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Two shape matching experiments examined the effects
of viewing distance and object size on observers’
judgments of 3D metric shape under binocular viewing.
Unlike previous studies on this topic, the stimuli were
specifically designed to satisfy the minimal conditions
for computing veridical shape from symmetry.
Concretely, the stimuli were complex, mirror-symmetric
polyhedra whose symmetry planes were oriented at an
angle of 45o relative to the line of sight in a
shape-matching task. Although it is mathematically
possible to accurately compute the 3D shapes of these
stimuli using relatively simple algorithms, the results
indicated that human observers are unable to do so.
Indeed, the apparent shapes of the objects were
systematically expanded or compressed in depth as a
function of viewing distance, in exactly the same way as
has been reported for simpler stimuli that do not satisfy
the minimal conditions for an accurate computational
analysis. For objects presented at near distances, we
also obtained statistically significant effects of object
size on observers’ shape judgments.

Introduction

A fundamental problem for the visual perception
of 3D shape is that the patterns of visual stimulation
are inherently ambiguous. One possible way of solving
this problem is to combine information from multiple
sources. The present article will consider the perceptual
analysis of two possible sources of information from
binocular disparity and bilateral symmetry, and the
extent to which they can mutually constrain one
another to produce accurate judgments of 3D shape.

The pattern of binocular disparity is generally
recognized as one of the most powerful sources of
information for estimating the 3D structure of objects

in space (Howard & Rogers, 2012). However, patterns
of horizontal disparity are inherently ambiguous
because of the disparity scaling problem. Consider
two identical objects, one of which is twice the
distance from the observer as the other. To a first
approximation, binocular disparities scale with the
inverse square of the distance. Consequently, if one
object is twice the distance of another, then the range
of disparities produced by the far object will be
approximately one-quarter of those produced by the
near one. Unless disparities are somehow rescaled as
a function of viewing distance, the far object would
appear compressed in depth relative to the near one
(Richards, 1985). The top panel of Figure 1 shows an
approximation of a one-parameter family of shapes at
different distances that would all be consistent with a
given pattern of horizontal disparities.

There is considerable evidence that human observers
are unable to fully resolve the disparity scaling problem,
so that the apparent extensions of objects in depth
from binocular stereopsis can expand or compress as a
function of viewing distance. For example, in a classic
study by Johnston (1991) the observers had to judge
whether the depth axis of an elliptical cylinder was
expanded or compressed relative to a circular cylinder.
When the stimuli were presented at a viewing distance
of approximately 1 m, the observers’ adjustments
were close to veridical. However, when the viewing
distance was reduced to 0.5 m the objects appeared
expanded in depth, and when it was increased to 2 m
they appeared compressed in depth. These findings
have been replicated in numerous other studies that
have examined the apparent shapes of cylinders,
pyramids, or dihedral angles at varying viewing
distances (e.g., Glennerster, Rogers, & Bradshaw, 1996,
1998; Hecht, Doorn, & Koenderink, 1999; Johnston,
Cumming, & Landy, 1994; Scarfe & Hibbard, 2006;
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Figure 1. Schematic bird’s eye view of two families of shapes that all produce the same optical projection. The shapes in the top row
are all related by a stretching transformation in depth. This preserves the relative depth order of all vertices but destroys symmetry.
The shapes in the bottom row are all related by a combination of shearing and stretching in depth (Li et al., 2009). This special
transformation preserves the object’s bilateral symmetry but alters the relative depth order of its vertices. The red line depicts the
midline of each object—that is, the common line (or plane in 3D) through the midpoints of edges connecting corresponding points.
When the midline is perpendicular to these edges, it is also the axis of bilateral symmetry. Note that the two families have only one
shape in common—shown here in the middle of each row.

Todd & Norman, 2003). Similar results have also been
obtained for judged intervals in depth along the ground
(e.g., Baird & Biersdorf, 1967; Gilinsky, 1951; Harway,
1963; Heine, 1900; Norman, Todd, Perotti, & Tittle,
1996; Toye, 1986; Wagner, 1985) and for action-based
paradigms that measure the width of the hand grip
while reaching to grasp objects at different distances
(Campagnoli, Croom, & Domini, 2017; Campagnoli &
Domini, 2019).

Some researchers have argued that the accuracy of
3D shape judgments can be improved if binocular
disparities are combined with other sources of
information, such as texture or motion. For example,
Richards (1985) noted that unscaled binocular
disparities allow a one-parameter family of possible
shape interpretations that are all related by expansions
or compressions in depth. Monocularly viewed
two-frame apparent motion sequences allow a different
family of possible interpretations that are related by
a shearing transformation in depth (Huang & Lee,
1989; Koenderink & Doorn, 1991). Thus, if both
sources of information are combined, it is possible in
principle to obtain a veridical estimate of 3D shape by
computing the intersection of those two families. There
is conflicting empirical evidence about whether human
observers are able to exploit the combination of stereo
and motion to obtain accurate judgments of 3D shape.
One study by Johnston et al. (1994) found that they can,
whereas another by Todd and Norman (2003) found
that they cannot.

Another possible source of information that could
be combined with stereo to obtain veridical shape
estimates is provided by bilateral symmetry. Symmetry
imposes a powerful constraint because one half of the
object repeats the structure of the opposite half, but
with complementary polarity (Franc¸ois, Medioni, &
Waupotitsch, 2002; Gordon, 1989; Vetter & Poggio,
1994). Thus, a single image of a symmetric object
provides two distinct views of the same underlying
3D structure, except in degenerate cases (Hong, Yang,
Huang, & Ma, 2004). Algorithms for multiple-view
geometry (Hartley & Zisserman, 2003; Ma, Soatto,
Kosecka, & Sastry, 2004) can be modified to recover 3D
structure from a single image (Hong et al., 2004; Ma et
al., 2004). This is an active area of research in computer
vision that is sometimes referred to as shape from
symmetry or structure from symmetry (e.g., Franc¸ois et
al., 2002; Gordon, 1989; Michaux, Kumar, Jayadevan,
Delp, & Pizlo, 2017; Park et al., 2008; Sawada, Li., &
Pizlo, 2011; Thrun & Wegbreit, 2005).

