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Background: The aim of this work was to investigate the ability of building prognostic
models in non-small cell lung cancer (NSCLC) using radiomic features from positron
emission tomography and computed tomography with 2-deoxy-2-[fluorine-18]fluoro-D-
glucose (18F-FDG PET/CT) images based on a “rough” volume of interest (VOI) containing
the tumor instead of its accurate delineation, which is a significant time-consuming
bottleneck of radiomics analyses.

Methods: A cohort of 138 patients with stage II–III NSCLC treated with radiochemotherapy
recruited retrospectively (n = 87) and prospectively (n = 51) was used. Two approaches
were compared: firstly, the radiomic features were extracted from the delineated primary
tumor volumes in both PET (using the automated fuzzy locally adaptive Bayesian, FLAB) and
CT (using a semi-automated approach with 3D Slicer™) components. Both delineations
were carried out within previously manually defined “rough” VOIs containing the tumor and
the surrounding tissues, which were exploited for the second approach: the same features
were extracted from this alternative VOI. Both sets for features were then combined with the
clinical variables and processed through the samemachine learning (ML) pipelines using the
retrospectively recruited patients as the training set and the prospectively recruited patients
as the testing set. Logistic regression (LR), random forest (RF), and support vector machine
(SVM), as well as their consensus through averaging the output probabilities, were
considered for feature selection and modeling for overall survival (OS) prediction as a
binary classification (either median OS or 6 months OS). The resulting models were
compared in terms of balanced accuracy, sensitivity, and specificity.

Results: Overall, better performance was achieved using the features from delineated
tumor volumes. This was observed consistently across ML algorithms and for the two
clinical endpoints. However, the loss of performance was not significant, especially when a
consensus of the three ML algorithms was considered (0.89 vs. 0.88 and 0.78 vs. 0.77).
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Conclusion: Our findings suggest that it is feasible to achieve similar levels of prognostic
accuracy in radiomics-based modeling by relying on a faster and easier VOI definition,
skipping a time-consuming tumor delineation step, thus facilitating automation of the
whole radiomics workflow. The associated cost is a loss of performance in the resulting
models, although this loss can be greatly mitigated when a consensus of several models is
relied upon.
Keywords: segmentation, radiomics, non-small cell lung cancer, machine learning, prognosis
1 INTRODUCTION

Non-small cell lung cancer (NSCLC) benefited from several
improvements in diagnosis, staging, and treatment, but
remains a deadly disease as the first cause of cancer death for
men and the second for women (1). On the one hand, significant
differences in the outcomes of patients have been observed
depending on the clinical stage; hence, physicians rely on that
factor to select a therapeutic strategy (i.e., concomitant or
sequential combination of surgery, chemotherapy, and
radiotherapy) (2). On the other hand, among patients with a
similar stage, especially for stages II and III, highly variable
outcomes (i.e., response to therapy and survival) have
been reported.

Several studies showed the usefulness and the value of
positron emission tomography/computed tomography (PET/
CT) image modality using 2-deoxy-2-[18F]fluoro-D-glucose
(18F-FDG) radiotracer for NSCLC staging, treatment planning,
and monitoring (3). The clinical relevance of some of the new
response metrics, such as the metabolically active tumor volume
(MATV) and total lesion glycolysis (TLG), are under
investigation. Commonly, the response to treatment is
predominantly measured using the maximum standardized
uptake value (SUVmax) obtained within a tumor. However, it
has many shortcomings: firstly, SUVmax is not capable of
characterizing all types of uptake changes and associated
responses. It can only precisely measure those responses that
occur when there is a global change in the tracer uptake, i.e.,
when the uptake changes in the tumor are spatially
homogeneous. Since SUVmax only involves a single voxel, it
cannot capture changes in the shape of the tumor or in its spatial
uptake distribution properties.

In recent years, various handcrafted quantitative features,
known today as radiomics, have been introduced and
investigated for their potential to quantify the intensity, shape,
and heterogeneity of tracer uptake within the tumor volume on
PET/CT images (4, 5).

