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Abstract
During last few decades, role of microbiota and its importance in several diseases has been a hot topic for research. The 
microbiota is considered as an accessory organ for maintaining normal physiology of an individual. These microbiota organ-
isms which normally colonize several epithelial surfaces are known to secrete several small molecules leading to local and 
systemic effects on normal biological processes. The role of microbiota is also established in carcinogenesis as per several 
recent findings. The effects of microbiota on cancer is not only limited to their contribution in oncogenesis, but the overall 
susceptibility for oncogenesis and its subsequent progression, development of coinfections, and response to anticancer therapy 
is also found to be affected by microbiota. The information about microbiota and subsequent contributions of microbes in 
anticancer response motivated researchers in development of microbes-based anticancer therapeutics. We provided current 
status of microbiota contribution in oncogenesis with special reference to their mechanistic implications in different aspects 
of oncogenesis. In addition, the mechanistic implications of bacteria in anticancer therapy are also discussed. We conclude 
that several mechanisms of microbiota-mediated regulation of oncogenesis is known, but approaches must be focused on 
understanding contribution of microbiota as a community rather than single organisms-mediated effects.
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Introduction

Recently a large number of studies are accumulating link-
ing role of microbiota with normal host physiology and 
subsequent disease progression. The disruption of normal 
microbiota, known as microbiota dysbiosis contributes to 
development of several clinical conditions related to physical 
to behavioral aspects [1, 2]. Plethora of literature is support-
ing the role of microbiota in several physical abnormalities 
including, gastrointestinal, neurological to cardiovascular, 
etc. [3, 4]. Moreover, studies are linking role of microbiota 

with cancer and supporting its contribution in almost all 
aspect of carcinogenesis ranging from cancer susceptibility 
and progression to response for anticancer therapy [5, 6]. 
Literature is suggesting that correction of microbiota dys-
biosis through beneficial probiotic bacteria can be beneficial 
in a large number of cancer types [7, 8]. In addition, several 
microbes have been found with anticancer potential and are 
being developed for effective anticancer therapy [9].

Though, several complexities are creating bottlenecks in 
integrating such therapeutic modalities in routine antican-
cer management practices, multiple strategies are devised 
to utilize information obtained from microbiota-related 
experiments for management of cancer. These complexi-
ties including, geographical and inter individual variability 
of microbiota, identification of key microbiota component 
affecting carcinogenic process, and identification of proper 
mechanistic information leading to microbiota-mediated 
oncogenic transformation. Herein, we draw attention to the 
mechanistic implications of microbiota in influencing differ-
ent aspects of oncogenesis and its subsequent influence on 
development of anticancer management strategies.
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Microbiota and oncogenesis

The role of microbiota in oncogenesis is widely recog-
nized in a number of studies. It is estimated that more 
than 20% of cancer cases are associated with infectious 
agents [10]. Several microorganisms are specifically 
linked with development of cancer, like H, pylori which 
is declared as a class I carcinogen by the World Health 
Organization and involved in gastric adenocarcinoma and 
mucosa associated lymphoid tissue (MALT) lymphoma 
[11]. Chlamydia trachomatis, Escherichia coli, Salmo-
nella enterica are also suspiciously involved in cervical, 
colorectal, and gallbladder cancer, respectively [12–17]. 
In addition, microbiota dysbiosis involving modulation of 
several microbiota organisms is also linked with carcino-
genesis [18]. The antibiotics-mediated microbial dysbiosis 
is also known to play important role in tumorigenesis in 
some recent studies [19]. Several mechanisms of micro-
biota dysbiosis-mediated tumorigenesis are also proposed 
recently (Fig. 1), though the collective information about 
contribution of each microbiota components and their 
subsequent involvement in carcinogenesis is still lack-
ing. Several studies are available indicating causal role 

of microbiota dysbiosis and cancer. For example, the 
microbiota of cancer-associated area is found to be dif-
ferent from microbiota occupying nearby healthy mucosa 
[20, 21]. Several articles are available on types of micro-
biota components modulation in different cancer, but their 
specific links with carcinogenesis needs more attention 
to understand their mechanistic implications. Following 
section indicates some mechanisms possibly involved in 
microbiota-mediated cancer etiology. Table 1 also lists 
some specific microbial components and their mechanistic 
involvement in carcinogenesis. 

