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Abstract: A surge in hospital admissions was observed in Japan in late March 2020, and the incidence
of coronavirus disease (COVID-19) temporarily reduced from March to May as a result of the closure
of host and hostess clubs, shortening the opening hours of bars and restaurants, and requesting a
voluntary reduction of contact outside the household. To prepare for the second wave, it is vital
to anticipate caseload demand, and thus, the number of required hospital beds for admitted cases
and plan interventions through scenario analysis. In the present study, we analyzed the first wave
data by age group so that the age-specific number of hospital admissions could be projected for the
second wave. Because the age-specific patterns of the epidemic were different between urban and
other areas, we analyzed datasets from two distinct cities: Osaka, where the cases were dominated by
young adults, and Hokkaido, where the older adults accounted for the majority of hospitalized cases.
By estimating the exponential growth rates of cases by age group and assuming probable reductions
in those rates under interventions, we obtained projected epidemic curves of cases in addition to
hospital admissions. We demonstrated that the longer our interventions were delayed, the higher
the peak of hospital admissions. Although the approach relies on a simplistic model, the proposed
framework can guide local government to secure the essential number of hospital beds for COVID-19
cases and formulate action plans.
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1. Introduction

The global pandemic of novel coronavirus (COVID-19) has unfolded since January 2020. Japan
was one of the earliest countries to import cases. Globally, healthcare capacity has been the core issue
to confront [1–3]: the expected incidence of severe cases admitted to intensive care units (ICUs) could
well exceed the actual number of ICU beds available [4,5]. The epidemic intensified and was not kept
under control in areas where hospitals were not able to manage an increasing number of cases (e.g.,
cities in Hubei Province in early January and north Italy in late February) [6,7]. As a result, when there
was a rapid increase in the number of hospital-admitted cases in Japan in late March, tension was
greatly elevated. Accordingly, the Japanese government and local prefectural governments decided
to temporarily reduce the incidence of COVID-19 from March to May by closing host and hostess
clubs, shortening the opening hours of bars and restaurants, and requesting a voluntary reduction
of off-household contact [8]. Fortunately, hospital capacity and functions were maintained, and the
incidence of hospital-admitted cases peaked in late April.
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However, as the country successfully suppressed the incidence, it had to face another round of
difficulty, that is, the second wave, with improved healthcare capacity for high caseload demand.
Because the incidence greatly reduced by late May, there exists a gap of time before the next epidemic
peak and a growing need to build up a system that helps to secure the essential number of hospital
beds for the next waves of the epidemic [9]. Hospital admissions and severe cases act as a bottleneck in
the epidemic response, and the predicted surge of healthcare demand could be used as a reference to
determine the most appropriate timing (e.g., use the predicted peak date of the epidemic to determine
the date on which the declaration of the state of emergency is made) of stringent interventions (e.g.,
request for self-restraining contact behavior) [10,11].

Since the first wave, it has become more feasible than before to offer more realistic, quantitatively
sound hospitalization scenarios. In particular, it is possible to use first wave data in Japan to create
projected scenarios. During the first wave, there were two notable characteristics: (i) there were
more cases in the elderly in remote areas than urban areas, and (ii) the size of the epidemic was
greater in urban areas than remote areas. The latter is a favorable finding for rural areas with
limited hospital capacity, whereas the former is not good news for remote areas because the elderly
population will require close medical attention. Moreover, older groups have been shown to be more
infectious than younger groups [12]. Comprehensive and theory-based preparations would thus be of
utmost importance.

The purpose of the present study is to project the number of cases and hospital admissions during
the second wave using a simplistic mathematical model. Such modeling results may be useful for
policy making in the healthcare supply system for COVID-19 cases for each local government.

