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Abstract: Small amounts of glycidylisobutyl polyhedral oligomericsilsesquioxane (G-POSS) (up
to 10 phr) were added into a immiscible polyamide12 (PA12)/polyolefin elastomer (POE) blend
(70 wt%/30 wt%) by simple melt mixing. The effects of the G-POSS on phase morphology and
mechanical properties were investigated by FE-SEM, tensile testing, Izod impact test and dynamic
mechanical analysis. FE-SEM analysis revealed that domain size of the dispersed POE phase in
matrix PA12 is decreased significantly by adding the G-POSS, indicating a compatibilization effect of
the G-POSS for the immiscible PA12/POE blend. The PA12/POE blend compatibilized with POSS
showed simultaneous enhancement in mechanical properties including tensile modulus, strength and
toughness. Further, thermally triggered shape memory effect was observed in this compatibilized
blend.

Keywords: polymer blend; polyamide12; polyolefin elastomer; POSS; compatibilization

1. Introduction

Polymer blending is an efficient and simple way to develop new polymeric materials
possessing desirable physical properties and specific functionalities for various end-use
applications. Most of the polymer blends are immiscible and need proper compatibilization
in order to obtain proper phase separated morphologies which determine the performance
properties. The compatibilization induces finer phase morphology by improving interfacial
adhesion between the component polymers in the blend, which promotes their synergistic
combination [1,2].

Blends of polyamides (PA) with polyolefins (PO) are important class of polymer blends
because of their balanced properties of strength, toughness and moisture resistance. For
the compatibizations of the immiscible PA/PO blends, functionalized polyolefins, such as
maleic anhydride (MA)-grafted polyolefins, have been investigated [3–8]. Recently, it has
been reported that phase morphology and properties of the immiscible PA/PO blends can
be influenced by the addition of inorganic nanoparticles such as clay [9], silica [10], carbon
nanotube [11], alumina [12] and POSS [13]. The nanoparticles are located at the interface
between the component polymers or in one component selectively, which affect the phase
morphology of the blends.

Among various inorganic nanofillers, polyhedral oligomeric silsesquioxane (POSS)
is unique which features a well-defined nanosized Si–O cage structure (Si8O12) with
additional organic functional groups covalently bonded to each vertex Si on the cage. Due
to the organic functional groups, the POSS cage is naturally compatible with polymers, and
can be chemically bonded to polymer chain [14–16]. The POSS can be added into various
thermoplastics such as polyolefins [17–19], polyamides [20–22] and others [23–25] by melt
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blending using conventional high-shear mixer and induced improved thermal stability and
mechanical properties of the matrix polymer. As compared to the POSS nanocomposites
with a single polymer matrix, relatively less studies on those with immiscible polymer
blends have been reported [13,26,27].

Polyamide12 (PA12) is one of the important engineering plastics with a broad range of
applications including oil resistant tubes for automotive, cables, food packaging films and
powder coatings for metals. For the improvement in toughness of the PA12, blending it
with various rubbers such as styrene/ethylene-butylene/styrene block (SEBS) rubber [28],
epoxidized natural rubber (ENR) [29] and natural rubber [30] has been explored However,
this decreases the tensile modulus and strength. Polyolefin elastomer (POE), a commercially
important rubber developed by Dow Elastomers under the brand name Engage®, has good
processibility and thermo-oxidative resistance. To the best of our knowledge, studies on
PA12/POE blend with simultaneously improved toughness and strength, which endow
the material to have advantages in practical applications, have not been reported yet.

Hence, this work employed glycidylisobutyl POSS (G-POSS) having a cage structure
with one glycidyl and seven isobutyl groups at each corner of the cage (Figure 1) as a
compatibilizer and reinforcing nanofiller for immiscible PA12/POE blend. The G-POSS
was expected to act as a compatibilizer for the blend due to its affinity with both component
polymers via reaction of its glycidyl group with end reactive groups (–NH2 or –COOH)
of PA12 during melt mixing and van der Waals interaction of isobutyl groups with POE,
respectively. The compatibilization and reinforcing effects of the G-POSS for the PA12/POE
(70 wt%/30 wt%) blend were investigated by observation of phase morphology and
mechanical properties. A thermally-triggered shape memory effect of this blend is also
reported.
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obtained PA12/POE/G-POSS mixture was formed into a sheet by compression molding at 

Figure 1. Chemical structure of glycidylisobutyl polyhedral oligomericsilsesquioxane (G-POSS).

