 3-μm
slices. Sections were treated for antigen retrieval and incubat-
ed with the primary antibodies listed in Table 1 for 1 h at room
temperature, immunostained according to the visualization
system manufacturer’s instructions and counterstained with
hematoxylin. The slides were then analyzed using a Leica
DM2500 microscope, and all images were acquired with the
40× objective. The number of vessels or cells stained by each

marker was quantified as a mean of 10 representative images
of individual rat femurs. Sections for immunofluorescence
were incubated with VE-cadherin for 1 h at room temperature
followed by an incubation with an Alexa Fluor 488 secondary
antibody (Life Technologies). DNA was stained with DAPI
Vectashield mountingmedium (H-1200, Vector Laboratories).
Imaging was performed using a Zeiss LSM 510 META mi-
croscope, and images were acquired with the 40× water im-
mersion objective.

RNA isolation and quantitative PCR

Bone marrow cells were collected by flushing off tibias with
PBS 2 % FBS. Cells were centrifuged at 1200 rpm for 5 min,
collected to TRIzol Reagent (Invitrogen), and RNA was ex-
tracted according tomanufacturer’s instructions. Reverse tran-
scription was performed with SuperScript II (Invitrogen), ac-
cording to the manufacturer’s protocol. Quantitative PCR was
performed with Power SYBR Green PCR Master Mix
(Roche) on a ViiATM 7 Real-Time PCR System (Life
Technologies). The sequences of the oligonucleotides used
are included in Table 2. A primer concentration of 180 nM
was found to be optimal in all cases. Amplification of hypo-
xanthine guanine phosphoribosyl transferase (Hprt) was used
for sample normalization.

Statistical analysis

Results are expressed as mean± standard deviation. Data were
analyzed using unpaired two-tailed student’s t test. P values of
<0.05 were considered statistically significant.

Results

Chronic intermittent hypoxia does not affect BM cell
number but modulates/perturbs hematopoiesis

In this study, six male Wistar rats were exposed to chronic
intermittent hypoxia for 32 days and then left in normoxia
for three more days. The post-hypoxic period before the anal-
ysis allowed us to observe the persistent changes in hemato-
poiesis and the BM microenvironment. Notably, as assessed
by hypoxyprobe staining, the extent of BM hypoxia was in-
creased in CIH exposed animals (Fig. 1a, b), which was ac-
companied by an upregulation in Hif1a messenger RNA
(mRNA) (Fig. 1c), CIH was also associated with a significant
decrease in whole body weight (Fig. 1d), an observation that
had already been associated with both sustained and intermit-
tent hypoxia exposure [45, 76]. Nevertheless, concerning the
BM cellular content (corrected to the total body weight of the
animals), there was no alteration in the total number of BM
cells caused by CIH (Fig. 1e). However, the percentage of
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specific hematopoietic lineages within the BM changed.
Specifically, we found an increase in the CD11b+ myeloid
cells (the majority of which are monocytes) in hypoxia-
exposed animals (from 36.10±5.60 to 48.38±5.86 %), and
a modulation in the lymphoid compartment, with a significant
increase in CD19+ B cells (18.07±4.55 % in normoxia and
28.90±5.40 % in CIH) and a decrease in the percentage of
CD3+ T lymphocytes (2.74 ± 0.18 and 1.70 ± 0.26 % in
normoxia and CIH exposed rats, respectively) (Fig. 2b–d).
Although we did not observe a significant variation in the
percentage of CD90+/c-kit+ stem and progenitor cells by flow
cytometry (Fig. 2a and a’), in vitro colony-forming units
(CFU) assays revealed an increase in 1.5-fold in the total
number of CFUs in animals from the CIH group (Fig. 2f).
Such assays allowed us to identify and count single-cell de-
rived colonies, representing either multipotent (CFU-granulo-
cyte-erythrocyte-macrophage-megakaryocyte, CFU-GEMM)
or monopotent (CFU-monocyte, CFU-M; CFU-granulocyte,
CFU-G or bursting forming units-erythrocyte, BFU-E) pro-
genitors. Our data show that chronic intermittent hypoxia
treatment significantly increased CFU-M, CFU-G and BFU-
E colony numbers, without significant alterations in the
multipotent capacity (CFU-GEMM) of treated rats (Fig. 2g).
Although these results suggest CIH favors the expansion of
monopotent progenitors, we cannot rule out the possibility
that the monopotent progenitors arose from more primitive
multipotent progenitors.