Because radiomic features are typically extracted from a
previously delineated tumor volume, the impact of the
segmentation step on the resulting intrinsic value of radiomics
has been examined in several studies. The robustness of a subset
of textural features used to quantify 18F-FDG PET uptake,
depending on the segmentation technique was first investigated
in esophageal cancer treated with radiochemotherapy (6). A later
study (7) investigated the test–retest variability of radiomic
2

features in a dataset of 11 NSCLC patients with repeated scans
and the inter-observer delineation variability in a set of 23
patients. Later, the impact of reconstruction and delineation
was studied using 11 NSCLC full-body 18F-FDG PET/CT scans
in order to investigate the repeatability and the effects of the
reconstruction methods and delineation (8). The repeatability of
the radiomic features to explore sensitivity to image
reconstruction, noise, and the delineation method was further
considered by the same team (9). The impact of tumor
segmentation on the robustness of the features (10), on the
reproducibility and non-redundancy of the features (11), or on
the resulting prognostic value (12) were also investigated
recently. On the one hand, all these studies showed that the
choice of segmentation techniques can lead to substantial
variations for some radiomic features, but all investigated the
impact within the context of using the most accurate tumor
volume to extract features. On the other hand, several studies
recently compared the use of features extracted from delineated
tumors versus these extracted from specifically different (larger
or smaller) volumes of interest (VOIs), i.e., not necessarily
containing the entire tumor or limited to the tumor extent.

A first study in the context of cervical cancer and FDG PET
imaging investigated the predictive value of features (volume and
total lesion glycolysis) extracted from VOIs of varying sizes by
considering various thresholds from 30% to 70% of the SUVmax,
determining a variability of performance in the resulting models
(13). A second work compared different segmentation volumes
in differentiating uterine sarcoma from leiomyoma with
preoperative imaging (14). The study compared three volumes:
the tumor only, the tumor and the surrounding tissues, and the
entire uterus. The best models were obtained by relying on
features from the entire uterus [area under the receiver
operating characteristic curve (AUC) = 0.876)] compared to
the two other smaller VOIs (0.830 and 0.853 for tumor only and
for tumor and the surrounding tissues, respectively). A third
study investigated the impact of segmentation margin on
machine learning (ML)-based high-dimensional quantitative
CT texture analysis in the context of differentiating between
low- and high-grade renal cancer (15). Two VOIs were
compared: contour-focused vs. margin shrinkage of 2 mm.
Features from the VOI with margin shrinkage were more
reproducible than those from contour-focused VOI (93.2% vs.
86.2%); however, models combining contour-focused-derived
features had better performance (AUC = 0.865–0.984 vs.
0.745–0.887).
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One advantage of using larger VOIs containing the tumor
could be to alleviate the need for accuracy in defining the VOI,
hence facilitating and accelerating the whole radiomics
analysis. Indeed, the accurate delineation of the tumor is often
considered a significant time-consuming bottleneck step of the
radiomics workflow.

The aim of this work was thus to investigate the ability of
building prognostic models in NSCLC using radiomic features
from 18F-FDG PET/CT images based on a “rough” VOI
containing the tumor volume instead of the accurately
delineated tumor. We hypothesized that a combination of
features extracted from this larger VOI may capture the
relevant information in a different manner than those
calculated in the delineated tumor volume and still enable
prediction of the outcome, sparing the cost of the delineation
step. In that context, it is expected that shape features might
become less informative in the rough VOIs compared to those
calculated on the delineated tumor and that additional and/or
alternative intensity or textural features will be selected in the
models instead.
2 MATERIALS AND METHODS

2.1 Patient Cohort
Since stage 1 patients have a very different (and more favorable)
prognosis compared to those with stage II or III disease, mostly
driven by treatment [(surgery vs. (chemo)radiotherapy], we
focused here on patients with stage 2 and 3 tumors, where the
potential impact of radiomics is likely to be the most
important (16).

