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A B S T R A C T

Globally all countries encounter air pollution problems along their development path. As a significant indicator of
air quality, PM2.5 concentration has long been proven to be affecting the population’s death rate. Machine
learning algorithms proven to outperform traditional statistical approaches are widely used in air pollution
prediction. However research on the model selection discussion and environmental interpretation of model
prediction results is still scarce and urgently needed to lead the policy making on air pollution control. Our
research compared four types of machine learning algorisms LinearSVR, K-Nearest Neighbor, Lasso regression,
Gradient boosting by looking into their performance in predicting PM2.5 concentrations among different cities and
seasons. The results show that the machine learning model is able to forecast the next day PM2.5 concentration
based on the previous five days' data with better accuracy. The comparative experiments show that based on city
level the Gradient Boosting prediction model has better prediction performance with mean absolute error (MAE)
of 9 ug/m3 and root mean square error (RMSE) of 10.25–16.76 ug/m3, lower compared with the other three
models, and based on season level four models have the best prediction performances in winter time and the worst
in summer time. And more importantly the demonstration of models' different performances in each city and each
season is of great significance in environmental policy implications.
1. Introduction

Air pollution has adverse impacts on economic development and
human health, therefore, accurate prediction of air pollutant concentra-
tion is important for policy making. Globally many countries encounter
air pollution problems along their development path. So as to improve
citizens' health status and well-being governments worldwide have paid
a lot of efforts in tackling their air pollution issue. Researches on the
accurate prediction of air pollution play a fundamental role and should
get more academic and public attentions. PM2.5 is particulate matter with
an average aerodynamic diameter of up to 2.5 and it is a significant in-
dicator for air quality assessment. Epidemiological and experimental
evidences have proven it to be associated with respiratory and cardio-
vascular mortality and morbidity rates, life expectancy (Burnett et al.,
2014; Xing et al., 2016; Apte et al., 2018; Al-Hemoud et al., 2019; Diao
et al., 2020; Bu et al., 2021; Geng et al., 2021), and the threat to public
health may remain even when its concentration is at low levels (Feng
et al., 2016; Ouyang et al., 2020; Yu et al., 2020).
o this work.
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Traditional statistical models such as partial least squares regression
model (Polat and Gunay, 2015), generalized Markov model (Sun et al.,
2013; Alyousifi et al., 2019), Bayesian method (Riccio et al., 2006; Liu
et al., 2008; Faganeli Pucer et al., 2018), etc., are often used for the
prediction of air pollutant concentration on time series. However,
because these models all have the shortcoming of over-simplified, they
inherently have difficulties in unraveling the nonlinear interaction rela-
tionship between multivariate factors and PM2.5 concentration, so that
the favorable factors for PM2.5 prediction cannot be fully utilized (Ni
et al., 2017). Time series prediction models such as Autoregressive In-
tegrated Moving Average (ARIMA) which are specifically designed for
analyzing time series data have also been used to predict PM2.5 con-
centration (Gocheva-Ilieva et al., 2014; Abhilash et al., 2018; Bhatti et al.,
2021). But due to the high complexity, randomness, non-stationarity and
nonlinearity property of PM2.5 time series data, ideal prediction accuracy
may not be obtained solely by ARIMA model (Niu et al., 2016; Yan and
Ma, 2016). By reviewing existing researches on statistical tools predict-
ing air pollutant, it was found artificial neural network methods (ANN)
ber 2022
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were preferred when predicting PM and the combination of ANN and
statistical models is a hot research trend (Liao et al., 2021).

Benefiting from the rapid development of the artificial intelligence
(AI), huge progress in air pollutant concentration prediction has been
made. Machine learning which is an important branch of AI has a long
history in unraveling the interconnections in a chaotic system. Especially
with the assistance from the fast developing data science, the prediction
performance of the mass data-driven algorithm has been substantially
enhanced (Jordan and Mitchell, 2015; Ma et al., 2020). When solving
nonlinear regression problems, machine learning models are proven to
have good data fitting and learning capacity. Numerous machine
learning models have been widely used to make predictions in various
fields, such as image processing (Glowacz, 2021a, 2021b), medical use
(Kaplan et al., 2021; Khera et al., 2021), text classification (Luo, 2021),
and especially air pollution prediction (Castelli et al., 2020; Choubin
et al., 2020; Harishkumar et al., 2020; Liang et al., 2020; Lv et al., 2021).
Ensemble algorithms have been developed to further enhance the pre-
diction capacity of AI models, such as Gradient boosting (Shahbazi et al.,
2020; Su, 2020) and adaboost model (Liu et al., 2019; Bahad and Saxena,
2020) and bagging model (Khan et al., 2022).