Having characterized the changes in BM hematopoietic
lineages accounted to CIH exposure, we asked whether these
alterations could also be identified in peripheral blood (PB).
Indeed, as shown in Fig. 3, we observed a significant increase
in erythrocyte counts, in hemoglobin and in the hematocrit of
CIH exposed rats (Fig. 3a). Our data also shows a decrease in
circulating lymphocytes and an increase in monocytes upon
CIH exposure (Fig. 3b), a finding that was also confirmed by
flow cytometry, showing increased CD11b+ myeloid cells in
the PB (Fig. 2e). In contrast, leukocyte and granulocyte (eo-
sinophil and neutrophil) counts were not affected by CIH.
Platelet counts and mean platelet volume were also similar
in the CIH and normoxia groups (Fig. 3c).

Our data thus mimic some of the clinical aspects observed
in OSA patients, as we observed no changes in platelet counts,
but fails to reproduce other symptoms, such as the increase in
platelet activation and aggregation, as assessed by mean plate-
let volume. Moreover, we report for the first time an increase
in the myeloid compartment, both the BM and PB and a mod-
ulation in the percentage of B and T lymphocytes in the BM of
animals exposed to CIH.

Chronic intermittent hypoxia affects the bone marrow
vasculature and modulates monocyte counts

Having shown that exposure of rats to CIH perturbs hemato-
poiesis, as evidenced by changes in circulating mononuclear
cell and erythrocyte counts, next we sought to characterize the
phenotypic and molecular alterations that occurred in the BM
microenvironment that could account for such changes. As
shown in Fig. 4, the BM vasculature of CIH exposed animals
suffered Bphenotypic alterations,^ as shown by the significant
increase in VE-cadherin expressing vessels (Fig. 4c’, c^) and
their VE-cadherin coverage (Fig. 4f), the increase in smooth
muscle cell coverage (Fig. 4d’, d^), and the decrease in the
number of vessels that were positive for vWF (Fig. 4a’, a^). In
contrast, endoglin (CD105)-expressing vessels did not vary
upon CIH exposure (Fig. 4b’, b^). Similarly, the BM mega-
karyocyte content (also assessed by vWF staining) did not
vary with CIH exposure (Fig. 4a’, a^’).

To demonstrate that there was undoubtedly an increased
expansion of myeloid cells within the BM, we assessed the
BM CD11b+ cell (monocyte) content. In accordance with the
flow cytometric and complete blood count data, we observed
an increment in the number of BM monocytes in CIH treated
animals (Fig. 4e’, e^).

Together, these data show the BM vasculature and in par-
ticular the VE-cadherin and vWF-expressing vessels, and the
pericyte/smooth muscle cell vessel coverage are affected by
CIH exposure. This morphological change in BM vessels of
CIH-treated animals is accompanied by a significant increase
in the number of CD11b+monocytes.

Table 1 Primary antibodies used
for immunohistochemistry Antigen Antigen retrieval Dilution Brand

CD105 (Endoglin) HIER, Tris-EDTA pH 9 1:150 R&D AF1320

CD11b HIER, Tris-EDTA pH 9 1:100 BD 550282

SMA HIER, Tris-EDTA pH 9 1:500 DAKO HHF35

VE-cadherin PIER, Pepsin 1:150 R&D AF1002

vWF PIER, Pepsin 1:300 DAKO A0082

Anti-goat, peroxidase ready-to-use VectorLabs MP-7405

Anti-mouse, peroxidase ready-to-use DAKO K4007

Anti-rabbit, peroxidase ready-to-use DAKO K4011

Anti-rat, peroxidase ready-to-use VectorLabs MP-7444
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Chronic intermittent hypoxia modulates the expression
of Bangiocrine genes^

Since CIH affected the BM vasculature as evidenced by the
increased VE-cadherin-expressing vessels, next, we hypothe-
sized the Bvascular gene expression^ could also be altered.

