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Abstract: Cellular senescence is a state of stable cell cycle arrest that can be triggered in response to
various insults and is characterized by distinct morphological hallmarks, gene expression profiles,
and the senescence-associated secretory phenotype (SASP). Importantly, cellular senescence is a key
component of normal physiology with tumor suppressive functions. In the last few decades, novel
cancer treatment strategies exploiting pro-senescence therapies have attracted considerable interest.
Recent insight, however, suggests that therapy-induced senescence (TIS) elicits cell-autonomous
and non-cell-autonomous implications that potentially entail detrimental consequences, reflecting
the Jekyll and Hyde nature of cancer cell senescence. In essence, the undesirable manifestations
that generally culminate in inflammation, cancer stemness, senescence reversal, therapy resistance,
and disease recurrence are dictated by the persistent accumulation of senescent cells and the SASP.
Thus, mitigating these pro-tumorigenic effects by eliminating these cells or inhibiting their SASP
production holds great promise for developing innovative therapeutic strategies. In this review,
we describe the fundamental aspects and dynamics of cancer cell senescence and summarize the
comprehensive research on the adverse outcomes of TIS. Furthermore, we underline the rationale
and motivation of emerging senotherapeutic modalities surrounding the removal of senescent cells
and the SASP to help maximize the overall efficacy of cancer therapies.
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1. Introduction

Almost 60 years ago, Hayflick and Moorhead challenged Carrel’s original proposition
that normal cells have an infinite replication capacity. On that account, Hayflick performed
a series of experiments with diploid primary cells derived from various human embryonic
tissues. These studies unveiled the fact that normal cells propagated in culture can replicate
for a limited and probably predetermined number of generations, after which they undergo
an irreversible arrest of cell growth, thus disproving Carrel’s theory of cellular immortal-
ity [1,2]. This phenomenon is now known as the Hayflick limit or, as it will be called herein,
replicative senescence [3–6]. Over the course of six decades, cellular senescence has been
established as an adaptive stress response mechanism in physiological and pathological
processes with both beneficial and detrimental consequences for human health [7–10].

Depending on the cell type and conditions, different subtypes of cellular senescence
such as DNA-damage-induced senescence, stress-induced senescence (SIS), and oncogene-
induced senescence (OIS) have been defined [11–13]. Earlier studies have shown that cellular
senescence program is a key component of embryonic development and tissue remodeling and
may potentially function as a tumor suppressor mechanism against carcinogenesis [9,14,15].
Work in recent decades have debated the longstanding fundamental paradigm of senescence
irreversibility. In striking contrast to the traditional definition, these research efforts have
provided mounting evidence that this complex phenotype is not a static, permanent, and
docile state, but rather entails a constantly evolving multi-step process with cell-autonomous
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and non-cell-autonomous implications and often deleterious effects on tissue homeostasis.
In the context of cancer therapy, this capacity is primarily due to the fact that senescent cells
remain viable and bioactive for long periods of time and eventually resume proliferation
while emitting heterotypic signals to their microenvironment [16–19].

The century-old classic novel “The Strange Case of Dr. Jekyll and Mr. Hyde” by Robert
Louis Stevenson explores the duality of human nature—specifically, the natural existence of a
dual personality, good and evil, in the same individual. Arguably, the balance between good
and evil is what makes us human. In some sense, this theme is analogous to the dual nature
of cellular senescence, where it can be both beneficial (Jekyll) and detrimental (Hyde). Our
objective in this review is to synthesize the recent scientific advances pertaining to the duality
of cellular senescence, with a heightened interest in cancer, and to present scientific advances
and challenges in exploiting this phenotype in cancer therapies. With this motivation, we
first revisit the hallmarks of cellular senescence primarily by stressing the morphological and
molecular biomarkers, as well as the regulation and functions of the senescence-associated
secretory phenotype (SASP). The key effector mechanisms and different subtypes of cellular
senescence are then briefly summarized. Next, we discuss the biological significance of cellular
senescence in normal physiology and shift the focus to cancer, referencing the good and evil
natures of this phenomenon. From there, we elaborate on the concepts of therapy-induced
tumor cell senescence, stemness, and senescence escape. Finally, we accentuate the impact and
the rationale of emerging senotherapeutic approaches surrounding the targeting of senescent
cells and the SASP to help develop novel cancer treatments.

2. The Hallmarks and Molecular Mechanisms of Cellular Senescence
2.1. Morphological and Molecular Biomarkers of Senescent Cells

Typically characterized by the inability to replicate their DNA and cellular growth
arrest, cultured senescent cells exhibit a series of distinct morphological and chemical
hallmarks which distinguish them from proliferating cells. Perhaps the most notable
molecular markers are multiple or enlarged nuclei and flattened cytoplasm, an increased
number of lysosomes and Golgi apparatus, elevated pH-dependent senescence-associated
β-galactosidase activity (SA-β-gal), and resistance to apoptosis [16,20,21]. Senescent cells
are also frequently characterized by impaired nuclear integrity; the formation of persistent
nuclear DNA damage foci and DNA-damage response (DDR); deregulated metabolism;
protein and lipid damage; global epigenetic changes in their chromatin landscape; the
formation of senescence-associated heterochromatin foci (SAHF); and, of course telomere
attrition, the hallmark of replicative senescence [12,13,22–24] (Figure 1).