To take a concrete example, Li, Pizlo, and Steinman
(2009) have shown that the 3D metric structure of a
mirror-symmetric polyhedron can be recovered from
a single orthographic image up to a one-parameter
family of symmetric interpretations, which is shown in
the bottom panel of Figure 1. The underconstrained
parameter that generates the ambiguity is the slant of
the object’s symmetry plane. Note the close similarity
with the ambiguity in the analogous structure-from-
motion case, where the underconstrained parameter is
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the angle of object rotation in depth (Huang & Lee,
1989; Koenderink & Doorn, 1991). It is important
to note that there are some minimal conditions
that must be satisfied for the application of the
shape-from-symmetry computations: the projected
image of the object must contain at least four pairs of
bilaterally symmetric points (Ma et al., 2004, p. 122),
and the object must be oriented so that its plane of
symmetry is neither parallel nor perpendicular to the
observer’s line of sight.

In sum, when a bilaterally symmetric object of
sufficient complexity is viewed binocularly from a
nondegenerate viewpoint, the retinal inputs contain
two independent and complementary sources of
information. Each of these sources by itself is
sufficient to recover the 3D shape of the object
up to a one-parameter ambiguity. Each ambiguity
is generated by a particular parameter— viewing
distance for the stereoscopic source and the slant of
the object’s symmetry plane for the symmetry-based
one. Critically, these two parameters are distinct
and independent, and consequently each source can
potentially be used to disambiguate the other. It can
be proven mathematically that when the stimulus is in
fact symmetric there is a unique interpretation that
belongs to both families as illustrated in Figure 1.
Furthermore, provided the aforementioned minimal
conditions are satisfied, this intersection-of-constraints
algorithm recovers the 3D metric structure
veridically.

These mathematical results provide the theoretical
foundation for computer vision algorithms that can
process real images on relatively modest hardware (e.g.,
Park et al., 2008; Shimshoni, Moses, & Lindenbaum,
2000; Sinha, Ramnath, & Szeliski, 2012; Yang,
Huang, Rao, Hong, & Ma, 2005). The models of
Zygmunt Pizlo and his collaborators incorporate
many of these ideas (Jayadevan, Michaux, Delp,
& Pizlo, 2017; Li et al., 2009; Li, Sawada, Latecki,
Steinman, & Pizlo, 2012; Pizlo, Li, Sawada, &
Steinman, 2014). Two recent models in particular
(Michaux, Jayadevan, Delp, & Pizlo, 2016; Michaux
et al., 2017) explicitly combine monocular and
binocular sources of information (see also Zabrodsky
& Weinshall, 1997, for an early effort). Although
these models have certain limitations and invoke
additional assumptions, they serve as proof-of-
concept demonstrations that the ideas illustrated
in Figure 1 can be implemented in practical vision
systems.

Of course, it is an altogether different question
whether the human visual system can extract this
information from the visual inputs and combine the
two sources appropriately. The importance of stereo
vision for the perception of depth and 3D structure
is well documented (e.g., Howard & Rogers, 2012;
Todd, 2004). Much less is known about the role of 3D

symmetry in shape perception (Treder, 2010, p. 1526).
Although there are plenty of studies on symmetry
perception (see Treder, 2010; Tyler, 2002, for reviews),
most of them deal with 2D symmetry on the image
rather than in 3D. There is also evidence that the visual
system is good at symmetry detection in both 2D and
3D, and that it uses it to support object recognition
and classification (e.g., Sawada, 2010; Vetter, Poggio,
& Bülthoff, 1994). Indeed, symmetry is on a short
list of nonaccidental properties (Biederman, 1987).
However, very few studies have explicitly investigated
the effects of 3D symmetry on the perception of 3D
shape and/or depth (Jayadevan, Sawada, Delp, & Pizlo,
2018; Lee & Saunders, 2013; Saunders & Knill, 2001;
Sawada, 2010). In our estimation, the latter studies are
suggestive but inconclusive. This topic is revisited in the
General discussion below.

Can human observers exploit symmetry to achieve
stereoscopic shape constancy? Unfortunately, there
is surprisingly little evidence to address this issue.
Although symmetric stimuli have been used in most
of the previous experiments that have documented the
compression of apparent depth with viewing distance,
none of those stimuli satisfied the minimal conditions
of the structure-from-symmetry computations. They
generally did not contain a sufficient number of
symmetrical point pairs to perform the required
computations, and/or they were most often presented at
degenerate orientations for which the symmetry plane
was parallel (or nearly parallel) to the line of sight.
Other experiments that have satisfied those conditions
(Li, Sawada, Shi, Kwon, & Pizlo, 2011; Jayadevan et
al., 2018) have not compared the apparent shapes of
objects presented at different viewing distances, and
might be subject to other methodological concerns
(see the General discussion below). Thus, the research
described in the present article was designed to fill this
void in the literature. Stereoscopic images of complex
symmetric polyhedra were presented at nondegenerate
orientations relative to the line of sight, and observers
were asked to judge their apparent shapes at varying
viewing distances.

Experiment 1

Methods

Observers
Twelve observers participated in the experiment,

including the three authors (YY, JT, and AP) and
nine others who were naïve about the purpose of
the experiment. All participants reported normal or
corrected-to-normal visual acuity. All gave informed
consent as approved by the Institutional Review Board
at the Ohio State University.
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Figure 2. A stereogram of one of the 10 polyhedral objects used in the present experiments.

Stimulus displays
The stimuli consisted of 10 mirror-symmetric 3D

polyhedra, which were similar to the stimuli of Li
et al. (2011). Each polyhedron was composed of
quadrilateral faces with one mirror symmetry plane
(see Figure 2; see also Figure 11 below for another
example). The objects were initially defined by a set of
16 vertices and the connections between them. These
were rendered as white lines on a black background.
The faces of each polyhedron were painted in three
different colors such that no two adjacent faces were
the same. The occluded back surface of each object
consisted of three quadrilateral faces that lay in a
common plane orthogonal to the symmetry plane.