Therefore, we assessed the expression of the so-called
Bangiocrine genes,^ which are expressed by the BM endothe-
lial cells and have been previously shown to be essential for
BM recovery following stresses such as irradiation or expo-
sure to chemotherapy [9]. In detail, we sought for molecular
correlates to the phenotypic changes observed in the BM

Table 2 List of primers used for
RT-PCR Gene Forward primer (5′-3′) Reverse primer (5′-3′)

rHPRT GACCGCTTTTCCCGCGAGCC TCACGACGCTGGGACTGAGGG

rAdm ACCGCACGGCTCGACACTTC TCCCACGACTTAGCGCCCAC

rAngpt1 TGATGCCTGTGGCCCTTCCA CATGGTTTTGCCCCGCAGTGT

rAngpt2 TGTCCGGCGAGGAGTCCAAC GATTTTGCCCGCCGTGCCTG

rBmp4 AGTTTGTTCAAGATTGGCTCCC CGACCATCAGCATTCGGTTA

rCdh2 TCTGCACCAGGTTTGGAATGGGT ACATACGTCCCAGGCTTTGATCCC

rCsf1 GCCACCGAGAGGCTACAGGAA TTTGGACACAGGCCTCGTTCTGTT

rCsf2 GGTCTACGGGGCAACCTCACC AGTTTCCGGGGTTGGAGGGCA

rCsf3 CCTCGGGGTGGCCCCTACTG CCCGACGCTGGAAGGCAGAA

rCxcl12 GCATCAGTGACGGTAAGCCA TCTCAAAGAATCGGCAGGGG

rCxcr4 TGGAGAGCGAGCATTGCC GCAGGGTTCCTTGTTGGAGT

rDhh TCCCCAACTACAACCCCGA GCTAGAGCATTCACCCGCTC

rDkk1 CTCTATGAGGGCGGGAACAA GCAAGGGTAGGGCTGGTAGT

rDll1 TCTCCTGACGACCTCGCAACA GGTGCCTCTGTGTGGTCAGGC

rDll4 CTGGCCGGGAACCTTCTCACTC TCTCTGGCCGCAGGTCGTCTC

rEpo CCCTATTTACGGGGTGCTGG CTGTCTCTGCCCCTGAGTTC

rFgf1 AGGGACAGGAGCGACCAGCA TACACTTCGCCCGCGCTTTCC

rFgf2 TCCGGGAGAAGAGCGACCCA CCGGTTCGCACACACTCCCTTG

rFlt3l AGCTCTGAAGCCCTGTATCGGGA ACTGCACCTCCAGGCACCGA

rFlt4 CCCTGCTTGGTGTCCATTCC GTCGTCCCACAACACCTCC

rHes1 TCAACACGACACCGGACAA GCTTTGATGACTTTCTGTGCT

rHey1 GCCGACGAGACCGAATCAA TTCGCAGATCCCTGCTTCTC

rHey2 CCCTTGCGAGGAGACGACCT GCTCCCCACGTCGATGGTCT

rHif1α GCTTACACACAGAAATGGCCC GTCCTCCCCCGGCTTGTTAG

rHif2α CCGCCTCATGTCTCCATGTT CAGCTTGTTGGACAGGGCTA

rIgf1 CTTTGCGGGGCTGAGCTGGT AGCCCCTTGGTCCACACACGAA

rIgfbp3 AAGGCGCTGCTGAATGGCCG GCTGGGAGGGGAGGTAGGCA

rIgfbp5 ACCTGCCCAACTGTGACCGC GGCCACGAGAAGGCTTGCACT

rIl3 TGATGCTCTTCCACCAGGGACT AGTCCTGCAATCCAACGTCCTGA

rIl6 CTCTCCGCAAGAGACTTCCAGC AGGGAAGGCAGTGGCTGTCAA

rIl11 CCGACTGGAACGGCTACTTC CAAGGCTAGGCGAGACATCAAG

rJag1 GGAAGGCTGGATGGGTCCTGA TGCAGGAGCCATGCTTGGGA

rJag2 CGGGCCTCGTCGTCATTCCCT CAGGCCTCCACGATGAGGGTGA

rKdr CGGTCATCCTCACCAATCCC CCGATCTGGGGTGGAACATT

rKitl ACAAAACTGGTGGCGAATCTTCCAA TCCCGGCGACATAGTTGAGGGT

rPecam1 TGGCTTGAGTGGGCGGATGG AGCCGGGTGGCTGAGGGAAG

rSmad2 TGTGCAGAGCCCCAACTGTAACCA GGATTTTGCACACTGTCGCGGG

rSmad3 AGGCCATCACCACGCAGAACG AGCCGGCCATCCAGTGACCT

rTgfb1 AGCCCGAGGCGGACTACTAC TGCGTTGTTGCGGTCCACCATT

rThpo TGTCCCCACCCCACTCTGTGC GTGTGGGGCCTCTCCCCTGA

rVcam1 CGGAGCCTCAACGGTACTTTGG GCGAGCGTTTTGTATTCAGGGGA

rVegfa GCACTGGACCCTGGCTTTAC TCTGCTCCCCTTCTGTCGT
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microenvironment; that is, genes that could explain the in-
creased erythropoiesis, monocytosis, and vascular changes
in the BM microenvironment. As shown in Fig. 5, CIH in-
creased the expression of colony-stimulating factor 1 (Csf1),
previously shown to modulate monocyte differentiation, pro-
liferation, and survival [63]. Moreover, Vegfa, delta-like 4
(Dll4), angiopoietin 1 (Angpt1) and Fms-like tyrosine kinase