2.2. The Senescence-Associated Secretory Phenotype (SASP) of Senescent Cells

A striking feature of virtually all senescent cells is the widespread changes in protein
expression that involve a specific signature for secreted molecules, collectively known as
the SASP. The SASP consists of a myriad of biologically active soluble and insoluble factors
which can be grouped into the following major categories: proinflammatory interleukins
and chemokines; growth factors; extracellular matrix proteins and remodeling enzymes;
damage-associated molecular patterns; and extracellular vehicles greatly enriched for
enzymes, miRNAs, and DNA fragments [25–30]. Recently, Basisty et al. developed a
comprehensive and quantitative proteomic atlas that can potentially serve as a reference
and guide for the identification of novel soluble (sSASP) and exosome/extracellular vesicle
SASP (eSASP) factors. The atlas is currently limited to two distinct cell lines induced to
senesce by various stress factors. However, the authors expect the resource to be con-
tinuously updated by depositing new SASP profiles derived from different cell types
and senescence-inducing conditions [30]. In essence, the abundance and heterogeneous
composition of the SASP is context-dependent, partly explaining how the SASP can exert
profoundly diverse and sometimes contradictory functions in numerous biological pro-
cesses such as tissue remodeling, inflammation, and age-related pathologies including
cancer [31].
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Figure 1. The hallmarks and molecular mechanisms of cellular senescence. The figure summarizes 3 major attributes of
cellular senescence. (i) Intrinsic and extrinsic insults causing senescence: The extrinsic factors causing senescence-related
cell cycle arrest comprise of radiation and chemotherapy, whereas intrinsic factors harbor increased reactive oxygen species
(ROS) accumulation, aberrant oncogene activation, and replicative exhaustion. (ii) Molecular hallmarks of senescent
cells and pathways regulating senescence-associated secretory phenotype (SASP) production and immune cell infiltration
(recruitment of immune cells to the SASP-rich milieu): SASP expression is predominantly controlled by the p38-MAPK
and mTOR pathways and C/EBPβ, GATA4, NF-κB transcription factors. Senescent cells enriched for SASPs disseminate a
wide assortment of senescence cues (proinflammatory interleukins, chemokines, growth factors, extracellular remodelers,
damage-associated molecular patterns/DAMPs) to the surrounding cells (paracrine effect). At the same time, these cues
influence on the senescent cell itself (autocrine effect). Clearance of senescent cells is actualized via immune surveillance
mechanisms, and (iii) molecular mechanisms modulating cell cycle arrest: DNA-damage dependent and DNA-damage
independent mechanisms regulate the key effector mechanisms p53/p21Cip1 and pRb/p16Ink4a to initiate and maintain
cellular senescence.
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The SASP regulation in senescent cells has been the subject of numerous studies. The
findings collected in these studies substantiate the notion that the SASP production is
coordinated by a complex network of signaling cascades that involve to a large extent
transcriptional but also post-transcriptional mechanisms (Figure 1). Stress-inducible ki-
nase p38 mitogen-activated protein kinase (p38-MAPK), mammalian target of rapamycin
(mTOR), cytosolic DNA-sensing cyclic GMP–AMP synthase (cGAS)–stimulator of inter-
feron genes (STING), the Ataxia telangiectasia mutated (ATM)/ATM- and RAD-3 re-
lated (ATR)-activated IκB kinase (IKK)/NEMO complex, and the GATA binding protein
4 (GATA4) axis constitute the most prominent upstream regulators of the pro-inflammatory
senescence phenotype [31–36]. Upon stimulation by stress conditions, these interactive sig-
naling pathways converge towards the activation of a transcriptional program managed by
the nuclear factor kappa B (NF-κB) and the CCAAT-enhancer binding protein β (C/EBPβ),
the core effectors that initiate and maintain SASP gene expression [31,37,38]. A number
of studies suggest that the Janus kinase–signal transducer and activator of transcription
(JAK/STAT) and NOTCH pathways also play a crucial role in the transcriptional regulation
of SASP components through C/EBPβ [39–41].

The DDR signaling pathway is a critical mediator of the SASP. Available research
indicates that the direct activation of ATM/ATR protein kinases in response to persistent
DNA damage inhibits the autophagic degradation of GATA4, which, in turn, activates
NF-κB to initiate and maintain the SASP network [42,43]. Differently, several reports
describe the DNA damage-independent control of the SASP induction, which, in general,
involves the p38-MAPK-mediated activation of NF-κB [32,44–47]. Intriguingly, mitochon-
drial dysfunction-associated senescence (MiDAS) is a distinct form of DDR-independent
cellular senescence wherein the cells undergoing MiDAS display a unique SASP profile
dictated by AMP-activated protein kinase (AMPK)-mediated p53 activation [47].

Epigenetic mechanisms are also pronounced in the modulation of cellular senescence
and SASP constituents. For example, the histone variants macroH2A1 and H2AJ accu-
mulate in human primary lung fibroblasts during OIS and play an important role in the
positive and negative regulation of SASP production [48,49]. Similarly, epigenetic modi-
fiers including lysine methyltransferase 2A (KMT2A, also known as MLL1), high-mobility
group B protein 1 and 2 (HMGB1 and HMGB2), and bromodomain-containing protein
4 (BRD4) modulate the senescence secretome by orchestrating the chromatin landscape
around the SASP gene loci [50–53]. Moreover, the downregulation of sirtuin 1 (SIRT1) gene
and the enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) gene in senes-
cent cells positively regulate SASP factors, which are mediated by transcriptomic changes
through the post-translational modifications of histones [46,54]. In addition to transcrip-
tional mechanisms, the expression of SASP genes is regulated at the post-transcriptional
level. In particular, MAPK-activated protein kinase 2 (MK2), a downstream effector of
the p38-MAPK and mTOR pathways, modulates the mRNA stability of a subset of SASP
components by means of ARE-mediated decay [55,56].

2.3. Molecular Mechanisms Underlying Cellular Senescence

The complex network of molecular events that execute cellular senescence has been
extensively reviewed elsewhere [40,57,58]. Nonetheless, for the sake of the completeness
and consistency of this review, we will mention the critical effector pathways. Many lines of
research convincingly attest that the onset and maintenance of permanent senescence arrest
is controlled by the p53/p21Cip1 and the retinoblastoma protein (pRb)/p16Ink4a tumor
suppressor pathways (Figure 1). In principle, the activation of either one or both of these
crucial pathways can readily induce cellular senescence. Notably, genetic mutations or
epigenetic silencing of these pathways obliterates the senescence response in most cell
types, occasionally paving the way for cancer initiation and progression [59].