Compared with the chemical transport models (CTM) which forecast
air pollution based on atmospheric chemistry simulations (Di et al., 2016;
Hu et al., 2019; Zhang et al., 2021), machine learning models have
distinct advantages of little computation cost, good learning and fitting
ability etc. However, the black box model structure makes it hard to
explain pollutant formation mechanism and transporting process. We
reckon that considering the environmental meanings at both modeling
stage and results interpretation stage is beneficial and can to some extent
help overcome machine learning models' shortcomings mentioned
above.

In this paper, four typical machine learning models were selected to
predict PM2.5 time series. Data collected contain air quality, meteoro-
logical, time and historical features. Rolling prediction method was
applied when feeding the data into models, and optimal step length was
determined by experimenting. Four commonly used indicators i.e., mean
absolute error (MAE), root mean square error (RMSE), index of agree-
ment (IA) and correlation coefficient (R) were used to evaluate the
Figure 1. The diagram of th
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predictive performance. The comparative experiments show that the
Gradient Boosting prediction model had better prediction performance
with lower mean absolute error and root mean square error compared
with the models such as the Lasso regression, K-Nearest Neighbor and
SVR. Moreover, it has better generalization ability, which can predict the
PM2.5 concentration more accurately. And more importantly the
demonstration of models' different performances on each city and each
season is of great significance in environmental policy implication.

The rest of this paper is organized as follows and the structure of our
research is presented in Figure 1: Linear SVR, K-Nearest Neighbor, Lasso
regression, Gradient boosting are introduced in Section 2. In Section 3,
prediction results of four models are evaluated. Section 4 draws the final
conclusion.

2. Data and model implementation

2.1. Data description

The Jing-Jin-Ji Metropolitan Region also known as Beijing-Tianjin-
Hebei, located in northeast of China (Figure 2) is China’s capital eco-
nomic circle. PM2.5 pollution has become a thorny problem of environ-
mental control in Jing-Jin-Ji region. Research on PM2.5 pollution is of
great significance for the prevention and control of urban pollution in the
“capital economic circle”. In 2017 China’s ministry of ecology and
environment issued a working plan aiming at reducing the air pollution
in Jin-Jin-Ji region. The concept of atmospheric pollution transmission
channel cities surrounding Jin-Jin-Ji region which are referred to “2 þ
26” cities was first time officially brought up. Since then, stronger
environmental policies and stricter inspections have been adopted in this
region, therefore it is an ideal experimental place to test how air pollution
would be affected under those two factors of economic development
pressure and strong environmental protection policies happening
simultaneously.

This study was conducted based on the data collected from the
followingmonitoring sites, Beijing, Tianjin, Baoding, Cangzhou, Handan,
Hengshui, Langfang, Shijiazhuang, Tangshan, Xingtai, which are the
overlapping cities of Jing-Jin-Ji city group and “2 þ 26” atmospheric
e research’s processes.



Figure 2. Geographic location of Beijing-Tianjin-Hebei in China.

Table 1. Feature selection of dataset.

Indicator type Indicators

Air quality features PM10, SO2, NO2, CO, O3, AQI_L5, PM10_L5, SO2_L5, NO2_L5,
CO_L5, O3_L5, AQI ranking_L5

Meteorological
features

Lowest temperature, highest temperature, wind speed, Lowest
temperature_L5, highest temperature_L5, wind speed_L5

Time features month, year, season, year_L5, month_L5, season_L5

Historical features PM2.5_L1, PM2.5_L2, PM2.5_L3, PM2.5_L4, PM2.5_L5

L1 is data of one day before, L5 is data of five days before.
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pollution transmission channel cities (Figure 3). Air quality data were
drawn from the China National Environmental Monitoring Centre
(CNEMC). Meteorological data were drawn from China Weather (CW).
We collected historical 2206 days daily data of the monitoring cites from
those ten cities to train models.

Three types of features chosen to train our models are listed in
Table 1. We used 1874 days' monitoring data drawn from each city cite as
training and validation dataset, and 332 days data as testing dataset.