4 (Flt4) also increased upon CIH exposure (Fig. 5), suggesting
thesemay be involved in the vascular response observed in the
BM of CIH-exposed animals, namely, the increase in VE-
cadherin-expressing and SMA-covered BM vessels.

Discussion

Chronic intermittent hypoxia (CIH) was first reported by
Fletcher and colleagues as a model for obstructive sleep apnea
[25]. In their protocol, mice were exposed to cycles of inter-
mittent hypoxia for 7 h each day for 35 days and were found to
develop a long-term hypertensive response to CIH, as it is
observed in OSA patients. Such model fails to reproduce the
transient hypercapnia that is observed in OSA patients,

determined by airway occlusion, and mimics only the inter-
mittent hypoxic episodes that occur chronically in these pa-
tients, allowing us to separate the mechanical component of
obstruction from the effect of intermittent hypoxia itself. In
fact, the main goal of our work was to explore the effects of
CIH by itself in the BM vascular compartment. Additionally,
over the years, several other groups have shown that this rat
model of CIH mimics many aspects of the obstructive sleep
apnea syndrome, such as atherosclerosis and alterations in the
hematological parameters (for a review see [16]), and only
few have manipulated the CO2 levels inside the chambers
[19, 36, 58].

It remains unclear whether the partial pressure of CO2 in
the arterial blood (PaCO2) is relevant in humans. Hypercapnia
is not a standard parameter analyzed in polysomnographic
recordings in patients and therefore there is no consensus on
the impact of PaCO2 in arterial blood pressure and other pa-
rameters in patients with OSA. For instance, in clinical studies
of patients with moderate OSA, the changes in PaCO2 have
seemed to be irrelevant [24] or have shown a slight increase
[74] during the apneic events. Combining chronic sustained
hypoxia with hypercapnia was shown to restore the subcuta-
neous PaO2 to levels close to the normoxic rats [72] and to

Fig. 1 Chronic intermittent hypoxia affects the hypoxic state of the bone
marrow and decreases body weight but does not affect bone marrow cell
counts. a The extent of BM hypoxia was increased in animals exposed to
CIH, as assessed by pimonidazole staining and b the significant increase
in hypoxic area in CIH animals. c CIH also have increased Hif1α

expression. d Rats subjected to CIH had a lower body weight than
controls. e Total BM cell count shows that CIH does not modify BM
cellularity. Results are represented as the mean ± SD of bone marrow
sections from six male Wistar rats (*p < 0.05; **p< 0.01)
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Fig. 2 Rats exposure to chronic intermittent hypoxia affects specific
hematopoietic lineages and the commitment of bone marrow progenitor
cells. a–d Representative plots of the flow cytometric analysis of bone
marrow cells from normoxic (n = 5) and CIH (n = 5) exposed rats.
Quantification of a’ CD90+/c-kit + stem and progenitor cells did not
reveal a significant alteration in CIH animals. However, b’ CD11b+