Mechanistically, in its active hypophosphorylated form the pRb binds to and se-
questers E2F family of transcription factors and induces growth arrest in the G1 phase of
the cell cycle. To achieve this, pRb suppresses the transcription of several E2F target genes
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encoding a repertoire of essential proteins indispensable for DNA replication and cell cycle,
thus blocking the subsequent entry into and progression through the S phase. The regula-
tion of cellular senescence by E2F is often correlated with context-dependent local or global
structural epigenetic modifications such as chromatin remodeling and SAHF formation.
Consistent with this, the promoters of E2F target genes are enriched for repressive histone
modifications (mainly H3K9me3 and H3K27me3) which result in gene expression changes
that eventually contribute to the regulation of cellular senescence. Upon phosphorylation
by Cyclin D and Cyclin-dependent kinase 4 and 6 (CDK4 and CDK6), a complex that is
negatively regulated by the p16Ink4a tumor suppressor protein, pRb switches to an inactive
state and releases E2F, thus stimulating cell cycle progression [60–63].

The p53 transcription factor, the guardian of the genome integrity, plays a pivotal role
in the induction and maintenance of cellular senescence. Following exposure to genotoxic or
non-genotoxic stress, p53 gets activated and promotes cell cycle arrest via DDR-dependent
and DDR-independent mechanisms. The specific activity of p53 is tightly controlled by
virtue of positive and negative regulators and post-translational modifications. In response
to stress stimuli, p53 is phosphorylated and stabilized by ATM/ATR and Checkpoint
kinase 1 and 2 (Chk1/2) protein kinases, releasing it from MDM2, an E3 ubiquitin ligase
that negatively regulates p53 via ubiquitination and proteasomal degradation. Once
activated, p53 selectively increases the transcription of various target genes, in particular
p21Cip1 (CDKN1A), a potent CDK inhibitor which executes the p53-mediated control
of cellular senescence. The p21Cip1 protein binds to and inhibits the activity of Cyclin
E/CDK2 and Cyclin D/CDK4 complexes, thus activating pRb and blocking cell cycle
progression [17,64–66]. Finally, yet importantly, depending on the cellular identity and
stress factors, antitumor mechanisms coordinated by the p53 and pRb pathways may
engage different subtypes of cellular senescence.

3. The Significance of Cellular Senescence: From Homeostasis to Cancer

Almost a century ago, Muller and McClintock postulated that telomeres, the special-
ized structures found at the ends of linear eukaryotic chromosomes, were critically essential
for the maintenance of chromosomal stability [67,68]. Later, in the 1970s, Olovnikov and
Watson speculated independently that the chromosomal ends become shorter with each
round of DNA replication [69,70]. Landmark discoveries in the following years have re-
vealed that telomeres protect the chromosomes against degradation and interchromosomal
fusions, thus contributing to the maintenance of genome integrity [71–73]. Furthermore,
telomeres control the number of successful divisions that a normal cell can undergo before
entering permanent growth arrest, the state of replicative senescence. This phenomenon is
explained by progressive shortening of telomeres due to decreased or lack of telomerase
reverse transcriptase enzyme (TERT) expression or activity [74,75]. Accordingly, the reintro-
duction of TERT gene into somatic cells promotes bypass of replicative senescence [76,77].
Unlike somatic cells, certain stem cell populations, germ cells, and rapidly dividing cells
including cancer cells retain a high telomerase activity. Convincingly, the maintenance
of telomere homeostasis via sustained or restored telomerase activity is associated with
immortality and thereby considered a hallmark of cancer [78]. Notably, TERT gene amplifi-
cation, translocations to euchromatic regions, and highly recurrent promoter mutations are
the most common mechanisms of telomerase reactivation in cancer [79–83].

Stress-induced senescence (SIS), also known as stress-induced premature senescence,
is a global spectrum of acutely evoked growth arrest programs. Functionally, SIS protects
the organism from the potentially harmful effects of excessive accumulation of damaged
cells in tissues and serves as a cell-intrinsic barrier against preneoplastic transformation.
While sharing similar molecular and functional features with replicative senescence, SIS
is essentially distinct in the nature of provoking stimuli. Almost any form of cell ex-
trinsic or cell intrinsic stressors other than telomere dysfunction/damage can potentially
induce SIS. Triggers include oncogene activation or suppression of tumor suppressor genes,
cytokines, mitochondrial dysfunction, reactive oxygen species (ROS), DNA damage or
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nucleotide depletion [84–88]. Spindle stress or nucleolar stress, unfolded protein response
and endoplasmic reticulum (ER)-stress, and metabolic and epigenetic alterations are the
other well-recognized SIS-inducing stimuli [16,89,90]. On the whole, these stress factors
directly or indirectly cause damage to biological macromolecules such as nucleic acids,
carbohydrates, lipids, and proteins.

Cellular senescence can be divided into two fundamentally different categories ac-
cording to the functionality and kinetics of the senescence process, a priori the extent and
duration of the stimulus [9,91]. Acute (transient) cellular senescence, mainly caused by
cell-extrinsic factors, often targets a defined group of cells and is generally acknowledged
as a beneficial and tightly regulated physiological process in development and tissue injury
repair [92,93]. Importantly, acute senescent cells can orchestrate their self-recognition
and immune-mediated clearance through effector mechanisms manifested by the SASP
factors, further implying that this scheduled or programmed process is temporal [33,94].
By contrast, chronic (persistent) cellular senescence is a non-programmed process with no
specific target cell population and has detrimental effects on tissue homeostasis. In many
settings, chronic cellular senescence is associated with prolonged exposure to genotoxic
stress and progressive macromolecular damage to cellular components [9,95]. There are
studies which detail that chronic cellular senescence evolves from an acute state, especially
when the immune clearance is severely impaired. The vast majority of these reports sug-
gest that the subsequent accumulation of persistent senescent cells amid the secretion of
multi-faceted SASP factors is usually harmful and can both aggravate and contribute to
age-associated pathologies, including atherosclerosis, renal pathologies, and cancer [96–98].
Taken together, these seemingly contradictory beneficial and detrimental functions make
this vital molecular process a double-edged sword with both opportunities and obstacles
for therapeutic targeting.