Metabolic influence

The gut microbiota is primarily involved in providing energy 
from non-digested food substances and therefore the dietary 
components are a major factor deciding microbiota compo-
sition. Under certain situations, these microbiota-mediated 
metabolic products have ability to influence carcinogenic-
ity and these effects range from activation and synthesis of 
carcinogen, to removal of carcinogen [22]. Several bacte-
rial enzymes are involved in cancer and indicate towards 
involvement of microbiota in carcinogenesis. Figure 1B 

Fig. 1  Role of microbiota and individual microbiota components in 
carcinogenesis. The figure is divided in three sections and cancer-
associated mechanisms are generally  shown with red color while 
microbial components are shown with green color. Section A indi-

cates influence of microbiota on cell growth or apoptosis related pro-
cess, while section B and C indicate towards metabolic influence of 
microbiota and mechanisms associated with individual microbes on 
carcinogenesis, respectively
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represents microbiota enzymes and their metabolic influ-
ence on carcinogenesis. It is found that prebiotics are known 
to increase beneficial Bifidobacteria and suppress these car-
cinogen metabolizing enzymes activities [23]. The probiot-
ics are beneficial bacteria known for their ability to provide 
several anticancer effects and a number of articles are avail-
able for anticancer effects of probiotics [7, 8]. Therefore 
increasing the number of beneficial bacteria through fecal 

microbiota transplant is a well-known strategy for manage-
ment of several gastrointestinal ailments [24]. The role of 
metabolic influence of microbiota is also evident through 
strong influence of dietary pattern on carcinogenesis. The 
excess energy intake in comparison to normal requirement 
is suggested to be linked with human cancer [25] and micro-
biota plays important role in this process through regulation 
of metabolic process [26].

Table 1  The mechanistic implication of microbes in carcinogenesis

*EMT-epithelial to mesenchymal transition, IL-8 Interleukin8, MMP9 Mettaloproteinase 9, CDT Cytolethal Distending Toxin, OSCC oral squa-
mous cell carcinoma,

Sr. no Bacteria Cancer Suggested key mechanisms References

1 Chlamydophila psittaci Ocular adenxal 
MALT lymphoma

Clonal selection of MALT for lymphoma development, chromosomal 
aberration caused by either genetic instability or oxidative DNA dam-
age, affecting NF-kB pathway leading to anti-apoptotic effects

Additional risk factor including autoimmune diseases

[84, 85]

2 Porphyromonas gingivalis Oral cancer Receptor upregulation on OSCC cells, EMT transition of normal oral 
epithelial cells, activation of IL-8 and MMP-9, inhibition of apoptosis 
and acceleration of cell cycle, conversion of ethanol to carcinogenic 
acetaldehyde

[86]

3 Helicobacter pylori Gastric cancer Inflammation induction through epithelial cell death and consequent 
repair of remaining cells leading to increase cell survival and pro-
liferation and resultant precancerous lesions. Direct effects through 
bacterial effectors, such as cagA, vacA, and omp activating cell 
signaling pathways including PI3K/Akt, Ras, Raf, ERK, JAK/STAT, 
etc., leading to uncontrolled cell proliferation

[87, 88]

4 Mycobacterium tuberculosis Lung cancer DNA damage, production of epidermal growth factor (epiregulin). 
PD-1/PD-L1 pathway modulating T cell immune response mediating 
tumor metastasis

[78, 89]

5 Chlamydia (Chlamydoph-
ila) pneumoniae

Lung cancer Inflammation mediated cell and DNA damage and consequent repair 
of cell injury contributes to increased cell proliferation and cancer. 
Superoxide radicals, TNF, IL-8, and IL1β secreted by monocytes in 
response to infection also contributes to cell and DNA damage and 
resultant carcinogenesis

[90]

6 Salmonella typhi Gallbladder cancer Chronic inflammation, typhoid toxin causes DNA damage and cell 
cycle alterations

[79]

7 Streptococcus bovis Colon cancer Inflammatory cytokines (such as IL1β, IL-8, TNF-alpha, and IL-6) 
may lead to formation of free radicals causing DNA alterations and 
cancer. Bacteria also degrade anticancer substances, such as tannic 
acid present in diet and contribute to cancer

[91, 92]

8 Campylobacter jejuni Intestinal lymphoma The CDT of bacteria cause dsDNA breaks in germinal centre B cells. 
Mutational events involving Pax5 and other oncogenes can lead to 
neoplastic changes

[93]