The data used as training and validation dataset were from 2013 Oct
28th to 2018 Dec 31st, and the testing dataset were formed data from
2019 Jan 1st to 2019 Dec 31st. In order to manifest the data distribution
and variation more directly, the various statistical indicators of air
quality and meteorological quality are calculated as shown in Table 2. In
the selected time period, the PM2.5 concentration has a minimum of 0, a
maximum of 796 and a variance of 4374.42, and it also has the charac-
teristics of high non-stationary, non-linearity.

Kernel density estimation is used to estimate an unknown density
function in probability theory as one of the non-parametric test methods.
To further analyze the frequency distribution of the selected variables,
the kernel density estimation was applied to determine their density
distribution. This method can visually demonstrate the distribution
characteristics of the data through the violin graph without making any
assumptions nor having any prior knowledge regarding the data
Figure 3. Sample cities selection criteria.
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distribution. According to the distribution pattern of each variable
(Figure 4), the PM2.5 concentration is right skewed and the maximum
value exists in the upper quartile. Moreover, the distribution trend of
AQI, PM10, SO2, NO2, and O3 is basically consistent with PM2.5, while the
changing trend of CO, lowest temperature, highest temperature, wind
speed is quite different from PM2.5 concentration.

The geographical distribution of training and testing samples and
their distribution in the four seasons of each city site is shown in Figures 5
and 6 respectively. It shows that the number of samples drawn in each
season is relatively uniform. Therefore, the training results in the Jing-
Jin-Ji region are representative for spatial and temporal features. The
testing datasets can be grouped in two approaches, the first approach is to
divide by cities, the second is to divide by seasons. Then the well-trained
models were used to predict the PM2.5 concentration by being fed with
city-based, and season-based testing dataset respectively. Furthermore,
empirical analysis was made according to the prediction results.

Rolling forecast method in this study was applied when training the
model to enhance the generalization capacity and accuracy. The model
was fed with previous five days' monitoring data in a rolling manner to
predict PM2.5 concentration of the next day. Considering that machine
learning model is more applicable for larger dataset, meanwhile due to
the periodicity, volatility and integrity nature of the time series data, we



Table 2. Statistical summary of the collected data (2013–2019).

Unit Mean Variance Minimum 25% quantile Median 75% quantile Maximum

AQI ____ 116.41 5156.15 16 69 96 138 500

PM2.5 ug/m3 78.66 4374.42 0 36 59 98 796

PM10 ug/m3 134.76 8786.33 0 72 110 168 937

SO2 ug/m3 32.60 1220.53 0 11 21 40 437

NO2 ug/m3 48.32 559.85 0 31 44 61 235

CO mg/m3 1.40 1.11 0 0.75 1.09 1.7 18.92

O3 ug/m3 57.98 1491.04 0 26 51 83 234

Lowest temperature �C 8.72 117.92 -20 -2 9 19 29

Highest temperature �C 19.05 123.20 -12 9 20 29 40

Wind speed Force (Beaufort scale) 2.41 1.00 0 2 3 3 8
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applied the rolling prediction method to enlarge our training dataset. As
a result, we got a training dataset of which the input data is a matrix of
18,735 � 29 and the output vector is the PM2.5 concentration. The
training dataset occupies 82.3% of the total sample data volume, there-
fore it matches the machine learning data slicing rule. K-fold cross vali-
dation (K ¼ 5) was adopted to train.

The data matrix of 332� 30 forms the rest 17.7% testing data’s input
and output data. Statistical summary results show that the data are
sampled evenly from each city site, and season as well.
2.2. Development of predictive models

2.2.1. Linear SVR
Support vector machine (SVM) is a classification algorithm proposed

by Vapnik of which the learning strategy is to maximize the interval
(Cortes and Vapnik, 1995). Samples are made linearly separable by
mapping the samples to a higher-dimensional feature space, and nuclear
functions are also introduced to implement nonlinear mapping. Support
vector regression (SVR) is developed on the basis of optimization SVM.
Compared with neural network, SVR based on deep learning mechanism
overcomes the problems of overfitting, underfitting and local optimiza-
tion using mathematical methods and optimization techniques. As
described in Eqs. (1) and (2), this model was performed as follows:
Figure 4. Violin plot of the distr
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For dataset D:

D¼fðxi; yiÞ; i¼ 1; 2;⋯;mg xi 2RN ; yi 2 RN (1)

Separating hyperplane model can be constructed in higher-
dimensional space:

f ðxÞ¼wTφðxÞ þ ϑ (2)

f(x)denotes forecast value, φ(x) is nonlinear mapping function, w is
weight coefficient, ϑ is intercept, ε is maximum margin. Only when the
training samples fell within the maximum margin could the prediction
results be considered correct. Therefore, by introducing the relaxation

variables ξi, bξi and the penalty function E, the optimized objective
function can be obtained (Eq. (3)):

Min
w;ϑ;ξi ;bξ i

1
2
jjwjj2 þ E

Xm
i¼1

ðξi þbξ iÞ (3)

s:t

8<:
f ðxiÞ � yi � εþ ξi
yi � f ðxiÞ � εþ bξ i

ξi � 0; bξ i � 0; i ¼ 1;2;⋯;m

The “dual problem” of support vector regression is obtained by using
ibution of the feature value.