4. The Implications of Therapy-Induced Senescence in Cancer

Traditional cancer treatments have relied on genotoxic and cytotoxic therapies such as
chemotherapy and radiation therapy or an effective combination of both. These therapies
typically provide high enough doses of drugs to induce complete cell death in rapidly
dividing cancer cells [99]. Under such circumstances, cytotoxic strategies also cause signifi-
cant toxicity to normal cells, leading to severe side effects in multiple organ systems [100].
Despite the fact that these interventions deliver therapeutic benefits and overall improve-
ment in survival outcomes, tumors frequently develop resistance and advance to more
aggressive primary or metastatic diseases [101–103]. When compared with cytotoxic ther-
apies, cytostatic therapies do not exert direct cytotoxicity but rather aim to slow down
or stop the growth of tumor cells [104,105]. On the basis of the antitumor activities of
senescence process in early-stage premalignant lesions, senescence-inducing strategies
have been valued as alternative therapies in the battle against cancer. An effective and
promising strategy to induce cytostasis in cancer treatment is therapy-induced senescence
(TIS). Aside from their cytotoxic actions, when administered in low doses or intermittent
regimens certain conventional therapies display cytostatic activity and promote TIS in
human cancer tissues [105–107].

Cisplatin and doxorubicin are the first genotoxic stressors shown to trigger cancer
cell senescence [108,109]. Similarly, topoisomerase inhibitors, antimetabolites, alkylating
agents, and microtubule inhibitors have been reported to induce TIS [110–112]. Interest-
ingly, targeted therapies can also provoke cellular senescence in cancer cells. Research on
targeted pro-senescence therapies is specifically concentrated on the reactivation of tumor
suppressor pathways (e.g., p53-MDM2 and p53-p21 axis) or the therapeutic targeting
of oncoproteins (e.g., Myc), the inhibition of cell cycle machinery (e.g., CDC7, CDK4/6,
and PARP), the suppression of cellular pro-survival pathways including receptor tyrosine
kinases and their downstream effectors (e.g., PI3K/Akt/mTOR, PTEN, and aurora kinase
B), casein kinase 2 (CK2), and epigenetic modulators [113–117].
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Given these efforts, TIS is considered as a powerful intervention in conventional can-
cer therapy. However, the strategies exploiting pro-senescence therapies are complicated,
the reason being that TIS can be transient and reversible in nature. More importantly, the
persistent accumulation of senescent cancer cells and the SASP following TIS are endowed
with cell-autonomous and non-cell-autonomous mechanisms which facilitate senescence
escape, invasiveness, therapy resistance, and cancer recurrence [118,119]. The pioneering
study by Elmore et al. discovered that breast cancer cells, acutely exposed to doxorubicin,
could evade the stress insult and produce resistant clones that were no longer responsive to
senescence-inducing cytotoxic drugs, including the doxorubicin rechallenge. Interestingly,
senescence-resistant cells had normal intracellular drug accumulation and functional DDR
machinery, and the senescence evasion was coupled to the elevated expression of prolifer-
ative cell cycle regulators, in particular Cdc2/CDK1 [120–122]. Similarly, Roberson et al.
found that p53-null and p16Ink4a-deficient human lung carcinoma cells escape from TIS
through the increased expression and phosphorylation of Survivin, a downstream effector
of Cdc2/CDK1 survival signal. Moreover, the inhibition of Cdc2 and Survivin activity
increases chemotherapy efficiency and reduces tumor recurrence [123]. Another study by
Yang et al. revealed that the intermittent administration of chemotherapeutic compounds
generates aggressive cell variants that acquire the ability to evade cellular senescence. To
that end, lung tumor cells undergoing doxorubicin-induced senescence were then exposed
to other stress-inducing cytotoxic agents. Interestingly, cells subjected to sustained selective
pressure spontaneously reentered cell cycle and eventually produced senescence revertants
with enhanced potential for migration and invasion. Finally, the revertants outcompeted
parental counterparts in tumor growth when implanted subcutaneously into nude mice,
concluding that aggressive cell variants may emerge as an outcome of chemotherapy [124].
Similarly, the work by Saleh et al. utilized topoisomerase II inhibitors to trigger cellular
senescence in lung, colon, and breast cancer cell lines. In support of the previous find-
ings, the live cell tracking of the senescence phenotype with special reporters identified
reemerging clones that recovered from cellular senescence and acquired proliferative and
tumorigenic potential, strongly suggesting an escape from or reversal of TIS [119].

Recently, a breakthrough study has unveiled a new, yet unexpected, cell-intrinsic rela-
tionship between spontaneous escape from TIS and senescence-associated stemness (SAS).
This discovery has definitely advanced our understanding on the plasticity of senescent
cancer cells and the significance of attacking these cells in cancer therapies. To that end,
the authors initially compared the gene expression profiles of doxorubicin-exposed ver-
sus untreated lymphomas, specifically senescence-competent primary Eµ-Myc transgenic
Bcl2-overexpressing lymphomas (dubbed as Eµ-Myc;Bcl2) and senescence-incompetent
Suv39h1-deficient Eµ-Myc;Bcl2 lymphomas. Transcriptome data uncovered that the key
signaling components of TIS essentially overlap with stemness pathways. Importantly,
senescence-competent cells were enriched for the adult tissue stem-cell gene signature,
suggesting that senescent cancer cells acquire phenotypic and functional features of stem
cells. Furthermore, the authors found that turning off the expression of Suv39h1 or p53,
two critical effectors of senescence, using a tamoxifen-inducible system results in cell cycle
progression. Strikingly, the senescence-released lymphoma cells with SAS capacity display
markedly higher tumor initiation potential when compared to never senescent lymphomas.
Mechanistically, SAS reprogramming in post-senescent cancer cells was strongly attributed
to epigenetic mechanisms that enhanced cell-intrinsic Wnt signaling, largely excluding the
potential role of non-cell-autonomous mechanisms [125,126]. Together, this study illustrates
that TIS can trigger a cell-autonomous and senescence-associated stemness reprogramming
in proliferation-arrested cancer cells and those cells that manage to escape from senescence
evolve into more aggressive tumor-initiating cells.

Today, there is strong research evidence in support of the notion that the escape
from cellular senescence in cancer represents, in principle, a natural phenomenon of
reversibility that is not limited to TIS but can occur with other forms of senescence insults.
A number of studies have demonstrated that arrested cells can readily escape from OIS by
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mechanisms linked to TERT derepression/reactivation and the inactivation of p53 and pRb
pathways [127–129]. Furthermore, unpublished observations from our group suggest that
hepatocellular carcinoma (HCC) cells retain the potential to regain proliferative capacity
following TGF-β−mediated prolonged senescence.