The inclusion criteria were confirmed NSCLC, stage 2 or 3;
curative (chemo)radiotherapy treatment, and pretreatment FDG
PET/CT imaging. Data from 138 NSCLC patients treated at the
University Hospital of Poitiers, France, were collected (Table 1).
The data of the first 87 patients were collected retrospectively,
whereas the next 51 patients were recruited prospectively within
the PRINCE project (INCa, PRTK-2015, registered trial
NCT03199599). The study was conducted according to the
guidelines of the Declaration of Helsinki. Ethical review and
approval were waived for this study because the data were
Frontiers in Oncology | www.frontiersin.org 3
already collected for routine patient management before
analysis, in which patients provided informed consent. No
additional data were specifically collected for the present study.
The exact same cohort of patients was recently analyzed in
another study focusing on the comparison and fusion of ML
algorithms, so the present results are directly comparable with
that previous work (17).

2.2 PET/CT Imaging
All patients underwent a combined 18F-FDG PET/CT acquisition
as part of the diagnosis and staging before treatment. A Biograph
mCT 40 ToF with axial field of view of 21.6 cm (Siemens,
Erlangen, Germany) was used, relying on the routine clinical
protocol. PET/CT acquisition began after 6 h of fasting and 60 ±
5 min after injection of 2.5 MBq/kg of 18F-FDG (421 ± 98 MBq,
range = 220–695 MBq). Non-contrast-enhanced, non-respiratory-
gated (free breathing) CT images were acquired (120 kVp; Care
Dose® current modulation system) with an in-plane resolution of
0.853 × 0.853 mm2 and a 5-mm slice thickness. PET data were
acquired using 3.5 min per bed position, and images were
reconstructed using a CT-based attenuation correction and the
standard routine clinical protocol, as we recently showed no
improvement in the prognostic value of radiomic features when
using different settings (either smaller voxels or smaller full width
at half maximum of the Gaussian post-filtering) (18): OSEM-
TrueX-TOF algorithm, with time-of-flight and spatial resolution
modeling (three iterations and 21 subsets, 5-mm 3D Gaussian
post-filtering; voxel size, 4 × 4 × 4 mm3).

2.3 Radiomics Analysis
2.3.1 Preprocessing
As the PET images were reconstructed on a matrix with isotropic
voxels, no further image interpolation was performed. CT images
were interpolated to isotropic 1 × 1 × 1 mm3 voxels using
linear interpolation.

PET images were converted into SUV using patient weight.
Low-dose CT images were processed in Hounsfield unit (HU).

2.3.2. VOI Definition and Segmentation
Only the primary tumors were considered. PET and CT images
were segmented independently by a single expert. The first step
consisted of manually defining a “rough” VOI containing the
TABLE 1 | Patient characteristics.

Characteristics No. of patients (N = 138) Training/validation set (N = 87) Test set (N = 51)

Gender Male 106 62 44
Female 32 25 7

Age (years) Range 46–94 46–94 46–89
Mean ± SD 71.43 ± 9.44 71.35 ± 9.37 71.55 ± 10.00

Treatment Radiotherapy only 68 30 28
Chemoradiotherapy 70 57 23

Histology Adenocarcinoma 82 51 29
Squamous cell carcinoma 56 36 22

Clinical stage I 0 0 0
II 43 26 17
III 95 61 34
IV 0 0 0
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tumor and its surroundings in both modalities. This is the usual
first step in facilitating the automated or semi-automated tumor
delineation by excluding the surrounding physiological uptakes
or normal structures that should not be included in the tumor-
only analysis. The tumor metabolic volume was then obtained in
PET by applying the FLAB algorithm (19, 20) (MIRAS v1.0,
LaTIM INSERM UMR 1101, Brest, France) in the manually
defined “rough” VOI. The anatomical volume was obtained from
the low-dose CT rough VOI semi-automatically by relying on the
Growcut effect function of 3D Slicer™ (21). All delineations were
checked and validated by an expert physician (C. Cheze Le Rest).
Figure 1 illustrates this process.

For the rest of the radiomics workflow, two different volumes
for both PET and CT images were thus considered: the
delineated tumor volume and the rough VOI.