Apparatus
The 3D stimuli were generated in Matlab in real time

and rendered with PsychOpenGL, a set of essential
functions that interfaces Psychtoolbox (Kleiner,
Brainard, & Pelli, 2007; Pelli, 1997) with OpenGL. For
any given stimulus, two slightly different stereoscopic
perspective images were computed for observers’ left
and right eyes using a technique called horizontal image
translation (Lipton, 1991) that horizontally shifts the
viewpoint of each eye by an amount determined by
the interocular distance measured for each observer.
This produces an optically correct pattern of horizontal
and vertical disparities. The observer viewed the
stereoscopic images binocularly through LCD shutter
glasses (NVIDIA 3D Vision 2) that were synchronized
with the refresh rate of a mosaic display so that each
eye received the appropriate image.

The mosaic display was composed of two identical
LCD monitors (Dell S2716DG) placed side by side.
They were synchronized into a unified and seamless

display by NVIDIA Mosaic technology and bezel
correction. The refresh rate of the mosaic display was
120 Hz. Thus, the image for each eye was updated at the
rate of 60 Hz, which was fast enough to avoid flicker.
The mosaic display had a horizontal and vertical extent
of 120 × 34 cm, and its spatial resolution was 5160
× 1440 pixels. The observers viewed the display in a
darkened room at a distance of 150 cm while using a
chinrest to restrict head movements.

Procedure
The basic scene geometry of the experiment is shown

in Figure 3. Two polyhedra were presented side by
side against a black background on the mosaic display
during each trial presentation. The horizontal distance
between the rightmost vertex of the left object and the
leftmost vertex of the right object was approximately
9 cm and the central line between them was aligned with
the chinrest. The objects were shown at eye level. The
one on the right had a fixed 3D shape, and we will refer
to it as the reference object. The one on the left could be
compressed or stretched in depth by the observer, and it
is referred to as the adjustable object. Both objects were
presented in the same 3D orientation, such that their
symmetry planes were at a 45o angle relative to the line
of sight. This slant is the one that is most favorable for
structure-from-symmetry computations.

The observers’ task was to adjust the shape of the
adjustable object by stretching or compressing it in
depth using a handheld mouse so that it matched the
apparent shape of the reference object. The reference
object was always symmetric, whereas the adjustable
object was generally asymmetric, except for one
possible setting where it matched the shape of the
reference object. The adjustment space is analogous to
the depth-scaling family in the top row of Figure 1,
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Figure 3. A bird’s eye view of the viewing geometries used in
the present experiments. An adjustable object was always
presented in the left hemifield at a distance of 1.5 m. The
reference object was always presented in the right hemifield,
and its simulated viewing distance was manipulated across
trials with possible values of 0.7 m, 1.5 m, and 2.3 m. Observers
were required to stretch or compress the adjustable object in
depth so that its apparent shape matched that of the reference
object.

except that the experimental stimuli were rendered in
perspective projection.

The simulated viewing distance to the adjustable
object was always 150 cm, which was the same as the
physical distance between the observer and the mosaic
display. The simulated viewing distance of the reference
object was manipulated across trials with three possible
values of 70 cm, 150 cm, and 230 cm (see Figure 3).
The two objects presented in each trial were rendered
in different colors and sizes so that their 2D images
were not identical. The size of the adjustable object
was the same on every trial. The average horizontal and
vertical extents of the 10 possible objects were 10.9 cm
and 16.8 cm, respectively. Its extension in depth could
vary based on the observers’ settings. The selection of
objects was constrained so that no faces appeared or
disappeared from view due to the adjustment.

The size of the reference object was manipulated in
two ways in separate sessions. In one session, its physical
size was set at 70% of the adjustable object and was
fixed across viewing distances for a given polyhedron.
As a result, the size of its 2D projected image would
change with the simulated viewing distance (see Table
1). In the other session, we fixed the projected size of the

reference object by changing its physical size according
to the viewing distance (see Table 1 for details). On
average, the reference object used in this fixed projected
size session subtended 4.4° of visual angle at each of
the three viewing distances.

The experiment was performed in a dark and
quiet room where the display was the only source of
illumination. Prior to their participation, observers
were given a stereo acuity test developed by Brown et
al. (2007) to confirm that they had normal stereoscopic
vision. They were then asked to perform several
practice trials to get familiar with the equipment
and the task. During these practice sessions all the
observers indicated that they could clearly perceive
the compressions and expansions in depth of the
adjustment object. The practice trials used a different
object than the ones used in the experimental trials. At
the start of each trial, the depth-to-width ratio of the
adjustable object was set randomly. Observers then
moved the mouse horizontally to make adjustments
without time limitation.

Each observer conducted two separate sessions: one
for the fixed physical size condition and one for the fixed
projected size condition. The order of the two sessions
was counterbalanced across observers. Within each
session, three possible simulated viewing distances were
presented three times each for each of the 10 polyhedral
objects used in this experiment. Therefore, one session
had 90 trials and was run in two blocks of 45 trials with
randomized order. On average, one session took about
40 minutes.

Results

During their debriefing sessions, all the observers
reported that the displays produced perceptually vivid
impressions of 3D structure, and that manipulations
of the mouse produced clear changes in the apparent
z-scaling of the adjustable object. Because the
adjustable and reference objects on any given trial
could have different sizes, it would not be meaningful
to directly compare their relative extensions in depth.
Thus, to normalize the size differences, we instead
compared the depth-to-width ratio of the adjustable
object relative to the depth-to-width ratio of the
reference object. The dependent variable throughout
our study is the relative aspect ratio:

S = zad j/xad j
zre f /xre f

(1)

where zadj and xadj represent the adjustable object’s
extents along the z-axis and x-axis, respectively, and zref
and xref represent the extents of the reference object
(see Figure 3). Note that zadj is the only variable that
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Viewing distance Physical size Projected size

Fixed physical size 0.7 m 11.6 cm 9.5o
1.5 m 11.6 cm 4.4o
2.3 m 11.6 cm 3.0o

Fixed projected size 0.7 m 5.5 cm 4.4o
1.5 m 11.6 cm 4.4o
2.3 m 17.8 cm 4.4o

Adjustable object 1.5 m 16.6 cm 6.3o

Table 1. The distances and sizes of stimuli used in Experiment 1.