2. Methods

2.1. Epidemiological Data

We analyzed the incidence data of confirmed cases by the date of illness onset from March to May
2020 obtained from open sources such as press releases and local government web pages. We substituted
data for cases without a specified illness onset with the date of the report minus 9 days [13]. To capture
age-dependent heterogeneity in an approximate manner, we stratified the epidemic curve into three
age groups (i.e., 0–19, 20–59, and 60 years and older). Of these, the working-age population dominated
cases in urban areas, whereas older people dominated cases in other areas. To capture the distinct
pattern, Osaka Prefecture was analyzed to build the working-age centered model and Hokkaido to
build the elderly centered model. In Japan, COVID-19 has been designated as an “infectious disease
with special attention” according to the Infectious Disease Law, and cases are in principle mandated to
be hospitalized.

2.2. Statistical Modeling

We divided the epidemic curve into two periods: before and after the declaration of the epidemic
alert. In each period, we approximated the epidemic curve by exponential growth, and modeled the
incidence of infection, i(t), as

i(t) =
{

i0 exp(r1(t− t0)) t < t1

i0 exp(r1(t1 − t0)) exp(r2(t− t1)) t ≥ t1
, (1)

where i0 is the initial value, t0 is the starting time of the epidemic, and r1 and r2 are the growth
rates before and after issuing the alert, respectively. To fit the exponential growth well, we set t0 to
15 January and 19 March 2020 for Osaka and Hokkaido, respectively. The first wave in Hokkaido
existed from mid-February to 19 March, but we excluded the corresponding dataset for clarity. We
set t1 as the date on which the epidemic alert was issued and there was a reduction in incidence: the
governor of Osaka Prefecture requested that the public avoid inter-prefectural movement and the
government declared a state of emergency on 31 March. Hokkaido and Sapporo jointly declared a
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state of emergency on 12 April. As alternatives to the exponential curve, other parametric functions
(e.g., logistic model) could be useful for capturing the cumulative incidence pattern [14]. However,
the present study focuses on the absolute incidence to model the caseload demand in hospitals over
time, to which exponential function suited the best, and moreover, the exponential curve allows us to
convert the growth rates into reproduction numbers reasonably.

The incidence of infection for COVID-19 is not directly observable, while the illness onset event is
readily observable. To fit the above i(t) to the illness onset data, we convoluted the probability density
function of the incubation period with i(t). Then, the expected number of cases with illness onset, c(t),
at time t, is

c(t) =
∫
∞

0
i(t− s) f (s)ds, (2)

where f (s) is the probability density function of the incubation period with a mean of 5.6 days
and a standard deviation of 3.9 days [15]. We assumed that the expected value c(t) followed a
Poisson distribution and obtained the parameters that best fit the observed data using the maximum
likelihood method.

To quantify the model, we also used the reporting delay from the illness onset to reporting to
compute the daily number of newly reported cases. We also derived the reporting delay during the
first wave in Japan from the literature, with a mean of 7.9 days and standard deviation of 5.5 days [6].

In addition to the maximum likelihood estimate, we computed a covariance matrix from the
Hessian matrix, and performed parametric bootstrapping 10,000 times, assuming that each parameter
was sampled from a multivariate normal distribution. Using a set of 10,000 parameters obtained from
that process and also the Poisson distribution for each day, we obtained a stochastic realization of
the epidemic.

2.3. Projecting the Possible Scenarios

Using the parameterized model, we simulated the possible second wave varying the timing of the
declaration of the state of emergency. The threshold day, that is, the date on which the emergency is
declared, was set to the day when the average number of confirmed cases per week exceeded 2.5 per
100,000 people [16]. The corresponding time t1 was set to a day after the threshold, where the delay a is
the assumed time gap for the decision-making process and ranges from 1 to 7 days. We assumed that
the growth rate changes from r1 to r2 at time t1 even during the second wave and as the number of
secondary infections starts to decline.