2. Materials and Methods
2.1. Materials and Sample Preparation

PA12 (Rilsan AESNO TL) was purchased from Arkema (Paris, France). POE (Engage
8842, Dow Chemical Co., Midland, MI, USA) was obtained from Dow Chemical Co.,
USA. Glycidylisobutyl POSS (G-POSS, EP0418) was purchased from Hybrid Plastics Co
(Hattiesburg, MS, USA).

PA12/POE (70 wt%/30 wt%) blends with G-POSS content of up to 10 part per hundred
(phr) of the polymers were prepared by melt mixing at 200 ◦C in a Haake internal mixer
equipped with a cam rotor (Haake Polylab Rheomix 600, Karlsruhe, Germany) at a rotor
speed of 60 rpm. PA12 was first melted for 1 min followed by addition of POE and mixed
for another 1 min, then desired amount of G-POSS was loaded and mixed into the mixture
and mixing continued for 10 min till the mixing torque was stabilized. The obtained
PA12/POE/G-POSS mixture was formed into a sheet by compression molding at 200 ◦C in
an electrically heated press (Carver 2518, Wabash, IN, USA) for the property measurements.
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2.2. Characterization
2.2.1. FE-SEM Analysis

Phase morphologies of the blend were investigated by a field emission-scanning
electron microscope (FE-SEM, S-900, Hitachi Co., Tokyo, Japan) at an accelerating voltage
of 15 kV. To avoid ductile deformation during fracture, the samples were chilled in liquid
nitrogen before breaking to initiate a brittle fracture. The cryogenically fractured surface
was sputter-coated with platinum prior to SEM observation.

2.2.2. Tensile Test

Tensile properties were measured at 25 ◦C using a universal testing machine (STM-
10E, United Co., Fullerton, CA, USA) at a crosshead speed of 50 mm/min with an initial
gauge length of 20 mm. At least five specimens were used for the test. Elastic moduli were
obtained from the initial slope of the stress–strain curves (up to about 1% strain). Tensile
toughness of each sample was obtained by calculating the area of the stress–strain curves.

2.2.3. Izod Impact Test

Notched Izod impact strength was measured using a sample with a thickness of
4 mm and width of 10 mm at 25 ◦C using an impact tester (DYC-103C, Daeyeong MTC,
Hwaseong, South Korea) according to ISO 180. The test was conducted using 10 specimens,
and the average values are presented here.

2.2.4. Dynamic Mechanical Analysis

Dynamic storage modulus and tan δ as a function of temperature were determined
using a dynamic mechanical analyzer (DMA2980, TA Instruments, New Castle, DE, USA)
under a cyclic tensile strain with an amplitude of 10% at a frequency of 1 Hz. The tempera-
ture increased at a heating rate of 2 ◦C min−1 from −100 to 200 ◦C.

2.2.5. Evaluation of Thermally-Triggered Shape Memory Effects

In order to evaluate thermally-triggered shape memory behavior of the samples,
temporarily-fixed sample obtained by uniaxial deformation of dogbone-shaped specimen
with a thickness of ca. 1 mm to 50% at 70 ◦C (which is just above Tg and well below Tm of
the blend) followed by cooling the deformed shape to 0 ◦C was heated to 70 ◦C. The shape
fixing ratio (Rf) and shape recovery ratio (Rr) of samples were determined by following
equations, respectively.

Shape fixing (%) = εu/εm × 100 (1)

Shape recovery (%) = [(εm − εp)/εm] × 100 (2)

where εm is an initial strain imposed onto the sample (50% in this case), εu is a strain
measured upon cooling the deformed sample at 0 ◦C and εp is a strain measured upon
heating the temporarily deformed shape at 70 ◦C.

3. Results and Discussions
3.1. Phase Morphology

SEM images of the blend with various amounts of POSS are shown in Figure 2. It can
be seen that all blends have phase-separated morphologies, in which POE forms dispersed
domain in PA12 matrix, and the dispersed domain size decreased with addition of a small
amount of POSS. The dispersed domain size of POE phase with the amount of POSS are
shown in Figure 3. It can be seen that the domain size decreased from 34 µm for unfilled
blend to about 10 µm for the blend with 5 phr POSS, and then a slow but gradual decrease
was observed with further increasing amount of the POSS. Similar trend was also observed
in immiscible blend compatibilized with a block (or graft) copolymer [3] which are located
at the interface between the component polymers. The G-POSS nanoparticles might have
been located at the interface between PA12 and POE through reaction between glycidyl
group of G-POSS with amine end group of PA12 during high shear mixing [13] and van
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der Waals interactions between alkyl group of POSS with POE [17]. This can prevent the
coalescence of the dispersed rubber phase, thereby decreasing the rubber diameter. At
G-POSS of higher than 5 phr, the competition between break-up and coalescence was
maintained at the same level.
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3.2. Mechanical Properties