myeloid- and d’ CD19+ B cells were increased as opposed to (c’) CD3
T lymphocytes that decreased upon CIH exposure. e Quantification of

peripheral blood CD11b+ cells by flow cytometry also revealed an
increase in the percentage of those cells in circulation. f Colony-
forming unit counts from methylcellulose culture of 105 BM cells reveal
that CIH treatment induces an increased the number of HSPC, g with a
particular increase in macrophage, granulocyte and erythroid (CFU-M,
CFU-G and BFU-E) colonies. Results are represented as the mean± SD
of bone marrow cells from five male Wistar rats (*p< 0.05; **p < 0.01)
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induce a smaller increase in the numbers of circulating eryth-
rocytes [60]. However, the effects of combined CIH with hy-
percapnia in the BM microenvironment and hematopoiesis
were not yet described. Therefore, although some data suggest
that PaCO2 may influence physiological responses to IH, fur-
ther studies are needed to evaluate the combined effect of IH
and hypercapnia. Only male rats were included in our study to
avoid hypothetical effects of estrogens on hematologic re-
sponses to chronic intermittent hypoxia since it has been de-
scribed that 17β-estradiol can influence the expression of
hypoxia-inducible genes such as VEGF and endothelin-1 [2]
and decreases hypoxic induction of erythropoietin gene ex-
pression [20, 54, 80].

In this study, we report that CIH induces a deviation from
the normal body weight gain observed in normoxia-exposed
rats. These results are consistent with those obtained in a par-
allel study, where the effects of chronic intermittent hypoxia

on body weight of male Wistar rats from the NOVA Medical
School colony were evaluated. We observed (unpublished

Fig. 3 Chronic intermittent hypoxia modulates circulating blood counts.
a CIH may promote erythropoiesis. Erythrocyte, hemoglobin, and
hematocrit, as well as mean corpuscular hemoglobin and mean cell
hemoglobin concentration were assessed by peripheral blood cell
counts. The erythrocyte count, hemoglobin, and hematocrit in CIH-
exposed rats (n= 5) are significantly different from those in normoxia

(n = 5) (*p< 0.05). b CIH increases circulating monocytes and decrease
lymphocytes. However, peripheral blood cell counts showed no
differences in neutrophils, eosinophils, or leukocytes. c Platelet count
and mean platelet volume are not modified by exposure to CIH. Results
are represented as the mean± SD of blood samples from five male Wistar
rats (*p < 0.05; **p< 0.01)

Fig. 4 Chronic intermittent hypoxia modifies the BM vascular structure.
a’–e’ Representative images of femur bone marrow stained with vWF,
CD105, VE-cadherin, SMA, and CD11b counterstained with
hematoxylin. a^, c^, d^ BM from CIH exposed rats (n = 6) has more
VE-cadherin+ vessels and SMA coverage but less vWF+ sinusoids
(400×, Leica DM2500). e’, e^ Representative images of CD11b
immunohistochemistry in femur BM show an increase in BM
monocyte count in CIH exposed animals. (400×, Leica DM2500) a’,
a^’, b’, b^ No changes in the total number of vessels or in
megakaryocyte count were observed, as accounted by CD105 and vWF
staining, respectively. Results are represented as the mean ± SD of bone
marrow sections from six male Wistar rats (*p < 0.05; **p < 0.01). f
Representative images of femur bone marrow fluorescently
immunostained for VE-cadherin show an increase in total VE-cadherin
vessels and in VE-cadherin vessel coverage. Scale bar, 50 μm (insets
magnified 2.5×). Images were acquired with a Zeiss LSM 510 META
microscope

b
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data) that rats exposed to 35 days of CIH weighed significant-
ly less compared with age-matched healthy male Wistar rats
kept in normoxia. Several authors reported a weight loss of
CIH-exposed rats when compared with control rats [69, 70,
75, 85]. Such alteration in body weight might be explained by
the production and release of leptin into the circulation as a

response to hypoxia [1, 39, 51, 53, 76, 81]. Leptin is coded by
an hypoxia inducible gene that acts upon the hypothalamus to
control body weight by reducing food intake and increasing
energy expenditure [31, 59, 81]. Moreover, leptin-deficient
mice exposed to CIH have a normal weight gain, compared
to normoxic mice [79], indicating that this is a specific leptin-