Figure 5. Geographical distribution of the training dataset (a) and the testing dataset (b) (2013–2019).
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the Lagrange multiplier method. The optimal Lagrange multiplier can be
solved by the sequence minimum optimization (Sequential minimal
optimization, SMO) algorithm, and the final solution is obtained under
the KKT (Karush-Kuhn-Tucker (KKT)) condition (Eq. (4)):

f ðxÞ¼
Xm
i¼1

ðbλ i � λiÞK
�
xT
i xi

�þ ϑ (4)

λi, bλi are Lagrange multiplier, KðxTi xiÞ is kernel function which is linear
type.
5

2.2.2. K-Nearest Neighbor (KNN)
The k-nearest neighbors algorithm (k-NN) was expanded by Altman

(1992) after it was first developed in 1951. This supervised ML algorithm
can be used both in classification and regression problems. The following
is pseudo-code based on which we implemented KNN model.

2.2.3. Lasso regression
Lasso regression is the Lasso (Least absolute shrinkage and selection

operator) method first proposed by Tibshirani (1996). It is a biased
estimation method that can be used for feature selection in
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high-dimensional data. The Lasso method is designed for dealing with
data with complex collinearity by constructing a penalty function
allowing some coefficient to be minimized to the value 0, thus preserving
the characteristics of subset shrinkage. When predicting PM2.5, objective
function f ðλÞ is constructed as follow (Eq. (5)):

f ðλÞ¼ jjy�
�X

λixi þ λ0
�
jj2 þ αjjλjj (5)

Here, y stands for observed PM2.5, xi is the value of the feature i in the
feature vector of the independent variable. ðP λixi þλ0Þ is the PM2.5
concentration predicted by a linear combination of 31 features, and λi, λ0
can be obtained by minimizing f ðλÞ.

2.2.4. Gradient Boosting
Gradient boosting model is a typical ensemble algorithm which cre-

ates model with stronger prediction ability by combining several weak
classifiers (Bent�ejac et al., 2021). The following is pseudo-code based on
which we implemented Gradient boosting model.
2.3. Evaluation metrics

Evaluation metrics for machine learning models are often used to
quantify the performance of predictive model by comparing the predic-
tion values and actual observed values. Four commonly used indicators
i.e., mean absolute error (MAE), root mean square error (RMSE), index of
agreement (IA) and Pearson’s correlation coefficient (described in Eqs.
Figure 6. Geographical distribution of training dataset (a)
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(6), (7), (8), and (9)) were adopted to measure the prediction accuracy
here:

MAEðy; byÞ¼ 1
m

Xn

i¼1

jyi � byij (6)

RMSEðy; byÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
i¼1

ðyi � byiÞ2
s

(7)

IA¼1�
PN

i¼1ðbyi � yiÞ2PN
i¼1ðjbyi � yj þ jyi � yjÞ2 (8)

R2ðy; byÞ¼ 1� SSE
SST

¼1�
Pm

i¼1ðyi � byiÞ2Pm
i¼1ðyi � yÞ2 (9)

where yi is the prediction of the PM2.5 for time i, while byi represents the
actual value for time I, and y is the observed mean.
3. Experimental results and discussion

3.1. Prediction comparison based on city level

Abovementioned four evaluation indicators were used here to
compare the prediction results of 10 surveyed cities' daily PM2.5 con-
centration generated by model Lasso, Gradient Boosting, LinearSVR,
and testing dataset (b) for each season (2013–2019).



Figure 7. Prediction performance evaluation for four models based on city level.

Table 3. Distribution of the prediction errors of each city.