5. Therapeutic Targeting of Senescent Cells and the SASP in Cancer

As detailed here and elsewhere, the negative implications associated with the pro-
senescence cancer therapies are generally attributed to the accumulation of senescent cancer
cells and their SASP composition and intensity [130,131]. In view of that, the number of
studies focusing on counterbalancing the potential detrimental effects of such therapies
has experienced a significant expansion in recent years. In particular, the regulation and
therapeutic targeting of the senescence phenotype and the SASP has become an area of
extensive research. Currently, the gold-standard therapeutic approaches to keep these
cells under control are (i) boosting immune surveillance mechanisms, (ii) intervening the
SASP production and activity through senomorphics, and (iii) the selective elimination
of senescent cells with senolytic agents [132–135]. We note that the immune-mediated
clearance of senescent cells is beyond the coverage of this review, thus we would like to
divert the reader to other reports to comprehend this topic [31,94,136].

5.1. SASP Activity in Cancer and Anti-SASP Therapies

One potential mechanism by which senescent cancer cells display both anti- and
pro-tumorigenic activities is the Jekyll and Hyde dynamics of the SASP network. From the
anti-tumorigenic perspective, the SASP factors may reinforce the cell-intrinsic control and
maintenance of the senescence fate and instruct the paracrine transmission of secondary
senescence to SASP-receiving premalignant cells. In addition, the non-cell-autonomous
SASP can engage immunosurveillance mechanisms and ensure that senescent cancer cells
are eliminated from the tumor tissue [26]. Yet, in some contexts, the accumulation of
senescent cancer cells, again by virtue of the SASP, is strongly implicated in promoting
aggressive cancer cell behaviors and immunoediting [137–140]. Therefore, attenuating the
constituents or the regulators/effectors of the SASP, without actually compromising their
tumor suppressive functions, embodies a fundamental therapeutic advantage in cancer. On
this account, early studies proposed that the SASP can be successfully suppressed by calorie-
restricting diets, the activators of telomerase and sirtuin family of proteins, broad anti-
inflammatory agents (e.g., glucocorticoids) as well as the activators of autophagy [141–145].
In contrast, recent studies have encouraged exploiting anti-SASP approaches for more
specific targets.

As alluded to earlier, the secretory component of senescent cells is mainly orchestrated
by NF-κB and C/EBPβ. These transcription factors are modulated by upstream signaling
networks which clearly represent attractive therapeutic targets for senostatic interventions.
Senostatics are characterized as the drugs that repress markers or phenotypes of senescent
cells without promoting apoptotic cell death. To date, several natural or pharmacological
agents have been proposed to effectively blunt these pathways and mitigate the deleterious
consequences of pro-tumorigenic SASP factors (Figure 2).
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Figure 2. Anti-SASP therapies. Senostatics suppress markers of senescence and blunt SASP production. The main targets
include NF-κB and C/EBPβ transcription factors and their upstream signaling networks. These types of senostatics provide
the cell-intrinsic repression of the SASP. Autocrine and paracrine effects of the SASP are prevented by targeting the main
components of the SASP, especially IL-1α, IL-6, IL-8, and TNF-α.

One of these druggable mechanisms is the PI3K/Akt/mTOR pathway. The phys-
iological inhibition of this signaling cascade by rapamycin, a pharmacological mTOR
inhibitor, contributes to longevity and delays age-related pathologies in various model
organisms [146–149]. In the context of cellular senescence, rapamycin and rapalogs (ra-
pamycin analogs) can attenuate the mTOR-dependent transcriptional activity of NF-κB and
alleviate the synthesis of pro-tumorigenic SASP factors without preventing the senescence
arrest. These observations are explained by the translational inhibition and subsequent
reduction in cell-surface bound IL-1α, which can suppress the IL-1α/NF-κB positive feed-
back loop [150]. Consistent with this, Herranz et al. also reported that rapamycin and
other mTOR inhibitors (Torin 1 and NVP-BEZ235) can inhibit OIS-mediated SASP gene
expression based on the observations that mTOR signaling controls the stability of SASP
transcripts via MK2-mediated negative regulation of ZFP36L1, a zinc-finger RNA-binding
protein with mRNA decay activity. Furthermore, rapamycin administration in mice with
transposon-mediated N-RASG12V expression in hepatocytes demonstrates potent activity
against pro-inflammatory SASP during liver cancer initiation [56]. Together, these findings
may likely explain the beneficial effects of rapamycin in age-related pathologies and extend
its therapeutic merit to intervene the pro-tumorigenic SASP. Similarly, the pharmacolog-
ical perturbation of the p38-MAPK and MK2 signaling cascade with selective inhibitors
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(e.g., CDD-111, SB203580, UR-13756, and BIRB 796) results in the significant suppression of
pro-inflammatory SASP production in replicative senescent cells, which warrants further
investigation on inhibiting this axis in age-related pathologies, including cancer [33,55,151].

As noted earlier, the DDR kinases ATM and ATR can impact on the SASP by activating
the NF-κB transcription factor via the upstream regulator, GATA4. In agreement with this,
the inhibition of the ATM/NF-κB signaling axis by potent small molecule compounds, KU-
60019 and KU-55933, suppresses markers of cellular senescence and the SASP, emphasizing
the senotherapeutic value of these agents [152–154]. Another level of repression against
pro-tumorigenic activities of senescent cancer cells can be achieved by trabectedin, an
alkylating agent derived from Ecteinascidia turbinata. Notably, trabectedin modulates the
NF-κB pathway and reduces SASP gene expression in doxorubicin-induced senescent
cancer cells resulting in the sensitization to Fas-mediated apoptosis and the inhibition of
TIS escape mechanisms [155].