2.3.3 Radiomic Feature Extraction
Seventy-three radiomic features (14 shape, 10 intensity, and 49
textural) (see Supplemental Table 1) compliant with the most
up-to-date imaging biomarker standardization initiative (IBSI)
benchmark (22) were extracted using homemade software
(MIRAS v1.0, LaTIM INSERM UMR 1101, Brest, France).
Three different grey-level discretization methods [fixed bin
number (FBN) with 64 bins, fixed bin width (FBW) with 0.5
SUV or 10 HU, and histogram equalization with 64 bins] were
considered for second- and higher-order textural features. Note
that the FBN and FBW discretization schemes are IBSI-
compliant, but the histogram equalization, although mentioned
by the IBSI, is not yet a standard. Texture matrices were
implemented in 3D following the merging strategy (i.e.,
Frontiers in Oncology | www.frontiersin.org 4
considering all 13 directions simultaneously). More details on
the entire radiomics workflow are provided in Supplemental
Table 2. A total of 147 features (10 + 14 + 49 × 3) were thus
extracted from each tumor volume in both PET and CT, leading
to 294 image-derived variables for each patient. These 294
features were extracted from both the tumor delineated
volumes and the rough VOI.

2.3.4 Modeling
All available clinical variables (age, gender, stage, treatment,
and histology) and the PET and CT radiomic features were
grouped into a single set to be processed by each of the ML
pipelines. The two different sets corresponding to the two
approaches (delineated tumor vs. rough VOI) were processed
independently using the exact same data split and ML pipeline
for a fair comparison.

Data were split into a training/validation set (n = 87
retrospectively recruited patients, 63%) and a test set (n = 51
prospectively recruited patients, 37%) (Table 1).

The classification task was set as a binary identification of
patients with overall survival (OS) below 6 months (unbalanced,
n = 15 in the training set and n = 9 in the test set) or below the
median OS (balanced). In the case of the 6-month prediction, the
synthetic minority oversampling technique (SMOTE) was
implemented to facilitate the training of models.

The ML pipelines consisted of three algorithms with embedded
feature selection and a consensus: support vector machine (SVM)
with recursive feature elimination (RFE), random forest (RF) with
embedded wrapper (EW), and logistic regression (LR) with
features selected using least absolute shrinkage and selection
FIGURE 1 | Both PET and low-dose CT images of the primary tumor are processed in the same manner: a volume of interest (VOI) containing the tumor is first
manually determined. Radiomic features are extracted from this VOI (denoted “VOI features”). Then, segmentation of the tumor volume is carried out within the VOI
with a (semi)automated algorithm. Radiomic features are then extracted from the delineated volume (this is the usual workflow).
October 2021 | Volume 11 | Article 726865
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operator (LASSO). Hyperparameters of the algorithms (e.g., the
number of trees in RF) were optimized through five-fold cross-
validation in the training/validation set. To generate a consensus
model, the output probabilities of each of the three algorithms
were averaged and binarized (> or ≤0.5), as this approach provided
better results than did majority voting in our previous work (17).

The performance of the models in the training/validation set
was assessed using accuracy, balanced accuracy (BAcc) in the case
of the 6-month OS prediction, and the combination of sensitivity
(Se) and specificity (Sp), favoring models with higher Sp and with
a smaller number of features (lower complexity and higher
potential for generalizability) for similar levels of BAcc. For
models with similar overall accuracy values, a higher specificity
is more clinically relevant, as patients who would be falsely
identified as having poor prognosis might be offered palliative
(or intensified) treatment when the standard treatment would
actually benefit them. Importantly, none of the data from the test
set were used in the training and optimization step of any of the
models under comparison (either each of the models or the
ensemble through averaging). All models were first finalized and
optimized in the training set before final evaluation without any
further modifications in the test set.

The best models obtained through each ML algorithm in
training/validation set were then applied to the test set for final
evaluation and to allow for relevant comparisons (i.e., models
trained using input features from the accurately delineated
tumor vs. those from the “rough” VOI). In order to provide
some reference comparison, we also determined the accuracy
reached by using only the clinical features as input to the ML
pipelines or by relying only on clinical staging (stage 2 vs. 3), as
previously reported (17).