9 Fusobacterium nucleatum Colorectal cancer Induction of cell proliferation through Wnt/β-catenin signaling. Inflam-
mation regulation and inhibition of natural killer cell cytotoxicity

[94]

10 Bacteroides fragilis Colon cancer BFT (B. fragilis toxin) cleaves cell surface protein E-cadherin and its 
cytoplasmic domain associate with β-catenin. The loss of E cadherin 
stimulate β-catenin signaling, induce c-myc and IL-8. Cause oxida-
tive DNA damage, epithelial barrier damage, STAT3/TH17 immune 
response

[95]

11 Citrobacter rodentium Colorectal cancer Colonic crypt hyperplasia is regulated through Wnt/β-catenin, PI3K, 
and Notch pathway. MEK/ERK/NF-kB regulates inflammation. Other 
related mutagenic effects contribute to neoplasia

[96]

12 Escherichia coli Colorectal cancer Production of genotoxin leading to DNA damage and cell cycle modu-
lation. Chronic inflammation and possibility to affect DNA repair

[13]

13 Chlamydia trachomatis Cervical cancer Acts as a cofactor with HPV for cancer development. Induces cell 
proliferation and inhibition of apoptosis

[12, 97]
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Influence on cell growth

Development of cancer is directly linked with abnormal 
cell proliferation and it can be ranged from increased cel-
lular proliferation to inhibition of cell death. The micro-
biota is known to regulate cell proliferation and regenera-
tion under various conditions [27]. It has been found a 
long time ago that addition of dietary fiber in rat increases 
intestinal cell proliferation [28]. In addition, restriction of 
intestinal nutrients is known to induce intestinal atrophy 
even after providing nutrients through parenteral route 
[29]. The role of microbiota in digestion of dietary fiber 
and production of necessary metabolites indicate towards 
their involvement in regulating cell proliferation through 
this mechanism. It is known that certain bacterial fermen-
tative metabolites, such as short chain fatty acid (SCFA) 
produced from nutrients are having ability to regulate cell 
proliferation [30, 31]. Several bacteria are known to pro-
duce certain proteins known as nucleomodulins with the 
ability to alter normal nuclear function and thereby influ-
ence cell growth. These nucleomodulins are also identified 
in bacteria suspiciously associated with cancer, thereby 
indicate towards potential involvement of these proteins 
in carcinogenesis [32]. In contrast, microbiota also has 
ability to both promote and inhibit cell death through regu-
lating apoptosis and therefore contributing in intestinal 
mucosal epithelial cell inflammation and integrity [33]. 
It has been identified that germ free newborn mice has 
reduced interleukin 1β, tumor necrosis factor (TNF) and 
altered cell death [34]. Though this study was designed to 
evaluate effect of microbiota on brain development, but 
their results demonstrating microbiota-mediated regula-
tion of major apoptotic regulator TNF demonstrate its 
ability to regulate cell death. Supporting this notion, pro-
biotics bacteria Lactobacillus rhamnosus GG is able to 
inhibit cytokine-mediated apoptosis through activation 
of anti-apoptotic Akt/protein kinase B and inhibition of 
pro-apoptotic TNF, p38/MAPK, IL-1α or IFN-γ [35]. L. 
rhamnosus GG is also known to produce two proteins (p75 
and p40) which activate Akt and promote colon epithelial 
cell growth and reduce TNF-mediated epithelial cell dam-
age [36].

The pathogen associated molecular patterns (PAMP) of 
microbiota components are recognized through Toll like 
receptor (TLR) present on enterocytes and other surfaces 
to mount immunologic response. The toll-like receptor are 
known to show modulated expression during carcinogen-
esis and this is also considered to contribute in infectious 
complications among cancer patients [37]. The vice versa 
modulated TLR expression in response to different micro-
biota composition can also regulate cellular proliferation 
and death in multiple ways. The central TLR signaling 

pathways involving MAPK and PI3K play important role 
in regulating cell proliferation through TLR [38]. Fig-
ure 1A indicates different mechanisms through which 
microbiota can regulate cell proliferation and apoptosis.