City Lasso prediction error Gradient Boosting prediction error LinearSVR prediction error KNeighbors prediction error

90% 75% 90% 75% 90% 75% 90% 75%

Beijing -26–99 -22–13 -19–27 -14–8 -55–61 -52~ -20 -24–81 -18–15

Tianjin -26–100 -18–16 -21–36 -16–10 -54–70 -45~ -13 -28–67 -20–14

Baoding -20–89 -15–15 -13–32 -11–9 -52–47 -48~ -21 -20–60 -14–15

Cangzhou -17–118 -13–14 -15–32 -10–9 -48–78 -45~ -19 -18–100 -14–16

Handan -17–77 -13–22 -13–50 -8–17 -46–42 -41~ -8 -18–94 -13–23

Hengshui -23–52 -17–14 -16–33 -13–7 -52–12 -48~ -19 -24–61 -17–14

Langfang -13–97 -11–15 -9–40 -7–14 -46–63 -43~ -17 -14–72 -11–15

Shijiazhuang -15–77 -12–22 -10–44 -7–13 -44–47 -39~ -9 -17–90 -13–20

Tangshan -11–119 -9–21 -8–74 -6–17 -45–87 -43~ -11 -13–64 -9–20

Xingtai -18–81 -13–24 -15–46 -10–14 -45–47 -41~ -9 -21–103 -14–20

X. Ma et al. Heliyon 8 (2022) e10691

7



Figure 8. Probability distribution of PM2.5 prediction errors for each city.
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KNeighbors (Figure 7). The geographical distribution of evaluation re-
sults based on city lever is illustrated in Figure 7. Gradient Boosting
model has the best MAE result which is highly concentrated around 9 ug/
m3, followed by Lasso and KNeighbors model of which the prediction
MAE are both around 12 ug/m3, in contrast, LinearSVR model prediction
MAE values fall into the range of 27.09–38.26 ug/m3. From the
perspective of RMSE, Gradient Boosting is still the best model compared
to the rest three, and the RMSE of its predictions and observations is
between 10.25 and 16.76 ug/m3. Lasso and KNeighbors' RMSE are
14.00–20.47 ug/m3 and 14.67–21.85 ug/m3 respectively, LinearSVR is
ranking the fourth with a poor result of 29.97–41.85 ug/m3. Gradient
Boosting model’s prediction IA ranges from 0.92 to 0.99, better than
Lasso, KNeighbors and LinearSVR. The performances of the four models
in the fourth indicator R2 are basically similar to their performances in
IA. Among the 10 sample cities, apart from Gradient Boosting, all other
three models generally cannot achieve ideal prediction results for Beijing
and Tianjin like other cities. So on city level, our results show that daily
PM2.5 concentration prediction generated by Gradient Boosting model
8

outperformed the Lasso and KNeighbors model, and LinearSVR has the
poorest capacity.

Prediction error’s distribution for each city is summarized in Table 3,
and illustrated in Figure 8. More specifically, LinearSVR predictions tend
to have negative errors, and Lasso and KNeighbors prediction errors have
larger range. Gradient Boosting outperformed the other models, because
most of its prediction errors are concentrated evenly around 0 ug/m3.
3.2. Prediction comparison based on seasons

Scatter plot of the PM2.5 predictions and the observations grouped by
seasons is shown in Figure 9. Combined with the IA index and MAE of
different seasons in Table 4, the overall performance of Lasso, Gradient
Boosting, LinearSVR and KNeighbors models on the quarterly PM2.5
concentration prediction in the Jing-Jin-Ji region shows that the four
models have the best prediction results in winter time, and the worst in
summer time. This is likely because in Jing-Jin-Ji region the particulate
pollutant is the most serious in winter time, average PM2.5 concentration



Figure 9. Scattering plot of predictions and observations for each season.

Table 4. Evaluation on the prediction results of four models for each season.

Lasso Gradient Boosting LinearSVR KNeighbors

Spring MAE 12.82 8.34 33.02 13.04

RMSE 18.62 11.92 35.98 18.77

IA 0.90 0.95 0.72 0.87

R2 0.60 0.84 -0.49 0.59

Summer MAE 9.02 5.47 33.04 7.98

RMSE 11.80 7.31 34.55 10.20

IA 0.84 0.93 0.51 0.84

R2 0.40 0.77 -4.18 0.55

Autumn MAE 12.92 8.86 29.58 12.23

RMSE 17.53 12.33 32.78 17.13

IA 0.91 0.96 0.76 0.91

R2 0.64 0.82 -0.25 0.66

Winter MAE 14.09 11.27 33.74 16.48

RMSE 19.79 16.61 38.01 23.64

IA 0.97 0.98 0.91 0.96

R2 0.90 0.93 0.65 0.86

Table 5. Model construction time and occupied memory size.