Stress–strain curves of PA12/POE blend with various amounts of G-POSS are pre-
sented in Figure 4, and Young’s modulus, tensile strength, elongation-at-break and tensile
toughness obtained from the curves are summarized in Table 1. The blend compatibilized
by G-POSS reveals higher values in the modulus, tensile strength and elongation at break,
as well as tensile toughness as compared to the blend without the POSS. The Izod impact
strengths of the blend are also shown in the Table 1. It can also be seen that the Izod impact
strength improved upon the loading of G-POSS into the blend. Tensile modulus, tensile
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toughness and Izod impact strength of the blend with 10 phr POSS increased by about
115%, 60% and 20% as compared to those of the blend without the POSS, respectively.
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Table 1. Tensile properties and Izod impact strength of samples.

G-POSS
Contents

(phr)

Young’s
Modulus

(MPa)

Tensile
Strength

(MPa)

Elongation
at Break

(%)

Toughness
(MPa)

Izod Impact Strength
(kJ/m2)

0 5 ± 0.2 18 ± 0.3 50 ± 2 853 ± 40 30 ± 0.3
1 7 ± 0.3 20 ± 0.3 66 ± 3 1216 ± 50 33 ± 0.3
3 9 ± 0.3 20 ± 0.3 68 ± 3 1245 ± 50 34 ± 0.4
5 10 ± 0.3 22 ± 0.3 71 ± 3 1323 ± 60 35 ± 0.4
10 10 ± 0.3 23 ± 0.4 63 ± 3 1365 ± 60 36 ± 0.3

Such improved toughness of the blends compatibilized by the POSS is attributed
to decrease in dispersed rubber particle sizes as observed in the SEM image as well as
enhanced interfacial adhesion due to the G-POSS located at the interface between the
component polymers. In addition, the rigid POSS nanoparticles acted as a reinforcing
filler for the PA12/POE blends and led to enhancement in strength and modulus. In
other words, compatibilizing action of the rigid POSS nanoparticles resulted in outstanding
simultaneous enhancement in strength and toughness. Similar simultaneous enhancements
in reinforcement and toughness were also observed in other rubber toughened polymer
blends containing inorganic nanoparticles [31,32].

3.3. Dynamic Mechanical Properties

Figure 5a,b show temperature dependence of dynamic storage moduli and tan δ
of the samples, respectively. As shown in Figure 5a, the storage moduli of the blend
compatibilized by POSS are higher than those of the neat blend over the whole temperature
range examined here, and the modulus increased with increasing G-POSS content. The
storage modulus at 30 °C, for example, was enhanced from 296 MPa for unfilled blend to
564 MPa (about 100% increase) for the blend loaded with 10 phr POSS. Such enhancement
is correlated with an increase in tensile modulus, which is attributed to finer dispersion of
rubber particle due to the compatibilization by the G-POSS and rigid nature of the POSS
nanoparticles in the blend. It is also to be noted that all samples exhibit persistent plateau
before the temperature reaches 170 ◦C at which crystalline domains of PA12 are melted.
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Variation of tan δ with temperature is shown in Figure 5b. The two peaks appeared in
all samples, which are attributed to glass-to-rubber transition of the POE (lower tempera-
ture) and PA12 (higher temperature), respectively. The glass transition temperatures (tan δ
peak maximum) of the blend samples are shown in Table 2. It can be seen from the table
that Tg of PA12 phase was shifted towards the lower value with the incorporation of POSS
into the blend, from 47.1 ◦C in the neat PA12/POE blend to 41.8 ◦C in the blend with POSS
content of 10 phr. The lowering of Tg of PA12 phase is due to interfacial compatibilization
between the PA12 with POE by the G-POSS, which resulted in increased amorphous por-
tion of PA12 [3,4]. Lowering of Tg of POE phase in the presence of POSS was probably due
to the plasticization effect of isobutyl group of the G-POSS.

Table 2. Glass transition temperature of samples.