Finally, although the present work focuses on the question of
the input VOI for the performance of the models rather than
the actual development of a prognostic model, we nonetheless
Frontiers in Oncology | www.frontiersin.org 5
auto-evaluated our study using the radiomics quality score
(RQS) (23).
3 RESULTS

Our study scored moderately on the RQS (see Supplemental
Table 3) at 16 (19 when the data will be made available) out of
36, which is nonetheless higher than that of the average of studies
reported recently (23–25).

The average follow-up was 41 months, with a minimum of 1.1
months and a maximum of 95 months. Median OS was 14.4
months, ranging between 1.1 and 50 months.

All results from the different models and the two outcome
prediction tasks are presented for the training and test sets
in Table 2.

Models trained using only the clinical variables as input did
not significantly improve the performance over clinical stage
alone (BAcc <0.60 for all ML pipelines and both endpoints in the
training set and <0.55 in the test set).

Overall, the level of accuracy achieved by the models relying
on radiomic features was superior to that of clinical stage alone
(BAcc values of 0.58 and 0.53 using stage 2 vs. stage 3
classification, respectively, as previously reported) (17), and the
models were better at predicting very poor prognosis (6-month
OS endpoint) than median OS. Some of the radiomics models
included one or two clinical variables (staging and/or treatment),
but mostly relied on the histogram, shape (except for the models
trained using rough VOI features), and textural features. The
drop of performance between the training/validation and test
sets also suggests some overfitting.

Regarding the question addressed in this work, it was
observed that the radiomic features extracted from the
delineated primary tumor volume were slightly more
TABLE 2 | Performance comparison of the ML techniques using either features from the delineated tumor (D) or from the rough VOI (V), in addition to the available
clinical factors.

ML Task VOIa Training set No. of features Test set

Se Sp BAcc Se Sp BAcc

LR Median OS D 0.67 0.77 0.72 37 0.54 0.75 0.63
V 0.58 0.68 0.63 24 0.59 0.57 0.58

6-month OS D 0.81 0.87 0.84 45 0.8 0.76 0.78
V 0.74 0.78 0.76 32 0.61 0.65 0.63

RF Median OS D 0.87 0.91 0.89 25 0.60 0.75 0.67
V 0.75 0.86 0.87 23 0,53 0.59 0.56

6-month OS D 1 1 1 47 0.74 0.86 0.80
V 0.83 0.89 0.86 58 0.73 0.75 0.74

SVM Median OS D 1 1 1 27 0.53 0.73 0.64
V 0.82 0.82 0.82 20 0.56 0.60 0.58

6-month OS D 0.88 0.96 0.92 38 0.76 0.74 0.75
V 0.84 0.90 0.87 43 0.75 0.77 0.76

Fusion (average of output probabilities) Median OS D 1 1 1 - 0.76 0.80 0.78
V 0.93 0.89 0.90 - 0.76 0.78 0.77

6-month OS D 1 1 1 - 0.91 0.87 0.89
V 0.88 0.94 0.91 - 0.98 0.78 0.88
October 2021
 | Volume 1
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ML, machine learning; VOI, volume of interest; Se, sensitivity; Sp, specificity; BAcc, balanced accuracy; LR, logistic regression; RF, random forest; SVM, support vector machine.
aD stands for the accurately delineated tumor and V for the “rough” VOI.
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informative than those extracted from a rough VOI. Indeed,
models built with the three ML pipelines combining rough VOI
features obtained a slightly lower performance (BAcc values of
0.57 ± 0.01 and 0.71 ± 0.07 for median OS and 6-month OS,
respectively) than those exploiting delineated tumor features
(BAcc values of 0.65 ± 0.02 and 0.78 ± 0.03). In both cases, the
differences were not significant at the p < 0.01 or 0.05 levels
(p = 0.059 for median OS and p = 0.286 for 6-month OS).