Metformin, an antidiabetic/anti-aging medicine in clinical use for over six decades,
also exerts well-established pleiotropic effects towards the inhibition of cancer-promoting
signaling pathways [156–158]. Furthermore, metformin is experimentally validated to
exert senostatic activity and attenuate the increased burden of senescent cells in many
contexts [159–162]. For example, during H-RASG12V-induced senescence in human lung
fibroblasts, metformin interferes with the activation of the IKK pathway, sparing p38-
MAPK, and inhibits the nuclear translocation of NF-κB, leading to the suppression of
the SASP [162]. In a targeted therapy context, metformin can synergistically enhance
the in vitro and in vivo antiproliferative effects of CDK4/6 inhibition in experimental
models of head and neck squamous cell carcinoma (HNSCC). In this setting, metformin
blocks both the mTOR signaling pathway and the senescence-associated reprogramming
of cancer stemness induced by CDK4/6 inhibitor, a known Jekyll and Hyde of CDK4/6
inhibition in cancer treatment [160]. Thus, metformin can be potentially repositioned as a
senostatic agent, alone or in combination with other drugs, in relevant clinical settings for
cancer treatment.

Interestingly, many naturally occurring flavonoids including kaempferol, apigenin
and wogonin have substantial capacity to effectively suppress cellular senescence and
the SASP [163,164]. The report by Perrott et al. describes that apigenin downregulates
the expression and secretion of several SASP components in senescent human fibroblasts.
Although the precise molecular mechanism remains unclear, the findings suggest that
apigenin can strongly inhibit the p38-MAPK and NF-κB pathways. Moreover, the secre-
tome of apigenin-treated senescent fibroblasts, as opposed to untreated controls, fails to
induce an aggressive phenotype in breast cancer cells [165]. In accordance with these
findings, another study found that wogonin and kaempferol can inhibit NF-κB activity
via IRAK1/IκBα signaling cascade in DNA damage-induced senescent fibroblasts [166].
Collectively, evidence from these studies merits future investigation of naturally occurring
flavones and broad-spectrum anti-inflammatory senostatics to evaluate their translational
applicability in cancer cell senescence.

The JAK/STAT pathway plays an important role in chronic sterile inflammation, a hall-
mark of aging and age-related diseases [167]. Moreover, to a great extent, the accumulation
of senescent cells and the SASP contributes to this process [27]. To infer a causal link be-
tween the JAK/STAT signaling and the SASP, Xu et al. performed a series of experiments in
human primary preadipocytes and human umbilical vein endothelial cells (HUVECs), and
aged mice. As anticipated, the inhibition of JAK/STAT pathway by potent JAK1/2-specific
inhibitors including JAK inhibitor 1, momelotinib, and ruxolitinib alleviated the SASP
in irradiation-induced senescent cells. Further, ruxolitinib decreased both systemic and
adipose tissue inflammation and increased physical activity in frail mice [168]. Consistent
with these findings, ruxolitinib treatment rescues truncated lamin A (progerin)-induced
cellular senescence and the SASP in cultured MRC-5 cells and the Hutchinson–Gilford
progeria syndrome (HGPS)-derived fibroblasts. In addition, ruxolitinib administration
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delays premature aging phenotypes in murine model of progeria [169]. Together, the
JAK/STAT inhibition can signify a senostatic venue in the context of cancer cell senescence.

Simvastatin, an HMG-CoA reductase inhibitor with anti-hyperlipidemic activity,
can reduce inflammatory responses by inhibiting the isoprenylation of Rho-family of
GTPases [170]. By the same token, simvastatin can suppress the expression of several
SASP components in irradiation-induced senescent human fibroblasts, without actually
affecting the proliferation arrest and SA-β-gal activity. More importantly, simvastatin
mitigates non-cell-autonomous effects of pro-tumorigenic SASP components by inhibiting
paracrine activation of the ERK pathway in breast cancer cells, providing a rationale
to explore simvastatin as an anti-SASP agent in cancer therapies [171]. Notably, Ca2+

channel inhibitors, loperamide and nordihydroguaiaretic acid (NDGA), have been recently
identified to have senomorphic activity in DNA repair-deficient Ercc1−/− mouse embryonic
fibroblasts [16,172].

Just as importantly, several therapeutic drugs currently available in clinical use for
autoimmune and autoinflammatory diseases such as rheumatoid arthritis can directly
target the SASP components or their receptors. In this context, the vast majority of the
relevant studies focus on targeting IL-1 Receptor (anakinra), IL-6 Receptor (tocilizumab,
siltuximab), IL-6 (sirukumab), and TNF-α (adalimumab, etanercept and infliximab) that
have an immense potential to be effectively repositioned as precision senostatics to block
the detrimental outcomes of the SASP [31,173–176].

In summary, scientific evidence collected through these studies suggest that senostatic
agents may potentiate cancer therapies by modulating or inhibiting the proinflammatory
SASP components. However, the context-dependent complexity and intensity of the SASP
network, and the non-senescence related functions of the SASP factors may be critical
limitations to an effective senostatic intervention. Therefore, careful consideration must
be given when applying the senostatic agents and future studies will need to focus on
addressing these challenges.

5.2. Senolytic Therapies

As opposed to normal proliferating cells, senescent cells are highly resilient to cell
intrinsic and extrinsic apoptotic stimuli. The Senescent Cell Anti-apoptotic Pathways
(SCAPs) are the key molecular players involved in protecting senescent cells from pro-
apoptotic insults, including their own SASP factors [177]. These pro-survival pathways are
deemed druggable vulnerabilities and to some extent they represent the Achilles’ heel of
senescent cells. The SCAPs identified to date include Bcl-2 family of anti-apoptotic proteins
(e.g., Bcl-2, Bcl-XL, Bcl-W, Mcl-1), p53-p21 axis, hypoxia-inducible factor 1-alpha (HIF-1α),
heat shock protein 90 (Hsp90), several receptor tyrosine kinases, and the PI3K/Akt/mTOR
pathway (Figure 3).
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Figure 3. Senolytic therapies. Senolytics mainly target the Senescent Cell Anti-apoptotic Pathways (SCAPs). The SCAPs
are activated to protect senescent cells from apoptosis triggered by any form of pro-apoptotic insults, including the SASP.
The most common SCAPs are Hsp90, Bcl-2 family proteins, p53, and the PI3K/Akt/mTOR pathway. Several senolytic
agents identified to date are depicted. Directed targeting of senescent cells is achieved by the nanoparticle-based delivery
of senolytics.