As older people are more likely to suffer more severe symptoms [12], the epidemic curve was
stratified by discrete age groups (i.e., children, young adults and older adults) so that we can assume
that the hospitalization rate was different by age group [17]. We assumed that all older people must
be managed in hospital facilities. It was also essential to incorporate the age-dependent pattern into
our model because the age-dependent dynamics were markedly different between urban and remote
areas (i.e., between Osaka and Hokkaido). Among other age groups with confirmatory diagnosis,
we assumed that 30% of diagnosed patients in this age group would require inpatient treatment.
This is because the proportion of patients admitted to hospital in Europe is on average 35% [18],
and older people in Europe are also expected to be admitted most frequently. We calculated the number
of inpatient beds assuming that all inpatients are discharged following a fixed admission length of
14 days [13]. Among admitted patients in hospital, we assumed that the risk of severe disease (i.e.,
ICU admission, ventilator use, or death) is 2.0% among children, 7.4% among working-age group
and 13.4% among elderly, respectively [19]. We used these assumed values to calculate the number of
critically ill patients.
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2.4. Adjustment of the Reproduction Number and Patients by Age Group between Prefectures

We estimated the growth rate of the entire population and converted it into the reproduction
number Rest using the following formula [17]:

R =
(
1 + rTν2

) 1
ν2 , (3)

where T is the mean generation time and ν is the coefficient of variation of the generation time [20].
Based on the probability density function of the serial interval, we assumed that the generation
time distribution follows a gamma distribution with a mean of 4.8 days and a standard deviation
of 2.3 days [21]. We used the relative reproduction number to adjust the growth rate for each age
group using the following steps: (i) First, we calculated the ratio of Ri = 1.4, 1.7, 2.0 to the baseline
reproduction number

Ra,i =
Ri

Resttotal

Ra,est i ∈ 1.4, 1.7, 2.0, j ∈ children, adults, eldery, Ri ∈ R1.4, R1.7, R2.0, (4)

where Ra,i is the “pseudo” reproduction number that corresponds to Ri = 1.4, 1.7, 2.0 for the entire
population using Equation (4). (ii) Second, we used the ratio to adjust the age-specific “pseudo”
reproduction number obtained from Equation (3) using an age-specific exponential growth rate. (iii)
Third, we substituted the adjusted reproduction number into Equation (3) again to calculate the
required exponential growth rate for age group a, ra,i. While age-specific growth rate is independently
handled, the adjustment in Equation (4) makes it possible for age-dependent growth rates to be
decreased by a common reduction rate in the reproduction numbers.

The reproduction number of 1.7 is the current status as of 29 May 2020. This value is consistent
with the effective reproduction number observed in Tokyo and other cities in mid- and late-March.
Moreover, the range of variation of 1.7 ± 0.3 is consistent with the scenario announced at the expert
meeting on 2 March [13].

2.5. Adjustment to Each Prefecture

In addition to scenario modeling for Osaka and Hokkaido, we calculated the maximum number
of hospital admissions for prefecture j, M j, by adjusting the numerical results obtained above with
respect to the population size. Using the calculated number of hospital admissions for the reference
population (i.e., Osaka or Hokkaido) in age group i, Mi0, we adjusted the estimate by the ratio of the
age-specific population sizes, N0,i and N j,i, that is,

M j =
∑

i

M0,i
N j,i

N0,i
. (5)

3. Results

In Table 1, we summarize the statistical estimates of the parameters used for modeling hospital
admissions in urban and other areas. We adopt the working-age centered model in urban areas to
reflect the dynamics of infection in metropolitan areas; otherwise, we adopt the elderly centered model.
In both Osaka and Hokkaido, the growth rate before the declaration of the state of emergency was
highest among children, followed by the elderly. Following the declaration, the growth rate among
children and the working-age group greatly reduced.

Using the estimated parameters, we assessed the validity of our model using parametric
bootstrapping. In Figure 1, epidemic curves obtained from each of the 10,000 simulations are
added together with respect to time t, thereby confirming that the observed data points are mostly
within the 95% confidence intervals of uncertainty for the epidemic curve.
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Table 1. Estimated parameters for describing the dynamics of the model for hospital admissions.