Figure 4. The left panel shows the average judgments of all 12 observers in Experiment 1. Error bars denote ±1 standard error of the
mean (SEM) of the corresponding data set. The right panel shows posterior predictive fits of the hierarchical Bayesian model (see
Appendix). The horizontal dashed lines represent veridical performance.

was controlled by the observers. Because this particular
measure produces an asymmetry between under- and
overestimates of an object’s extension in depth, we
transformed the scale by using the binary logarithm of
S. We will refer to this measure as the log relative aspect
ratio. log2 S = 0 indicates a perfect shape match (up to
a similarity transformation). log2 S > 0 indicates the
adjustable object was expanded in depth, and log2 S <
0 indicates that the adjustable object was compressed in
depth relative to the reference object.

The left panel of Figure 4 shows the average
responses over all observers plotted as a function of the
simulated viewing distance for the two size conditions.
These data were analyzed in several different ways.
First, we performed an analysis of variance (ANOVA)
on the group data. The results revealed a significant
effect of viewing distance (F (2, 22) = 16.26, p <
0.001), a significant effect of size (F (1, 11) = 6.66,
p < 0.05), and a significant interaction between size

and distance (F (2, 22) = 10.86, p < 0.001). We also
performed ANOVAs on the individual observers,
whose judgments are shown in Figure 5. Ten of the 12
observers showed significant effects of viewing distance,
and seven of them showed significant effects of size
and/or a significant size by distance interaction. It is
also interesting to note in Figure 5 that there were large
individual differences in the magnitude and direction
of constant errors, which is consistent with prior
studies.

Three additional hierarchical Bayesian models of
these data were implemented to quantify the overall
effect sizes. The exact specification of the Bayesian
models is given in the Appendix. The right panel
of Figure 4 shows the Bayesian predictions of the
observed data. Figure 6 shows the posterior estimates
of the effect size of the group-averaged deflection from
the group mean as a function of the simulated viewing
distance for the two size conditions. The shaded violins
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Figure 5. The average responses of each individual observer in Experiment 1. Error bars denote ±1 standard error of the mean. Note
that these graphs are plotted on different scales to accommodate the variation of scaling differences exhibited by different observers.
The horizontal dashed line on each graph represents veridical performance.

denote the 95% highest density interval (HDI) of the
posterior probability distribution. The point and error
bars in each violin denote the mean and standard
deviation of the distribution. Figure 7 shows a similar

plot of the posterior distributions for the two possible
sizes at the closest viewing distance. Note that the HDIs
do not overlap at all for the near and far distances,
nor do they overlap for the small and large sizes at the
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Figure 6. Posterior estimates of the effect size of the group-averaged deflection from the grand mean in Experiment 1 as a function of
viewing distance for the fixed physical size (Bayesian “Model-1” specified in the Appendix) and fixed projected size conditions
(“Model-2”). The shaded violins denote the 95% highest density interval (HDI) of the posterior probability distribution. The point and
error bars in each violin denote the mean and standard deviation of the distribution. The horizontal dashed line denotes zero
deflection from the grand mean.

Figure 7. Posterior estimates of the effect size of the
group-averaged deflection from the grand mean for the two
possible physical sizes at the near distance of Experiment 1. The
shaded violins denote the 95% highest density interval (HDI) of
the posterior probability distribution (Bayesian “Model-3”
specified in the Appendix). The point and error bars in each
violin denote the mean and standard deviation of the
distribution. The horizontal dashed line denotes zero deflection
from the grand mean.

near viewing distance. This indicates the effects of both
viewing distance and object size are statistically reliable,
reinforcing the ANOVA-based results above.

Discussion

There are several possible strategies by which it
would be possible, in principle, to achieve accurate
performance on this task. For example, if observers
could accurately distinguish between symmetrical and
asymmetrical objects, then they could perform the task
by choosing the one setting in the adjustment space
where the depicted object was perfectly symmetrical,
without even bothering to compare it to the reference
object (cf. top row of Figure 1). We would expect in
that case that there would be no significant effects of
viewing distance because the distance to the adjustment
object never changed (Figure 3).

The observers could also try to scale the horizontal
disparities with viewing distance, which could
conceivably be measured using accommodation or
convergence. Some researchers have argued that
perceptual distortions can occur when using computer
displays because the absence of accommodative blur
provides conflicting information that the depicted
objects are flat (see Watt et al., 2005). However, we
would expect in that case that the conflict would be
greatest at close viewing distances because that is where
gradients of accommodative blur are most visible. This
suggests that objects at near distances should appear
compressed relative to those at far distances, which is
the opposite of what is typically found in this type of
experiment. Moreover, similar results have also been
obtained for judgments of real objects, where there is
no conflict between disparity and accommodation (e.g.,
see Todd & Norman, 2003).
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Another possible way of scaling horizontal
disparities with distance might be to exploit the vertical
disparities between the projections on the two eyes.
Previous mathematical analyses have shown that
vertical disparities provide potential information for
determining an object’s distance from the observer
(Koenderink & van Doorn, 1976; Petrov, 1980),
and there is empirical evidence to show that human
observers are able to make use of that information
in at least some contexts (Rogers & Bradshaw, 1993).
However, an important limitation of vertical disparities
is that they become vanishingly small at small visual
angles, so that their effectiveness as a source of
information may be restricted to objects with relatively
large angular extents. This suggests that observers’
judgments of 3D shape from stereo should be most
accurate for objects that are relatively large and/or
relatively close to the point of observation, which is
quite consistent with the pattern of results obtained in
this experiment.

Given that the judgments of most of the observers
exhibited large deviations from the ground truth, it is
reasonable to conclude that they could not accurately
implement any of the three strategies described above.
Without some way of scaling disparities or exploiting
monocular symmetry, observers would be forced
to adopt some arbitrary standard to determine a
specific depth interval that corresponds to a particular
difference in disparity. Such arbitrary scaling factors
are what Koenderink et al. (2001) referred to as the
observer’s share, which may become necessary for tasks
that do not provide sufficient information for accurate
performance. One hallmark of such tasks is that they
often produce large individual differences because
different observers adopt different strategies. Note that
this is compatible with consistent performance across
trials for each individual participant because they
can apply their chosen observer’s share consistently
throughout the experimental session.