The targeting of SCAPs via senolytic therapies aims to selectively eliminate senescent
cells that accumulate in tissues during aging and age-associated pathologies without
impacting healthy cells [178–180]. The first senolytic agents were discovered through
hypothesis-driven bioinformatics research. These are dasatinib, a dual BCR/ABL and Src
family tyrosine kinase inhibitor, and quercetin, a plant flavonoid with potent inhibitory
activity against Bcl-2 family members, HIF-1α, and receptor tyrosine kinases including
the PI3K/Akt/mTOR signaling pathway. Notably, the senolytic activities of dasatinib and
quercetin are cell-type specific, however they display an increased efficacy and range of
target cells when used in combination [181–185].

Over the years, new senolytic drugs with a broader spectrum and higher specificity
have been discovered. For example, Chang et al. exploited the cell-based phenotypic
screening of a chemical compound library and identified a small molecule BH3 mimetic
ABT-263 (navitoclax) as an inhibitor of Bcl-2, Bcl-W, and Bcl-XL [186]. Navitoclax is a
broad-spectrum senolytic which exhibits cell type-independent activity in experimental
models of in vivo senescence [187,188]. Similarly, ABT-737, an analogue of navitoclax,
is senolytic against partial hepatectomy-induced senescent hepatocytes, as well as lung
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and epidermal senescent cells in irradiated mice [189,190]. Despite their robust senolytic
activity, the existing Bcl-2-targeting inhibitors are unfortunately associated with severe
hematological toxicity, prompting the identification of better senolytics with less side effects.
Notably, the innovative PROTAC technology is emerging as a powerful strategy to reduce
the platelet toxicity of navitoclax [191]. On the same premise, Zhu et al. investigated the
senolytic potential of fisetin, yet another example of a natural flavonoid, as well as the
two selective Bcl-XL inhibitors, A1155463 and A1331852. As expected, these compounds
induced apoptosis in senescent HUVECs and human fibroblasts but with less toxicity than
navitoclax [192]. Importantly, dietary fisetin can reduce cell viability in several cancer cell
lines of breast, colon, lung, HCC, pancreatic, prostate, bladder, and glioma origin [193,194].
Similarly, when co-administered with fisetin, wogonin induces apoptosis in HCC through
the activation of the caspase 3 pathway and the accumulation of p53 [195]. Tamatinib
(R406), a potent ATP-competitive (Type I) Syk inhibitor, has recently been identified as a
novel senolytic in senescent human dermal fibroblasts (HDFs). The senolytic effects of
tamatinib were strongly associated with the inhibition of cell survival pathways through the
reduced phosphorylation of both focal adhesion kinase (FAK) and p38-MAPK. Interestingly,
navitoclax can further potentiate the senolytic activity of tamatinib, suggesting that, alone
or in combination with other drugs, tamatinib represents a good candidate for further
investigation [196]. In conclusion, the elimination of senescent cells by the inhibition of
the central anti-apoptotic factors and their upstream regulatory pathways represents an
effective strategy for targeting cancer cell senescence.

Hsp90 is a highly abundant molecular chaperone that plays a critical role in the folding
and stabilization of client proteins involved in diverse cellular processes, including cell
cycle control, apoptosis, and signal transduction. On this premise, a number of natural or
synthetic Hsp90 inhibitors such as geldanamycin and geldanamycin derivatives (17-DMAG
and 17-AAG) display senolytic properties in multiple cell types in vitro and animal models
in vivo [172,197]. In general, Hsp90 inhibitors pleiotropically target and abrogate NF-κB
and PI3K/Akt/mTOR survival pathways [198]. Consistent with this knowledge, the inac-
tivation of Akt signaling by an allosteric inhibitor, MK2206, can also trigger apoptosis in
prostate cancer cells senesced by an androgen antagonist enzalutamide [199]. Piperlongu-
mine, a natural extract with anti-tumor activities in non-small cell lung cancer (NSCLC),
is a senolytic in various contexts [57,113,117,200,201]. Piperlongumine-induced senolysis
is associated with increased ROS production via the degradation of antioxidant protein
oxidation resistant 1 (OXR1) and the inhibition of the PI3K/Akt/mTOR pathway [202–204].
Overall, the inhibition of Hsp90 and the client pro-survival pathways can provide ro-
bust senolytic activity in certain types of cancer. Panobinostat, an FDA-approved potent
inhibitor of histone deacetylase with antineoplastic or cytotoxic activity, can selectively
eliminate persistent senescent preneoplastic cells that accumulate following chemotherapy-
treated NSCLC and HNSCC cell lines [205]. These findings strongly support the evaluation
of Panobinostat as a post-chemotherapy senolytic in appropriate clinical settings.

The p53/p21Cip1 axis has also also been evaluated in the context of senolytic inter-
ventions. Recent reports have identified Nutlin-3a, a highly specific MDM2 antagonist,
and P5091, a ubiquitin specific ligand 7 (USP7) inhibitor, as potent senotherapeutics. These
agents promote MDM2 ubiquitination and degradation and the reciprocal accumulation
of p53 [206,207]. The forkhead box O (FOXO) transcription factors regulate many cellular
processes, including cell cycle progression and apoptosis [208,209]. The interaction be-
tween p53 and FOXO4 at the sites of DNA damage contributes to cellular senescence [210].
Recently, a rationally designed D-retro-inverso (DRI) isoform of FOXO4 (FOXO4-DRI)
peptide has been shown to block this interaction and promote the nuclear exclusion of
p53, which eventually results in the Caspase-3/7-mediated apoptosis of senescent cells.
Furthermore, FOXO4-DRI can effectively eliminate doxorubicin-induced senescent cells
both in vitro and in vivo and counteract the negative effects of chemotherapy, representing
a valuable senolytic opportunity in cancer therapy [211].
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Increased glucose and lipid metabolism can support survival in senescent cancer cells
in the absence of other growth stimuli. Accordingly, the inhibition of glucose metabolism
via phloretin, sodium oxamate, or cytochalasin B showed a senolytic effect in therapy-
induced senescent lymphomas due to the high dependency of senescent cells on hyper-
metabolism. From the same perspective, the etomoxir-mediated suppression of fatty acid
oxidation as well as the inhibition of oxidative phosphorylation by antimycin A exert a
senolytic effect in senescent lymphomas [212]. These results would suggest that hyper-
metabolism could be potentially exploited as a therapeutic vulnerability in TIS tumors.
Furthermore, a novel study by Wakita et al. unveiled the fact that the inhibition of BRD4
activity by BET inhibitor ARV825 is an effective senolytic mechanism through autophagy-
activated apoptosis in doxorubicin-induced senescent colorectal cancer cells [213]. This
study raises avenues for future investigation—in particular, the potential contribution of
autophagy machinery to other senolysis mechanisms.