Fig. 5 Chronic intermittent hypoxia modulates bone marrow angiocrine
gene expression. a Angiocrine gene modulation was assessed by relative
quantification of mRNA of total BM samples from normoxia (n = 6) and
CIH (n = 6) treated rats. As determined by RT-PCR, we observed an

increase in Vegfa, Dll4, Angpt1, Dhh, and Csf1. b In addition, we also
measured an increase in the expression of Flt4. Data are represented as
mean ± SD of six male Wistar rats (*p< 0.05; **p < 0.01; ***p< 0.001)
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dependent mechanism rather than just a stress response. In our
study, the lower bodyweight may be due to a higher metabolic
activity in the hypoxic rats, as we did not observe significant
differences in caloric consumption between the two groups of
animals, but this assumption needs further validation.

The increased risk of CIH and OSA patients to develop
cardiovascular complications led us to hypothesize that a sys-
temic mechanism might be involved in the pathophysiology
of such co-morbidities. The recruitment of bone marrow-
derived cells has been amply demonstrated to be involved in
the onset and progression of cardiovascular diseases [78]. The
involvement of BM cells has, for instance, been shown to be
important in the setting of atherosclerosis [28] and has also
been implicated in hypertension [78]. Therefore, in the present
study, we explored the hypothesis that CIH might affect the
BM microenvironment and therefore affect hematopoiesis.

Here, we show a significant increase in BM and PB mye-
loid (monocyte) counts in animals exposed to CIH, accompa-
nied by an increase in the total monocyte and granulocyte
progenitor cell-derived CFUs (CFU-M and CFU-G). Several
studies reported an increase in circulating granulocytes both in
acute and chronic hypoxia [14, 61] and increased neutrophil
and lymphocyte counts in the upper airway mucosa of OSA
patients [29, 68]. Interestingly, a significantly lower percent-
age of macrophages was found in the mucosa of these patients
[68]. Nevertheless, chronic intermittent hypoxia increases the
amount of pro-inflammatory pulmonary macrophages [56].
No reports of changes in circulating monocyte or in BM my-
eloid counts as a response to hypoxia exposure were found.
However, Roiniotis and his colleagues showed that hypoxia
can have a pro-survival effect both in monocytes and macro-
phages [66] and Yoon described decreased myelopoiesis in
Hif1a−/− embryos [82], suggesting a positive correlation be-
tween hypoxia exposure and expansion of the myeloid com-
partment. Our data also shows that CIH can modulate the BM
lymphocyte content, a finding that had not been described
either in CIH-exposed rats or OSA patients. Domagala-
Kulawik and her colleagues described a decrease in circulat-
ing B cells and an increase in several T lymphocyte subsets in
OSA patients, but they addressed only peripheral blood and
not BM lymphocyte content [17]. Furthermore, our data is
consistent with previous reports showing that stabilization of
Hif1α and Hif2α in thymocytes resulted in a remarkable in-
crease in thymocyte apoptosis [4, 13] and that HIF1α defi-
cient chimeric mice have impaired B cell development with
decreased proliferation of B cell progenitors [38].

In addition, we report an increment in circulating erythro-
cytes and in blood hemoglobin and hematocrit, which corre-
lates with the higher numbers of erythroid colonies (BFU-E)
derived from BM progenitors. This increase in erythroid colo-
nies was also described in rats exposed to chronic sustained
hypoxia (4 weeks). However, the authors of that study failed to
detect any remarkable alterations in granulocyte-macrophage

progenitor numbers [67]. Previous studies have shown that
acute and chronic sustained [83] or intermittent hypoxia pro-
moted erythropoiesis [5, 46, 49, 50, 64]. Furthermore, although
there is a general lack of healthy controls in most studies,
clinical data of OSA patients also suggest an increase in hemo-
globin levels [12, 30] and in hematocrit [22, 32], and diurnal
variations in erythropoietin levels [10] which together seem to
be correlated with the severity of OSA [12, 77]. The effects of
hypoxia in platelet parameters are dependent on the hypoxia
administration. In detail, short-term chronic sustained hypoxia
(1–4 days) was reported to promote thrombocytosis [44].
However, after 4–5 days of exposure, platelet counts returned
to normal and thereafter rapidly declined between the fifth and
the ninth days of hypoxia, leveling off at half their normal
value [44, 48]. Studies in chronic intermittent asphyxia, how-
ever, have shown it does not affect platelet count, but instead
increases platelet activation and aggregation [18], an effect that
is correlated with the severity of the disease in OSA patients
[35]. These results deserve further studies but emphasize the
differences between sustained and intermittent hypoxia.