These models, however, relied on a similar number of
features, i.e., models using rough VOI features did not need a
larger number of features. Notably, shape features were not
included in the models based on the rough VOI, contrary to
those relying on the delineated tumor.

These observations were consistent for both endpoints
(median OS and 6-month OS).

However, when looking at the consensus models (fusion of the
output probabilities of each of the three pipelines, as the average
of the outputs), the advantage of relying on the delineated tumor
rather than on the rough VOI was greatly reduced, the two
showing almost the same performances, with improved predictive
ability compared to each independent ML algorithm, as
previously reported (17): 0.89 vs. 0.88 for the 6-month OS
endpoint and 0.78 vs. 0.77 for median OS, respectively.
4 DISCUSSION

The main finding of our work is that, although radiomic features
extracted from delineated tumor seemed more informative than
those extracted from a simple rough VOI containing the tumor,
almost as good results can be achieved without the need for the
tedious and time-consuming (semi)automated delineation in the
radiomics workflow, especially in the context of relying on a
consensus of several ML techniques (in that case, the performance
was almost equal). This could imply consequences regarding the
way radiomics analyses are carried out since avoiding the need for
actual tumor delineation before feature extraction could simplify
and facilitate the whole process, at a very small cost in the resulting
performance of the built models.

As expected, no shape features were used by the models to
predict outcomes when features were extracted from the rough
VOI, contrary to when then are extracted from the delineated
tumor. Although there is an obvious correlation between the size
and shape of the VOI and that of the tumor (larger, more
complex tumors require larger and more complex VOIs to
encompass them), there are most likely fewer differences
between the various VOIs shapes to allow for patient
differentiation. These features were replaced by alternative
intensity and/or textural metrics in the VOI models. Although
some of the models retained clinical variables (only clinical
staging and treatment being selected), relying only on clinical
factors provided the models with only limited accuracy (<0.60 in
training and <0.55 in testing), and only models incorporating
radiomic features had good performance in the test set.

Our work has several limitations. Firstly, the cohort used was
collected from a single center. It allowed us to focus on the
Frontiers in Oncology | www.frontiersin.org 6
question at hand without having to deal with harmonization
issues (26, 27) since all patients had their PET/CT acquisition in
the exact same PET/CT system, with no variability in the
acquisition protocol or reconstruction settings. However, this
means that our findings will need to be validated in external
datasets, for which we will implement harmonization
techniques for handling the multicenter nature of the data
(28). Although our cohort included both retrospectively (for
training) and prospectively (for testing) recruited patients, the
size of the test set was small as we could not include all available
patients because a minimum follow-up duration was not
reached and the prospective recruitment is still ongoing. This
limited the statistical power for comparing the different results
obtained with or without tumor delineation. However, the
observed trends were systematic across all ML techniques and
their consensus, strengthening our confidence in the potential
generalizability of our results. The VOI determination and the
tumor delineations were carried out by a single expert using a
single method, which prevented us to compare the scale of inter-
observer (or inter-segmentation method) variability with the
differences between the delineated tumor and VOI features. The
sensitivity of the results with respect to (moderate and
reasonable) changes in the size or shape of the rough VOI was
also not explored in the present work. It is expected to be
obviously lower than the differences observed between the
results obtained when exploiting features either from the
rough VOI or from the accurately delineated tumor, which are
already small. Finally, in order to fully automate the process for
facilitating the radiomics workflow, the “rough” VOIs, which
were manually created in the present work, should be
reproduced by training a deep convolutional neural network
(CNN) such as the U-Net, in a similar fashion, as we have
recently demonstrated the feasibility regarding accurate tumor
delineation (29). This way, the “rough” VOI could be obtained
in a fully automated manner from the input PET/CT images
without the need for a user intervention.

Several expansions of this work will be considered, such as a
thorough comparison with deep learning-based feature
extraction (“deep features”) and a validation of our findings in
our extended prospective cohort: about 150 patients
prospectively recruited in the PRINCE project should be
available for this analysis once the follow-up duration of at
least 1 year will be reached for all patients. Further validation
of these findings will also be carried out in external datasets.
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