Another inspiring senolysis approach is based on cardiac glycosides (CGs), which
are synthetic or plant-derived steroid-like compounds that selectively inhibit the Na+/K+-
ATPase found on the plasma membrane [214]. CGs are traditionally used to treat atrial
fibrillation and cardiac failure [215]. Using a chemical library screening of FDA/EMA-
approved drugs and plant extracts, Triana-Martinez et al. identified several CGs, including
proscillaridin A, ouabain, and digoxin with strong in vitro senolytic effects on lung can-
cer and melanoma models, independent of the senescence insult. The same study then
tested the senolytic potential of digoxin (a drug in clinical use) on chemotherapy-treated
subcutaneous lung tumors and patient-derived xenografts of breast cancer. The combi-
nation of digoxin with clinical senogenic anticancer agents eradicated senescent cancer
cells and significantly reduced tumor volume and senescent cell markers [216]. Consistent
with this, ouabain has been validated to eliminate bystander senescent cells in clinically
relevant in vitro and in vivo models of oncogene- and therapy-induced senescence, further
contributing to the drug discovery of a broad-spectrum senolytic arsenal [217].

In conclusion, senescent cancer cells can evade apoptosis through the activation of anti-
apoptotic and pro-survival mechanisms (collectively, the SCAP network), which potentially
enables them to resist self-destruction. Therefore, the inhibition of SCAP-related molecules
individually or the combinatorial targeting of multiple components across the SCAP
network can result in selective apoptosis, highlighting the clinical utility of these strategies.
Although many of the currently available senolytic drugs have certain drawbacks, those
with strong preclinical data and limited off-target toxicities, in particular, are likely to
translate into clinical research in the near future.

5.3. Directed Targeting of Senescent Cells

Although senotherapies are decisively formulated to execute selective cytotoxic ac-
tion in senescent cells, there are often side effects inherent to the course of delivery and
implementation. In recent years, novel tools and versatile systems have been devel-
oped to directly deliver and release therapeutic compounds into senescent cells. One
of these modern-day biomedicine tools is based on the encapsulation of senolytic drugs
by galacto-oligosaccharide-coated silica porous scaffold nanoparticles (GalNP). Function-
alized GalNP carriers can successfully transport and deliver small molecules such as
doxorubicin and navitoclax to CDK4/6 inhibitor palbociclib-induced senescent lesions
in vivo. Upon endocytosis and fusion with lysosomal vehicles, the cargoes are efficiently
released by β-galactosidase-mediated hydrolysis, promoting GalNP-mediated senolysis
and the subsequent regression of melanoma and lung squamous cell carcinoma tumor
xenografts. Finally, using GalNPs for delivery effectively reduces the common cytotoxic
effects of doxorubicin and navitoclax [218]. In essence, the synergistic treatment of senes-
cence inducers and senolytic compounds is seemingly conceivable with such nanoparticle
tools [219]. Additional proof-of-concept drug delivery studies confirm that nanocarriers
entail a remarkable potential for senotherapies which can be further improved by changing
their size and composition or tethering them to different polymers and epitopes (e.g., β2
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microglobulin) or antibodies (e.g., CD9) against membrane markers in order to provide
enhanced selectivity against senescent lesions [220–224].

Increased lysosomal content accompanied by elevated levels of SA-β-gal activity
is a universal marker of senescent cells. Within this framework, several groups have
recently opted to develop a new class of broad spectrum senolytic agents using this
marker. In one of these strategies, galactose-modified duocarmycin (GMD) prodrugs are
favorably processed in senescent cells by lysosomal β-galactosidase. Duocarmycin is a
non-specific cytotoxic DNA-alkylating compound, however the enzymatic conversion of
GMDs into duocarmycin drugs causes the specific destruction of senescent cells in vitro
and in vivo, without affecting normal cells when applied at low doses. The study has also
shown that GMD prodrugs can effectively eliminate chemotherapy-associated bystander
senescent cells in preneoplastic lesions [225]. Gemcitabine-derivative SSK1 is another
recently developed lysosomal SA-β-gal-responsive prodrug that selectively kills senescent
cells in vitro and in vivo, independent of the senescence inducer [226].

6. Conclusions

Overall, cancer cell senescence is a Jekyll and Hyde phenomenon with both beneficial
and detrimental implications. Despite a primary and immediate tumor-suppressive role
against cancer development, the long-term consequences of senescent cancer cells are
potentially deleterious. Recent advances in senotherapeutic strategies targeting senescent
cells and their SASP has expanded the field of translational research on cancer therapies.
The series of basic and translational studies presented in this review is exceptionally promis-
ing yet somewhat challenging to implement. This is partly because the pathways being
targeted by existing senotherapies function in non-senescent cells, and their high dose
and long-term use may cause adverse effects on other cell-types and tissues. Thus, safety
issues pose a major concern, especially when the drugs are administered systemically.
There are several possible ways to obtain higher efficacy and better safety profiles, such
as focusing on the spatiotemporal optimization of treatments and using less toxic doses
of senotherapeutic drugs by developing combination therapies and senescent cell-specific
delivery systems. Another limitation with the current studies is that the experimental
models may not perfectly recapitulate the heterogeneous and complex nature of disease
conditions specific to human pathophysiology. Nonetheless, we envision that a compre-
hensive understanding of the cellular senescence mechanisms and careful evaluation of the
heterogeneous nature of senescent cancer cell populations will help better translate these
findings into clinical settings.
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