One interesting observation in bone marrow sections of
animals in CIH was the significant increase in VE-cadherin-
expressing vessels and in smooth muscle cell coverage, ac-
companied by a decrease in the vWF-positive vessels.
However, we did not observe an increase in total vessel num-
ber assessed by CD105 expression. These findings highlight
the heterogeneity of the vascular content of the BM microen-
vironment (similar findings, in a different context were report-
ed in Remedio et al. 2012) [65] and demonstrate that different
vascular markers should be used concomitantly, to avoid mis-
interpretation of single marker-staining patterns.

These morphological changes in bone marrow vessels up-
on CIH exposure are also indicative of a molecular process
which appears to be favoring vascular stability. vWF is asso-
ciated with activated and thus less stable vessels, since it is
upregulated in endothelial cells treated with FGF2 and VEGF
(potent angiogenic inducers) [84]. Contrastingly, VE-cadherin
expression and smooth muscle coverage have been associated
with increased vessel stability [21], usually induced after an
active angiogenic (generating new vessels) process [55].
HIF1α, that we found to be upregulated in hypoxic rats, is
one of the major inducers of angiogenesis, as it upregulates
Vegf expression, ultimately leading to vessel permeability and
instability [23, 41, 47, 71]. This process is tightly coupled with
a decrease of VE-cadherin in the endothelial tight junctions
[37, 47], in a VEGF-dependent manner. Our data suggest that
the BM sinusoids may not be responding to the proangiogenic
effects of VEGF and instead become more stable upon hyp-
oxia exposure. Additionally, the reported increase in SMA-
positive vessels in CIH-exposed rats is suggestive of vessel
stabilization. This is in line with the findings that hypoxia
promotes endothelial cell activation which will lead to the
release of mitogenic factors for smooth muscle cells [33, 52].
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An understanding of the role of vessels (and of endothelial
cells that comprise them) in organ function and recovery fol-
lowing injury has dramatically changed in the last years. It is
now accepted that endothelial cells within each organ express a
different subset of trophic growth factors, known as Bangiocrine
factors,^ that will satisfy the function andmetabolic demands of
that specific organ. Moreover, ECs play an active role in organ
recovery, through an adaptation of the expression of these tro-
phic factors, supporting the regeneration and proliferation of
stem and progenitor cells in the affected tissues, in a paracrine
manner. [8, 9, 57]. In the present study, we reasoned the vascu-
lar changes seen in the bone marrows of animals exposed to
CIH might affect the production of specific angiocrine factors;
identification of such factors could in turn explain the alter-
ations in hematopoiesis seen in CIH animals. We observed
significant changes in the expression of Csf1, which explains
the increase in BM and PB myeloid compartment [11], and in
the levels of Vegfa and Angpt1. Vegf is an hypoxia-inducible
gene and is most likely upregulated in response to the increased
levels of Hif1α in hypoxic rats. Angiopoietin 1 (Angpt1) in
particular has been shown to modulate vessel stability by pro-
moting the chemoattraction of smooth muscle cells to newly
formed vessels [73], usually in response to augmented VEGF
levels [27]. Additionally, Angpt1 protects blood vessels from
VEGF-induced permeability by inhibiting internalization of
VE-cadherin which leads to an increase in VE-cadherin expres-
sion and vessel stabilization [26, 27]. Together, these molecular
findings correlate with the vascular changes observed in the
bone marrow of animals exposed to CIH.

Taken together, our data obtained from an animal model of
OSA, reveal that the systemic effects of CIH result in modula-
tion of the bone marrow microenvironment, namely, the bone
marrow vasculature, which in turn might be perturbing hema-
topoiesis. Our results pave the way for pre-clinical and clinical
studies aimed at validating these findings in OSA patients.
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