Cancer therapy‑associated microbiota 
modulation and complications

Anticancer therapy used to manage cancer also creates sev-
eral effects on host microbiota and therefore generate sev-
eral associated complications. These effects are mediated 
through multiple mechanisms, including dietary alterations, 
necessary surgical interventions and use of antibiotics for 
preventing post-surgical and other infections in addition 
to effects caused by anticancer drugs [39]. Therefore the 
reverse effect of microbiota modulation on anticancer ther-
apy is also gaining importance and studies are conducted to 
understand and utilize this attribute for improving anticancer 
therapy treatment outcomes. The recent concept of pharma-
comicrobiomics is considering effects of microbiota in drug 
response including anticancer therapy [40]. A common anti-
metabolite methotraxate is used in a number of clinical dis-
eases including cancers, it has been found to inhibit several 
representative gut bacteria and alter microbiota composition 
[41]. An in vivo study on gut microbiota of colorectal cancer 
mouse model showed that anticancer drug 5-Fluorouracil 
(5-FU) can change microbiota diversity and composition. In 
addition, antibiotics-mediated gut microbiota disruption also 
contributed to reduced antitumor efficacy of 5-FU [42]. An 
important anticancer drug cyclophosphamide is also known 
to alter composition of microbiota in intestine and promote 
certain gram positive bacterial translocation to secondary 
lymphoid organs, where these bacteria stimulate production 
of pathogenic Th17 cells Th1 response [43]. Several other 
anticancer drugs are known to cause diarrhea through multi-
ple mechanisms including killing of beneficial bacteria help-
ing in digestion [44]. In contrast, microbiota components are 
also known to alter the response toward chemotherapeutic 
drugs and have been reviewed extensively. Microbiota com-
ponents are able to modulate anticancer therapy outcomes 
through multiple mechanisms including resistance to anti-
cancer drugs and immune check points inhibitors, modula-
tion of metabolism, etc. Therefore it is suggested that these 
microbiota organisms can also serve as a prognostic and 
diagnostic marker for cancer [45]. Several microbial com-
ponents itself possess anticancer activity and it is medi-
ated by multiple mechanisms. Some microbes are known 
for production of anticancer substances [46], activation of 
antitumor immune response, and modulation of signaling 
pathways, etc. [6, 47]. Few bacteria known to possess anti-
cancer activity are mentioned in Table 2 with their mecha-
nistic implications.
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Microbiota, inflammation 
and cancer‑associated signaling pathways

In addition to above mentioned mechanisms, microbiota is 
also known to alter several important signaling pathways 
leading to progression or inhibition of cancer. Some of 
these signaling pathways are already discussed in earlier 
section, but some other bacteria-specific signaling events 
leading to carcinogenesis are mentioned in Fig. 1C. The 
signaling pathways are regulating multiple mechanisms 
contributing to carcinogenesis including immune regula-
tion. Microbiota is known to mediate development and 
regulation of immune system and therefore it can influence 
outcome of anticancer immunotherapy [48]. The role of 
microbiota and probiotics are also proposed in manage-
ment of inflammatory and cellular immune response in 
COVID-19 [49, 50]. Moreover, the role of immune regu-
lation in cancer and its management is a widely studied 
aspect. Antibodies against CTLA-4 are successfully used 
in anticancer immunotherapy but its efficacy depends on 
gut microbiota organisms Bacteroides spp. [51]. The role 
of commensal bacteria in influencing anticancer activity 
of immunotherapy is also reviewed [52] and it was sug-
gested that normal intestinal microbiota supports antican-
cer therapy while this attribute is missing with dysbiotic 
microbiota and inflammation regulation is considered as 
an important mechanisms in this process [53]. For more 
than one century, inflammation is considered as a key 
mechanism for carcinogenesis after detection of leuko-
cytes in cancer tissues [54]. Recent studies are also finding 
strong links between chronic inflammation and cancer risk 

[55]. The microbiota components are known to up regulate 
several inflammatory cytokines and it has been reviewed 
in other articles [56]. Human functional genomics project 
indicated that fungal and bacterial agents are significantly 
associated with inflammatory cytokine response [57]. It 
is found that microbiota can promote cytokine production 
through engaging microbial metabolite sensor receptors 
that are highly expressed on inflammatory cells [58]. The 
study of antibiotic-mediated microbiota reduction and sub-
sequent effects on pancreatic, colon, and melanoma tumor 
models revealed that microbiota depletion increases IFNγ 
producing T cell and reduces IL17A and IL10 produc-
ing T cell and reduces tumor burden in all models except 
Rag1-knockout mice [59]. IL-17 and IL-10 are consid-
ered as major immune regulators in a variety of carcino-
genesis with a range of observations [60, 61], the role of 
microbiota in regulating these cytokines indicate towards 
their involvement in this process. Targeting of harmful 
microbiota components through antibiotics further boosts 
immune system and aids in suppression of cancer develop-
ment. Several other bacteria are studied for their potential 
involvement in cancer with varied mechanisms. Among 
these, Escherichia coli is also found to be linked with 
colorectal cancer with a range of observations. It is found 
that increase of genotoxin producing microorganisms 
including E. coli can contribute to chronic inflammation-
mediated colorectal cancer. It is suggested that colibactin 
induced host DNA damage contribute to colorectal cancer 
etiology [62]. Moreover, mutY is a DNA repair gene in 
E. coli and its human homolog MUTYH is linked with 
colorectal cancer. This homology of both DNA repair 