It is clear from Figure 5 that indeed there were
considerable individual differences for this task, and
these cannot be explained by the relatively minor
variations among observers on the stereo acuity tests.
This is especially clear in the far viewing condition,
where the apparent compression of objects in depth
varied among observers over a range of 0–65%. This
finding is quite consistent with other studies of stereo
depth scaling that have looked at individual differences.
For example, Todd and Norman (2003) did a similar
study with 10 observers on the apparent shapes of real
cardboard pyramids presented at different distances.
Nine of the 10 observers judged the far objects to
be significantly more compressed in depth than the
near ones. As in the present experiment, most of the
variation among observers occurred in the far viewing
condition, where the magnitudes of their depth scaling
varied over a range of 50%.

It is important to keep in mind that the apparent
compression of objects in depth with increasing viewing
distance is consistent with a large number of previous
studies (e.g., Baird & Biersdorf, 1967; Campagnoli
et al., 2017; Campagnoli & Domini, 2019; Gilinsky,
1951; Glennerster et al., 1996, Glennerster et al.,
1998; Harway, 1963; Hecht et al., 1999; Heine, 1900;
Johnston, 1991; Johnston et al., 1994; Norman et al.,
1996; Scarfe & Hibbard, 2006; Todd & Norman, 2003;
Toye, 1986; Wagner, 1985). The primary interest of
this particular replication is that the stimuli depicted
moderately complex symmetric polyhedra viewed from
“nondegenerate” slants. Pizlo and colleagues (Li et al.,
2011; Jayadevan et al., 2018) have argued that this is
a necessary condition for the veridical perception of
3D shape from stereo. Thus, the fact that the observers’
perceptions of shape did not remain constant over
variations in size and distance, and that they exhibited
large constant errors, provides strong evidence against
that hypothesis.

The effects of object size on stereoscopic shape
perception have been investigated in several previous
studies, but the results have been surprisingly
inconsistent. For example, Bradshaw, Glennester, and
Rogers (1996) obtained results similar to ours, in that
the apparent depth-to-width ratios of the depicted
objects increased with object size. However, Collett,
Schwarz, and Sobel (1991) and Champion, Simmons,
and Mamassian (2004) obtained the opposite effect,
and Norman et al. (2009) obtained a negligible effect of
size (see also Johnston, 1991). The discrepancies in these
results are most likely due to methodological differences
in the designs of the experiments. For example, the
displays used by Norman et al. included gradients of
shading and texture that provided salient information
about 3D shape in addition to the information from
binocular disparities. For Bradshaw et al. (1996) study
that showed positive size effects, the outer edges of the
depicted objects could be 15° or more in the periphery
relative to the median plane, whereas the ones that
showed negative effects used stimuli confined to a much
smaller central region.

When an object’s size is increased at a relatively close
viewing distance, it produces perspective distortions
in its optical projection. In particular, the optical
projection of the front part of the object undergoes a
greater expansion than the back part. Similarly, vertical
disparities arise when the distance of a point to one
eye is greater than its distance to the other (Rogers
& Bradshaw, 1993), and this differential perspective
increases systematically for points that are located
farther in the periphery. This differential expansion as
a function of depth is attenuated as viewing distance
is increased, which could explain the interaction of
size and distance. Note in Figure 4 that the difference
in apparent z-scaling between the near and far viewing
distances was four times greater in the fixed physical
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size condition than in the fixed projected size condition.
This suggests that perspective distortions or vertical
disparities could have a significant influence on
apparent depth-to-width ratios at relatively close
viewing distances. Because the statistical significance
of the size effect was relatively small due to individual
differences, we decided to perform an additional
replication that was focused entirely on that issue.

Experiment 2

Methods

The materials and design were the same as
Experiment 1, except for the manipulations of the
reference object. In this experiment, the simulated
viewing distance of the reference object was fixed at
0.7 m, but its size was systematically manipulated.
For the largest size, the average width of the different
objects was 11.6 cm (9.47o), which was identical to
the fixed physical size at the closest viewing distance
in Experiment 1. We also included two smaller sizes
with average widths of 7.8 cm (6.35o) and 5.2 cm
(4.25o), respectively. As in Experiment 1, the adjustable
object was presented at a simulated viewing distance of
1.5 m and its physical size was always 16.6 cm (6.3o).
The actual viewing distance to both objects was 1.5
m. The displays were judged by 11 of the observers
who participated in Experiment 1 and one additional
naïve observer. Each observer participated in a single
experimental session.

Results

Figure 8 shows the average responses over all
observers plotted as a function of object size, together
with the Bayesian fits of these data. An ANOVA of
the observers’ judgments revealed that the apparent
depth-to-width ratio of the reference object increased
significantly with the size of the object (F (2, 22)
= 8.97, p < 0.001). Figure 9 shows the individual
results of all 12 observers. ANOVAs for these data
revealed significant effects of size for nine of the 12
observers. Figure 10 shows the posterior estimates of
effect size of the group-averaged deflection from the
grand mean as a function of object size (see Appendix
for details of the implementation of the Bayesian
analyses). The key thing to note in that figure is the
lack of overlap in the posterior highest density intervals
for the smallest and largest objects. It thus provides
evidence for a statistically reliable effect of object size
on judgments of an object’s 3D shape, reinforcing the
ANOVA-based results above.

Figure 8. The average judgments of all 12 observers in
Experiment 2, together with posterior predictive fits of the
hierarchical Bayesian model (see Appendix). The horizontal
dashed lines represent veridical performance.

The most likely cause of the size effect is the
nonlinear distortion of image structure that occurs
due to strong perspective. As an object increases in
size (or decreases in viewing distance) the front part
of its optical projection expands at a greater rate
than the back part, and this increases the range of
both horizontal and vertical disparities in stereoscopic
vision. To better appreciate how this might influence
observers’ perceptions it is useful to consider the three
stereograms in Figure 11. The one in the middle depicts
a large bilaterally symmetric polyhedron. The ones
above and below it depict the same object with a smaller
size. One of these smaller objects has exactly the same
shape as the larger one. The other has been expanded
or compressed in depth by 40%. The reader is invited
to judge which object has been distorted. The first
thing to note when examining these stereograms is that
this is not a trivial task. It is relatively easy to see that
the upper object has a greater extension in depth than
the lower one, but which one matches the shape of
the larger object in the center? The observers in our
experiment overwhelmingly chose the upper object as
the best match, but the correct answer is actually the
lower one.