G-POSS Contents (phr) Tg of POE (◦C) Tg of PA12 (◦C)

0 −53.9 47.1
1 −56.1 45.9
3 −56.3 45.8
5 −54.3 43.9

10 −56.2 41.8

3.4. Shape Memory Effects

We observed a shape memory effect in these blends, as demonstrated in Figure 6
and in Table 3. All the temporarily elongated samples shrank and recovered to their
original shape upon heating above Tg of the PA12 phase. The recovery ratio increased with
increasing POSS content from 47.5% for the blend without the POSS to 94% for the blend
with 10 phr POSS.

Table 3. Shape memory properties of PA12/POE/G-POSS blend with different POSS contents.

G-POSS Contents (phr) Shape Fixity Ratio Rf (%) Shape Recovery Ratio Rr (%)

0 97.4 47.5
1 95.9 75.8
3 95.5 85.7
5 95.8 92.6
10 95.2 95.9
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Shape memory polymers have two structural features, i.e., the cross-links that deter-
mine the permanent shape and the reversible segments acting as a switching phase [33,34].
Blend of semicrystalline PA12 with elastomer studied here have these structural features,
in which PA12 crystallites with Tm of about 175 ◦C act as crosslink points while amorphous
chain of PA12 with Tg of about 40~47 ◦C act as the reversible phase. When the blend was
deformed under tensile load above its Tg, amorphous regions are oriented and elastic
energy is stored during the deformation. The stored elastic energy is released when the
blends are heated above its Tg, which renders the molecules to have an activity and to
recover to its original shape instantaneously upon heating above the Tg and well below
crystalline melting temperature. The same structural features have been reported for
semicrystalline polymers like PLA [35,36] and PVDF [37] with thermally triggered shape
memory effects. Amorphous portions of these semicrystalline polymer molecules can be
oriented in direction to applied force at temperature higher than its Tg and much lower
than its Tm, and the deformed shape can be fixed as a temporary shape upon cooling below
T < Tg due to trapping the entropy of the chains. When the temporarily fixed sample is
heated above Tg, the shape recovery occurs due to the release of stored entropic energy
and the relaxation of the polymer molecular chains to a higher entropic state. Therefore,
the driving force of shape recovery mainly stems from the elastic resilience of the elongated
polymer molecular chains. This is the molecular mechanism for the inherent shape memory
properties of these semicrystalline polymers. It is also to be noted that blending of these
semicrystalline polymers with elastomers along with proper compatibilization can promote
the orientation and reorganization of polymer chains.

The improved shape recovery of the PA12/POE blend compatibilized by POSS is
correlated with the improved interfacial adhesion of PA12 with the elastomer as discussed
above. The dispersed elastomer domains having good interfacial adhesion with the matrix
PA12 allows the amorphous chains of the PA12 to have higher activity than those in
the uncompatibilized blend and to recover to its original shape with the stress releasing
instantaneously upon heating its Tg.

It should be emphasized that the PA12 blend with shape memory effect and improved
mechanical properties can be processed using conventional methods such as extrusion,
melt spinning, injection molding and found diverse applications including heat shrinkable
fibers, films, tubes as well as self-deployable and actuating devices. These materials in the
form of powder are particularly suitable in metal coatings for corrosion protection as well
as in powder-based 3D printing processes such as selective laser sintering (SLS) and high-
speed sintering (HSS) for precise manufacturing of parts with complicated shape [38,39].
Further, this blend material can be processed with recently developed modern processing
technologies, such as centrifugal spinning and pressurized gyration [40–42] to fabricate
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nonwoven shape memory webs in mass production scale for their applications in smart
wearable devices, intelligent tools for biomedical applications, sensors, etc.

4. Conclusions

This study demonstrated that a POSS having both a glycidyl group and several alkyl
groups on its cage can act as a compatibilizer for an immiscible PA12/POE (70 wt%/30 wt%)
blend system. The incorporation of a small amount of G-POSS reduced the dispersed POE
domain size in PA12 matrix of the blend. The combination of the decreased rubber par-
ticle size and the presence of rigid POSS nanoparticles in the blend led to interesting
simultaneous improvement in modulus and toughness. Moreover, the PA12/POE blend
embedded with POSS represented excellent thermally triggered shape memory effect. The
PA12 blends with good mechanical properties and shape memory effects may have diverse
applications such as smart packaging films, sensors, fast deployable and actuating devices.
Further studies on the use of this material for modern processing technologies will be
performed.
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