Table 2  Mechanistic implications of bacteria in prevention of cancer

Sr. no Bacteria Suggested key anticancer mechanism References

1 Listeria monocytogenes The intracellular growth without extracellular cell to cell spread makes it an ideal vector for 
anticancer therapy. Acts as an immunomodulator to enhance anticancer T cell immune 
response

[98, 99]

2 Bifidobacterium spp. Biotrasformation and production of antitumor metabolites from nutrition and drugs, competi-
tive advantage in cancer microenvironment by exclusion of harmful microbiota and patho-
gens, modulation of cancer-associated cytokines and genes

[100]

3 Salmonella typhimurium Attenuated bacterium is suggested as a delivery vehicle for anticancer therapy due to selective 
tumor targeting and anticancer response

[101]

4 Streptococcus pyogenes Direct tumor cell lysis and activation of immune response by bacterial components leads to 
cancer cell death

[102]

5 Clostridium novyi Activation of host antitumor immune response and direct destruction of tumor cell. Works 
on hypoxic area (which is generally difficult to treat with conventional radio and chemo-
therapy) due to anaerobic nature of bacteria

[103, 104]

6 Bacillus calmette Guerin Used as immunotherapy for prevention of cancer relapse and progression. Elevate the level of 
IL-2 and mediate anticancer activity by type 1 immune response

[105]

7 Serratia marcescens Produce several metabolites such as, extracellular metalloproteinase serralysin, and prodigi-
osin with anticancer potential

[106, 107]

8 Corynebacterium diptheriae Diptheria exotoxin possess antitumor activity and used as a immunotoxins consisting toxin 
with additional targeting element

[108]
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genes and intracellular localization of E. coli in colonic 
epithelium during chronic inflammation raises suspicion 
that both DNA repair homologous proteins can compete 
and affect host cell DNA repair and therefore hypothesized 
for E. coli-mediated colorectal cancer [16]. Another well-
studied bacteria for its involvement in carcinogenesis is 
Fusobacterium nucleatum, which is found to be impli-
cated in colorectal cancer [63, 64], gastric cancer [65], 
esophageal cancer [66], and head and neck squamous cell 
carcinoma [67]. F. nucleatum is having certain regula-
tors known to mediate cancerous changes, for example 
Fap2 protein of F. nucleatum interacts with TIGIT recep-
tor present on natural killer (NK) cells and inhibit their 
cytotoxicity and subsequently contribute to tumor evasion 
[68]. Moreover, Fap2 also leads to Fusobacterium abun-
dance in CRC which over-express Gal-GalNAc and binds 
to Fap2 protein, even though hematogenous route [69] and 
further contribute to its carcinogenic ability. Another F. 
nucleatum protein FadA bind to E-cadherin on CRC cells 
and induces β -catenin signaling leading to regulation of 
inflammatory and oncogenic response. This study also 
identified that synthetic peptide inhibit FadA—E cadherin-
mediated CRC progression, inflammatory and oncogenic 
response and the level of FadA is also found to be higher 
in adenomas and adenocarcinoma than normal colon tis-
sues [70]. The role of F. nucleatum in carcinogenesis is 
also reviewed and it has been suggested that its LPS can 
stimulate inflammatory cytokines leading to proinflamma-
tory environment promoting tumor progression. The acti-
vation of ß-catenin signaling also activates Wnt signaling, 
Myc and cyclin D1 oncogenes contributing to cancer cell 
proliferation [71].