General discussion

The apparent compression of depth intervals with
increasing viewing distance is a well-documented
phenomenon that was first reported by Heine (1900)
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Figure 9. The average responses of each individual observer in Experiment 2. Note that these graphs are plotted on different scales to
accommodate the variation of scaling differences exhibited by different observers. The horizontal dashed line on each graph
represents veridical performance. Error bars denote ±1 standard error of the mean.

over 100 years ago. A particularly good example of this
can be experienced while driving on the highway. In the
United States, the dashed lines that separate lanes are
10 ft long, but if observers are asked to estimate the
length of a line in front of the car they are driving, the

average response is only 2 ft (Shaffer, Maynor, & Roy,
2008). Most of the early research on this topic involved
judging length intervals on the ground (e.g., Baird &
Biersdorf, 1967; Gilinsky, 1951; Harway, 1963; Heine,
1900; Norman et al., 1996; Toye, 1986; Wagner, 1985),
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Figure 10. Posterior estimates of the effect size of the
group-averaged deflection from the grand mean in Experiment
2 as a function of object size. The shaded violins denote the
95% highest density interval (HDI) of the posterior probability
distribution (Bayesian “Model-4” specified in the Appendix).
The point and error bars in each violin denote the mean and
standard deviation of the distribution. The horizontal dashed
line denotes zero deflection from the grand mean.

but the same effect has been obtained when observers
judge the apparent depth-to-width ratios of simple 3D
objects like cylinders, square pyramids, or dihedral
angles (e.g., Campagnoli et al., 2017; Campagnoli &
Domini, 2019; Glennerster et al., 1996, 1998; Hecht et
al., 1999; Johnston, 1991; Johnston et al., 1994; Scarfe
& Hibbard, 2006; Todd & Norman, 2003).

Pizlo, Sawada, Li, Kropatsch, and Steinman
(2010) have argued that these results are misleading
because the stimuli employed did not satisfy the
minimal conditions for computing veridical shape
from symmetry. They did not contain four visible
bilaterally symmetric point pairs, and they were most
often viewed at a “degenerate” orientation for which
the plane of symmetry was (nearly) parallel to the
observer’s line of sight. The present experiments were
designed specifically to consider whether observers can
achieve stereoscopic shape constancy over variations
in viewing distance and object size if the objects they
are asked to judge satisfy the minimal conditions for
computing shape from symmetry. The stimulus objects
used in these experiments all contained more than four
bilaterally symmetric point pairs, and they were also
presented at “nondegenerate” orientations in which
the symmetry planes were at a 45o angle relative to
the line of sight. The adjustable stimuli were viewed
stereoscopically at a fixed distance and orientation
relative to the observer, and the experimental software
allowed observers to expand or compress the extent

of the object in depth. The reference objects were
presented at three possible simulated distances, and
their sizes were varied as well.

Our results provide clear evidence that the apparent
shapes of complex objects at “nondegenerate”
orientations are systematically compressed with
increasing viewing distance in exactly the same way
as simple objects in “degenerate” orientations. It is
important to keep in mind that these judgments could
not have been achieved by simply comparing the
apparent extensions in depth of the adjustable and
reference objects. Because these objects always had
different sizes, the observers were required to somehow
normalize their judgments to compensate for that.
There are several possible strategies by which this could
have been achieved. For example, they could have
estimated the relative depth-to-width ratio of the two
objects, which is how we parameterized the results.
Alternatively, they could have estimated the relative
angles among different faces or the relative lengths
among different edges.

As with all 3D adjustment tasks, there is no way
of knowing for certain the specific object properties
on which the observers based their responses, or
whether they used a consistent strategy on all the trials.
We suspect that variations in task strategy may have
contributed to the individual differences in our data.
For comparison, Todd and Norman (2003) asked
observers to perform two different judgments on
stereoscopic dihedral angles. One of the tasks required
observers to adjust the angle so that its height appeared
equal to its depth, and another required them to adjust
the angle so that it appeared to be 90°. Judgments of
the aspect ratio exhibited large compressions in depth
with increasing viewing distance, whereas judgments
of the angle did not (see also Glennerster et al., 1996;
Scarfe & Hibbard, 2013).

Whatever strategy (or combination of strategies)
was used to perform the adjustment task, the observed
systematic deviations from veridicality indicate that
our participants did not make effective use of the
intersection-of-constraints algorithm outlined in the
Introduction. It is important to keep in mind that that
the one-parameter family of 3D interpretations for
symmetric polyhedra in Figure 1 assumes orthographic
projection. In the case of perspective projection, there
is additional information that allows a unique solution
for computing 3D shape from symmetry (Franc¸ois et
al., 2002; Gordon, 1989; Sawada et al., 2011). Although
the objects in the present experiment were viewed under
strong perspective, the observers were unable to exploit
this additional information to achieve shape constancy.

The results of the present experiments may appear
at first blush to be inconsistent with an earlier study by
Li et al. (2011). They obtained nearly veridical shape
judgments using stimuli that were quite similar to the
ones shown in Figures 2 and 11. We suspect this is
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Figure 11. Three stereograms of polyhedral objects. One of the smaller ones has exactly the same shape as the large object, and the
other has been expanded or compressed in depth by 40%. Can you identify which two have the same shape?

due to the unusual response task employed in their
study. When asked to make judgments of 3D metric
structure, observers frequently complain that this is
perceptually difficult. If the specific task they are asked
to perform allows some form of shortcut that makes
it possible to achieve accurate performance in some
other way, they will quickly learn to make use of it (see
Todd & Norman, 2003). Scarfe and Hibbard (2006)
have argued that nongeneric short cuts may be used
more often than is widely appreciated. For example, the
task used by Li et al. included a static, stereoscopically
viewed reference object presented next to a monocularly
viewed adjustable object that rotated in depth over
360o. Note that the rotating object provides much more
information about 3D structure than the static object.