Osaka (Working-Age Centered Model) Hokkaido (Elderly Centered Model)

i0 R1 * R2 * i0 R1 * R2 *
All 0.0605 1.54 0.68 4.012 1.54 0.62

Children 0.0004 1.73 0.65 0.058 1.89 0.49
Young adults 0.0598 1.51 0.65 2.940 1.42 0.58
Older adults 0.0057 1.63 0.75 1.153 1.69 0.66

i0, initial value of the incidence; * R1, reproduction number before the declaration of the state of emergency; R2,
reproduction number during the state of emergency. Note: R1 and R2 values by age groups are not strictly the
reproduction number, but rather, were obtained using Equation (3) to convert the age-specific growth rate to a
“pseudo” reproduction number.J. Clin. Med. 2020, 9, x FOR PEER REVIEW 5 of 10 
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Figure 1. Comparison between the observed and predicted incidence of COVID-19 in Osaka and 
Hokkaido, 2020. Dots represent the observed incidence by the date of illness onset, whereas the solid 
line represents the fitted curves using maximum likelihood estimation and the dashed lines represent 
the 95% credible intervals derived from the parametric bootstrapping method; (A) Osaka Prefecture 
and (B) Hokkaido. Hokkaido was ahead of other prefectures in experiencing the first wave from early 

Figure 1. Comparison between the observed and predicted incidence of COVID-19 in Osaka and
Hokkaido, 2020. Dots represent the observed incidence by the date of illness onset, whereas the solid
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line represents the fitted curves using maximum likelihood estimation and the dashed lines represent
the 95% credible intervals derived from the parametric bootstrapping method; (A) Osaka Prefecture
and (B) Hokkaido. Hokkaido was ahead of other prefectures in experiencing the first wave from early
February. Following the comparison across all age groups on the top, comparisons among children
(second from the top), young adults (third from the top) and older adults (bottom) are shown.

Using the parameterized model, our subsequent process was to simulate a possible second wave,
particularly the prevalence of hospital admissions. Considering the arbitrarily chosen threshold for
issuing the alert during the first wave, we chose the threshold to be the cumulative number of cases
during the past 7 days, which was 2.5 per 100,000 population or greater. Given that the population sizes
of Osaka and Hokkaido were 8,848,998 and 5,304,413 persons, respectively, we assumed the threshold
number of cases to be 221 and 133 per week. Figure 2 shows the epidemic curve of the prevalence of
hospital admissions by age group, which could act as the basis for calculating hospital admissions.
In Osaka, the peak of hospital admissions was dominated by young adults, whereas the highest peak
in Hokkaido was for older people. The peaks were characterized by not only age-specific parameters
leading to the growth rate (Table 1) but also the influence of different age-specific population sizes in
those prefectures.
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Figure 2. Reconstructed epidemic dynamics for working-age centered and elderly centered prefectures.
(A) Working-age centered model, as parameterized by datasets in Osaka. The peak of hospital
admissions of young adults was higher than that of older people. (B) Elderly centered model,
as parameterized by Hokkaido data. The prevalence of hospital admissions of the elderly exceeded
that of young adults. In both scenarios, we assumed that all confirmed cases were to be hospitalized
for a fixed duration of 14 days.

Additionally, we simulated varied scenarios in which the declaration of the alert was delayed for
1, 3 and 7 days from when the number of confirmed cases reached the threshold level for declaration.
Figure 3 compares rather different trajectories by slightly different delays (see Supplementary Materials).
There are two notable characteristics. When the alert was delayed for 1, 3 and 7 days, the duration
of the emergency state was 85, 90 and 101 days, respectively; that is, the duration of the emergency
was extended for a longer period than the delay length of the declaration (Figure 3A–C). Moreover,
and perhaps more importantly, the peak of hospital admissions was greatly elevated by the delay
length of the declaration: for a delay of 1, 3 and 7 days, the peak was 2088, 2650 and 4272 cases,
respectively. We used Equation (5) to anticipate the maximum number of hospital admissions during
the second wave for all 47 prefectures in Japan (see Supplementary Materials).
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Figure 3. Intervention delay and scale of damage of the outbreak. (A–C) Dotted curves represent
the number of cases by the date of infection (i.e., incidence of infection). Solid curves represent the
number of cases by the date of reporting. The time point at which the solid line crosses the vertical and
horizontal lines is when the threshold, that is, 2.5 per 100,000 people, is satisfied. The time point at
which the vertical and horizontal lines cross is when the daily incidence is below 0.5 per 100,000. (A,D)
One day after the threshold. (B,E) Three days after the threshold. (C,F) Seven days after the threshold.