Another anaerobic bacterium Peptostreptococcus anaero-
bius selectively enriched in CRC microbiota. It is known to 
bind α2/β1 integrin (overexpressed on CRC cells) through 
putative cell wall binding repeat 2 (PCWBR2) surface pro-
tein present on bacteria. This interaction activate PI3K-
Akt pathway through phospho-focal-adhesion kinase and 
stimulate increased cell proliferation, NF-kB activation and 
resultant proinflammatory events, such as interleukin-10, 
interferon-γ production and involvement of tumour-associ-
ated macrophages (TAM), myeloid-derived suppressor cells 
(MDSC), and granulocytic tumour-associated neutrophils 
(GTAM) [72]. The role of PI3K-Akt pathway is already sug-
gested in several other microbes-associated cancer, such as 
Salmonella typhi is suggested to be involved in gallbladder 
carcinoma through this important pathway in addition to 
several other events [73].

Enteotoxigenic Bacteroides fragilis (ETBF) is another 
bacterium which produces BF toxin (BFT) contributing to 
diarrhea, inflammatory bowel disease and colon cancer [74]. 
BFT produced by ETBF promotes inflammation through 
expression of cyclooxygenase (COX-2) releasing PGE2, 

activation of STAT3 signaling, and degradation of E-cad-
herin leading to upregulation of spermine oxidase-mediated 
DNA damage and carcinogenesis [75].

Porphyromonas gingivalis is found to be associated with 
increased pancreatic cancer risk. Though it is an oral bac-
teria but detected in human pancreatic cancer as an intra-
cellular pathogen. Its intracellular residence is enhanced by 
hypoxia, which is an important characteristic of pancreatic 
cancer and intracellular persistence is directly related to 
increased tumor cell proliferation [76]. Some studies have 
indicated role of chronic Mycobacterium tuberculosis (Mtb) 
infection in lung cancer through induction of several mecha-
nisms including inflammation [77]. It is demonstrated that 
Mtb induces lung specific cell dysplasia, squamous cell 
carcinoma. The Mtb-infected macrophages induces DNA 
damage in surrounding tissue and produces epiregulin (an 
epidermal growth factor) contributing to tumorigenesis [78]. 
Salmonella enterica subsp. enterica serovar Typhi (S. typhi) 
is also found to be linked with gall bladder carcinoma risk 
with its ability to form biofilm and production of toxin con-
tributing to DNA damage and cell cycle alterations [79]. 
Similarly, Helicobacter pylori is a well-known bacteria 
recognized as carcinogen and contribute to carcinogenesis 
through multiple mechanisms. H. pylori induces inflamma-
tion, DNA damage, DNA methylation, epithelial mesenchy-
mal transition, and direct cell proliferation through activa-
tion of various signaling events, like PI3K/Akt pathway [80]. 
These organisms are linked to certain diseases and do not 
form components of general microbiota, but their potentials 
in carcinogenesis provide indication of bacterial involvement 
in cancer progression.

Conclusion

The role of microbiota in cancer is a relatively new aspect 
and need more investigations to understand collective effect 
of microbiota components in carcinogenesis process. Dis-
crete studies are arising understanding role of individual 
microbiota component in cancer progression, prevention 
and management. In contrast, microbiota works as an eco-
system where each component is contributing to the pro-
cess of affecting normal host physiology. Therefore, we 
need a model to understand contribution of microbiota as a 
community in addition to understanding role of individual 
microbiota component in carcinogenic process. The recent 
development of next generation sequencing technologies 
with omics analysis can help us to develop such models. 
Several recent approaches such as microarray, metagenom-
ics analysis coupled with meta-trascriptomics analyses can 
indicate about microbial community composition in addition 
to their influence on normal host physiology and subsequent 
effects on carcinogenesis. System biological approaches of 



199Clinical and Translational Oncology (2022) 24:193–202 

1 3

host–pathogen interactions analyses can also aid in these 
objectives through reducing time and labor required for such 
large-scale analyses of microbial community and their influ-
ence on disease progression [81–83]. Nonetheless, current 
findings and observations are indicating that microbiota can 
contribute to carcinogenesis through a variety of mecha-
nisms and understanding of these mechanisms can help us to 
plan suitable preventive and therapeutic strategy for cancer. 
In addition, mechanistic identification of anticancer activity 
of microbes is paving the way to develop suitable therapeu-
tics for management of cancer. Summarily, identification of 
mechanistic implication of microbiota in carcinogenesis and 
its prevention can provide us interventions for prevention 
and management of a variety of cancer.
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