Indeed, it is possible to perform their task without even
looking at the reference object, by exploiting the fact
that the correct setting was always the one that was
maximally compact.

We performed a control experiment to test the
feasibility of this strategy. The rotating, adjustable
object was presented by itself with no reference
object to compare it to. Three observers adjusted this
rotating object along the symmetry-preserving family
in Figure 1. This is the same adjustment space as in the
experiment of Li et al. (2011). See their Equation B4
for details. Unlike Li et al., however, the participants in
our control experiment were instructed to maximize the
apparent compactness of the rotating object. The data
were analyzed in terms of the dissimilarity between the
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Figure 12. Dissimilarity (as per Equation B12 in Li et al., 2011) between the adjusted shape and the reference shape as a function of
object slant. The task was to match the shape of the static reference object by adjusting the rotating object along the
symmetry-preserving family in Figure 1. The right panel reproduces the data of Li et al. (2011, Figure 3) for stereoscopically viewed
reference objects. The left panel shows the results from our control experiment, in which the adjustment family was the same as in Li
et al., but the observers were told to maximize the compactness of the adjustment object in the absence of a reference object. Note
that the control observers produced substantially more accurate “matches” without even seeing the reference shape. This indicates
that the matching task in the experimental design of Li et al. could be performed on the basis of extraneous factors that had nothing
to do with the perceived shape of the reference object. Error bars denote ±1 standard error of the mean.

adjusted shape and the invisible reference shape. Zero
dissimilarity indicates a perfect match (Equation B12
in Li et al., 2011). The left panel of Figure 12 plots our
control data for five different object slants, and the right
panel reproduces the results obtained by Li et al. under
comparable conditions in the presence of a stereoscopic
reference object. Note that the control observers
produced substantially more accurate “matches” than
the ones in Li et al. using a strategy that did not require
them to estimate the 3D shape of the reference object.
This is clearly a problem for their methodology.

Moreover, even if all observers in the Li et al.
experiments had tried conscientiously to match the
shape of the reference object, the adjustment space did
not include any shapes that were related to that object
by an expansion or compression of depth (cf. Figure 1
above). Thus, if any of the observers had misperceived
the reference objects in that manner, which is a common
result in the literature, the response task was incapable
of detecting that. These methodological problems cast
serious doubt on the interpretation of their results.

In another relevant experiment from the same lab,
Jayadevan et al. (2018) employed an adjustment task
that allowed objects to be expanded or compressed
in depth. They concluded: “there was no systematic
distortion of binocularly viewed shapes along the
depth direction” (Jayadevan et al., 2018, p. 14).
However, this interpretation was reached in a very
informal manner— apparently by eyeballing some
plots. No rigorous statistical analysis is reported in the

published article or the accompanying website. This is
problematic because the unaided eye cannot distinguish
unsystematic noise from systematic deviations
from veridicality of the magnitude typical for our
data.

In an effort to relate our results to those of Jayadevan
et al., we reanalyzed our data in terms of their shape
difference metric, which is defined as the normalized
average of the absolute differences of corresponding
angles (Equation 6 in Jayadevan et al., 2018). The black
bar in Figure 13 shows the average shape difference for
binocular symmetric polyhedra in their study. The red
bars show the same measure applied to the data in our
Experiment 1 for the three different viewing distances
of the fixed-physical-size session. Note that the average
error by this metric is quite comparable in both
experiments, although our results have much smaller
variance, most likely because our adjustment allowed
fewer degrees of freedom. It should also be noted that
this particular shape difference metric is incapable of
detecting the clear effects of viewing distance that are
evident in Figure 4. It appears, therefore, that this
particular metric may be ill suited to detect systematic
distortions of perceived 3D structure as opposed to
random noise in the data.

The interpretation of Jayadevan et al. data is
undermined further by various potential confounds.
For the sake of argument, let us assume that a reanalysis
of their data had revealed near-perfect match between
the adjusted and reference shapes within a narrow
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Figure 13. Shape differences between the adjustment object
and the reference object as a function of viewing distance. The
shape difference metric is the normalized average of absolute
differences of corresponding angles as originally proposed by
Jayadevan et al. (2018, Equation 6). The black bar reproduces
the results for symmetric reference objects in the binocular
condition of Jayadevan et al. (2018, Figure 7, averaged across
their three participants). The red bars show the results from
our Experiment 1 in the fixed physical size conditions. Note that
this difference metric is insensitive to the large effects of
viewing distance that are evident in Figure 4 above. Error bars
denote ±1 standard error of the mean.

confidence interval indicating adequate statistical
power. Even this most favorable outcome still would
not necessarily indicate zero distortion. Negligible
differences in a shape matching task merely indicate
equivalent distortions of the two objects. This is what
we observed when the reference object was presented at
the same simulated distance (1.5 m) as the adjustable
object in our Experiment 1 (Figure 3). Our experimental
design decoupled the simulated viewing distances of
the two objects expressly to protect from this potential
confound. In the experiment of Jayadevan et al., the two
objects were presented at the same distance (1.0 m in
the binocular condition). Granted, the two objects were
not on a completely equal footing because one object
was static while the other rotated continuously in depth,
but our default expectation in the absence of explicit
evidence to the contrary ought to be that both objects
would be affected by any distortion arising within
the visual system. Besides, the continuous rotation
of the adjustable stimulus in this experiment raises
methodological concerns in its own right as discussed in
the context of Li et al. (2011) above. Finally, even if we
assume—again for the sake of argument—that it were
established somehow that near-veridical performance
was achieved by Jayadevan et al., it would still remain
an open question whether this favorable outcome

would generalize to viewing distances other than one
meter. Recall that this particular distance is close to the
“sweet spot” where Johnston (1991) obtained veridical
performance.

What is most striking about our results is how
similar they are to those obtained using simpler
stimuli that do not satisfy the minimal conditions for
shape-from-symmetry computations. Even though it is
mathematically possible to accurately recover the 3D
metric structure of our stimuli using relatively simple
algorithms, the results reveal that human observers are
unable to do so. These findings suggest that observers’
judgments of 3D metric structure in the present study
were determined primarily by the pattern of binocular
disparity magnitudes, and that the effects of symmetry
on stereoscopic shape judgments are likely to be quite
minimal.