4. Discussion

The demand–supply imbalance of healthcare services for COVID-19 patients acts as a bottleneck
in this epidemic [22]. In the present study, we projected the caseload demand by simulating an
epidemic using a simplistic model while capturing the differential dynamics between urban and
remote prefectures. Using an Osaka dataset, we parameterized a working-age centered model, whereas
Hokkaido data were useful where older people dominated hospital admissions. We estimated not
only the growth phase of the epidemic but also the reduced reproduction number according to the
declaration of the state of emergency in these prefectures, which allowed us to simulate probable
scenarios for the second wave.

The most important learning point gained from our exercise is that the duration of a hospital surge
and peak of hospital admissions would be greatly eased by starting interventions at an early stage.
Our finding is consistent with the published simulation study [23]. If the declaration of emergency is
delayed for up to seven days, the duration is extended for a matter of a few weeks. Moreover, the peak
of hospital admissions would be far greater than anticipated, and a delayed announcement would
impose enormous pressure on healthcare capacities. These pressures would be experienced not only
among healthcare facilities but also public health centers that were in charge of diagnosing cases and
also tracing contacts. Thus, when and if the incidence reaches the threshold level to issue the alert,
the declaration of emergency should be made at the earliest convenience.

As another learning point, our approach allowed different levels of urbanization to capture
differential age-specific patterns of transmission. In urban areas, the focal group of heterogeneous
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transmission has been young adults, particularly those in their 20s–30s. During the second wave in
Japan, the infection event in Tokyo was dominant in host and hostess clubs, and also drinking bars in a
certain district [24]. By contrast, the tendency of the intense involvement of night time activities tapers
in remote areas, and cases are more likely to be dominated by the elderly. Our model captures two
such distinct patterns using age-specific growth rates of cases, and such scenarios would be applicable
to similarly populated urban and remote areas.

An important strength of the present study is that it was successful in using actual COVID-19
epidemic data in the same country to parameterize the simple model. Compared with ordinary
susceptible–infectious–recovered models, our proposed linearly (exponentially) simplified approach
would be perhaps one of the most valid approaches to simulate hospital admission scenarios while
taking advantage of a mixture of three exponential curves for each prefecture.

Limitations must be discussed. First, Osaka is the second-largest city in Japan, and Tokyo data
were discarded. We made this choice because the linelist (i.e., case record) in Tokyo has not been shared
openly. Despite this, we believe that it is reasonable to extrapolate the model of Osaka to other large
cities because the age composition of the populations of Osaka and Tokyo are quite similar. Second,
we chose Hokkaido to represent the aged society, but in fact, the capital city of Hokkaido, Sapporo,
is dominated by young adults. In reality, it is vital to remember that clusters that are formed at nursing
homes for the elderly can abruptly change the dynamics in remote areas. Third, we kept the model
very simple, using even age-specific exponential growth rates to describe age-specific heterogeneities.
If time allows, a more precise approach would be to quantify the age-dependent next generation matrix,
and the matrix could highlight the differential impact of interventions by age. Fourth, our projection
scenarios rely on the first wave in Japan. The Japanese government did not impose legally binding
penal restrictions during the state of emergency, but a certain proportion of the population may not
have behaved as the government wished. The next outbreak in Japan cannot be guaranteed to have
the same effect without proper financial compensation from the government (i.e., the effectiveness of a
similar declaration could be smaller).

Despite these issues, we believe that we have sufficiently quantified a model to allow each
prefecture in Japan to anticipate the likely maximum demand of hospital admissions during a second
wave using the first wave data. Additionally, to quantitatively project the likely peak of hospital
admissions, it is vital that the next declaration is made in a timely manner, and such science-based
decisions will be expected.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/9/10/3065/s1,
Supplementary Data. Estimated maximum number of hospital admissions and ICU demand for 47 prefectures in
Japan. For the estimation, we assumed that 100% of elderly and 30% of other cases were admitted to hospital.
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