Keywords: symmetry, shape constancy, veridical
perception, computer vision, psychophysics
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Appendix

Hierarchical bayesian data analyses

We performed four hierarchical Bayesian data
analyses: Model-1 for the fixed-physical-size session
of Experiment 1, Model-2 for the fixed-projected-size
session of Experiment 1 (Figure 6), Model-3 for
the closest-distance conditions in both sessions of
Experiment 1 (Figure 7), and Model-4 for Experiment 2
(Figure 10). Except for a minor modification involving
Model-3 that will be clarified below, all four models
used the same structure and the same priors as specified
diagrammatically in Figure A1.

It is useful to conceptualize this graphical structure
as a Bayesian analog of one-way ANOVA. The
experimental design matrix is counterbalanced
across participants i, experimental conditions k,
and replications j as indicated by the nested plates
in Figure A1. Each of the 10 polyhedral objects was
presented three times for a total of 30 replications per
condition. The four models were individuated by their
experimental conditions: In Model-1 andModel-2 these
were the three viewing distances for the reference object.
Model-3 had only two conditions: fixed physical size
(k = 1) versus fixed projected size (k = 2). Finally, the
conditions in Model-4 corresponded to the three sizes
of the reference object in Experiment 2. One behavioral
observation was collected per trial—the log relative
aspect ratio (cf. Equation 1 in the main text). This
quantity is referred to as “adjustment” throughout this
Appendix. It enters the Bayesian model via the random
variable yijk in the innermost plate. It is assumed that
all observations for a given participant i and a given

Figure A1. General structure and model specifications of the hierarchical Bayesian statistical analyses used in this study. Notational
conventions: Nodes denote random variables, arrows denote dependencies, and plates denote exchangeable replications. Shaded =
observable, unshaded = latent, double borders = deterministically calculated, and single borders = stochastic variables (Lee, 2008;
Shiffrin, Lee, Kim, & Wagenmakers, 2008).
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condition k are drawn independently from a Gaussian
distribution with mean μik and standard deviation σ ik
(intermediate plate in Figure A1). To accommodate
individual differences, the model includes idiosyncratic
means and standard deviations in each condition.

The hierarchical structure of the model is designed
to accommodate both individual differences and
commonalities within a single condition at the same
time. The individual-level parameters that govern the
distribution of the observable data reflect individual
differences. They are sampled in turn from group-level
distributions governed by group-level parameters,
which reflect commonalities across participants within
a given condition. For example, consider the individual
differences in the variability of adjustments across the
30 replications in a given condition that are manifested
in the unequal widths of the error bars in Figures 5
and 9. These individual differences are modeled by the
random variable σ ik whose natural logarithm λik is
sampled from a group-level Gaussian distribution with
group-level parameters μλk and σλ. More importantly,
there are individual differences in overall adjustment
level—the individual profiles in Figures 5 and 9 “float”
up and down relative to each other. The model accounts
for them by partitioning each individual-level mean
(μik) into two parts:

μik = βi + θik (A1)

where β i is the grand mean of Participant i’s
adjustments across all experimental conditions, and θ ik
is Participant i’s deflection in the kth condition from
his/her own grand mean. The random variables β i for
participants i = 1, 2, ..., 12 are sampled independently
from a common group-level Gaussian distribution
with group-level parameters μβ and σβ . The individual
deflections θ ik are sampled from Gaussian distributions
with common standard deviation σ θ . Importantly,
the latter distributions have different means μθk that
characterize the respective condition k.

The group-level parameters μθk are the topic of main
interest in the current analyses. They are analogous to
the main effect of the condition factor in traditional
ANOVA. Specifically, μθk is the group-averaged
deflection from the grand mean in experimental
condition k, and thus estimates the effect of the
experimental manipulation after controlling for
individual differences. One technical challenge that
arises at this point is to enforce the sum-to-zero

constraint. Ideally, the sum of the deflections θ ik
across all conditions should equal zero for any given
participant i. To simplify the computation, this
sum-to-zero constraint was approximated at the group
level by enforcing

μθ2 = − (
μθ1 + μθ3

)
(A2)

where μθ1 , μθ2 , and μθ3 are the group-means of θ ik for k
= 1, 2, and 3, respectively. In Model-3, which has only
two conditions, this reduced to μθ2 = −μθ1 .

Instead of placing priors on μθk directly, we placed
priors on their effect sizes, as suggested by Lee and
Wagenmakers (2014). The effect sizes were denoted as
dθk and defined as dθk = μθk/σ θ . Following common
practice (e.g., Rouder, Speckman, Sun, Morey, &
Iverson, 2009), we used the standard Gaussian as
the priors on effect sizes in our model. Note that
because the standard deviation, σ θ , is common for all
conditions, the sum-to-zero constraint applies to the
effect sizes dθk as well as the group means μθk . For
other group-level parameters that are not the focus of
the current analysis, we used priors that contain very
little information so that the results of the analysis
would be largely driven by the data. We placed weakly
informative Gaussian priors on the group-means other
than μθk , and placed noninformative priors with large
range, Uniform (0, 10), on the group-level standard
deviations, as suggested by Gelman (2006).

The models were implemented in JAGS (Plummer,
2003). Results of each model were based on two
chains of Markov chain Monte Carlo (MCMC), each
consisting of 9000 samples collected following a burn-in
period of 1000 samples. Convergence of the chains
was confirmed by visually examining the trace plots
of all the group-level parameters. Bayesian posterior
predictive distributions fit well to the corresponding
distributions of the observations, indicating good
model fit.

In Bayesian statistics, the reliability of an effect
can be evaluated by the degree of separations among
distributions of the posterior estimates under different
levels of the manipulation. Specifically, we used
95% highest density interval (HDI) of a distribution
to characterize the range of the estimates that is
credible, given the data and model assumption
(Kruschke, 2015). Figures 6, 7, and 10 plot the HDIs
for the group-level effect sizes dθk estimated from the
corresponding data set.