Model Model construction (S) Occupied memory size (KB)

Lasso 1.02 8.78

Gradient Boosting 2.68 378

LinearSVR 8.07 3.81

KNeighbors 5.04 6010.88

X. Ma et al. Heliyon 8 (2022) e10691
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is much higher than the other three seasons, in contrast, particulate
pollutant in summer has minor effects and ozone pollution is the primary
pollution issue.

The distinct performance of different models has practical implica-
tions in the selection of models targeting different seasons, thus affecting
policy making process. Gradient Boosting has the best results in IA and
MAE. Lasson and KNeighbours have the similar results in IA and MAE for
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summer and winter time, in spring, Lasso slightly outperformed
KNeighbors. Comparatively they are superior than LinearSVR overall.
3.3. Overall evaluation

As Table 5 shows, LinearSVR model had the longest construction
time, followed by KNeighbors, and Lasso had the shortest model con-
struction time of 1.02 s. In terms of memory occupancy, KNeighbors
occupies the largest memory, the model size is 6010.88 KB, followed by
Gradient, Boosting model, the memory occupancy size is 378 KB, the
smallest model is LinearSVR, and the memory size is only 3.81 KB.

Researches show that SVM is difficult to implement for large-scale
training samples and is sensitive to missing data, and when the sample
of the K Nearest Neighbor model is not balanced, the prediction bias is
relatively large, and it will likely lead to a curse of dimensionality. Lasso
regression is a generalized linear model, it has limitations in handling
samples with nonlinearity, randomness, and uncertainty features. The
advantage of applying Gradient Boosting model in PM2.5 concentration
prediction and influencing factor analysis is obvious: on one hand, it can
improve the feature selection process, on the other hand, it can reduce
the complexity of model construction and the risk of model overfitting.
3.4. Discussion

Industrial structure and regional environment management policies
play a crucial role in determining air pollution concentration during
certain period (Zheng et al., 2020), thus inevitably creating obstacles for
machine learning models to gain ideal prediction performance. For
instance, among the 10 cities, Tangshan and Handan’s development are
largely depending on heavy industries such as steel, coke and cement.
Market fluctuation or production regulations due to environmental pro-
tection purpose both can lead to air pollution’s sudden change in the
short term, which will become noise for the model training. In contrast,
densely populated cities like Beijing and Tianjin, their pollution emis-
sions are mainly attributed to household and transportation sectors. And
also compared to other cities, Beijing, Tianjin and Shijiazhuang are fac-
ing more stringent industry development policies. The uncertainties
mainly lie in the hourly data, comparatively, good prediction accuracy
can be attained for daily, seasonal and annual data with less efforts.

During winter time, despite the stringent ban on scattered coal con-
sumption in rural area, coal burning is still the main approach for heating
in most northern cities in China, which puts heavy pressure on regional
air quality. Further, though sampled cities are all located in the same
climate zone, their locations in the pollution transmission channel are
very decisive in pollutants formation process. Additive effects and spill-
over effects of various air pollution are making the differences of seasonal
PM2.5 concentrations among cities more significant. All factors combined
are making the system more complex.

Our research was conducted with the aim of comparing the models'
prediction capacity for complex experimenting conditions with multi-
sourced influencing factors, therefore ideally it is expected to make
contributions in the following ways: (1) raise the awareness for policy
makers of the discrepancy of machine learning models, and consider the
regional and seasonal differences when selecting models; (2) selected
features for training models ending up with good prediction accuracy can
help enlighten the similar work.

4. Conclusion

In this paper, to get models with good PM2.5 prediction accuracy, we
collected daily monitoring data from 10 atmospheric pollution trans-
mission channel cities located in Jing-Jin-Ji area, the data mainly
incorporate air quality features, meteorological features, time features
and historical features. Based on the multi-sourced data, four machine
learning models, LinearSVR, KNeighbors, Lasso, Gradient Boosting, were
10
used to make predictions of PM2.5 concentration on city level and season
level.

First, the city level results show that the prediction performance of
Gradient Boosting model was significantly better than Lasso and
KNeighbors model, and LinearSVR model’s performance was compara-
tively dissatisfying. Two cities (Beijing, Tianjin) had a slightly lower IA
value, while the remaining eight cities had a relatively significant IA
value, which is consistent with the results of the root mean square error.
LinearSVR predictions tend to have negative errors, and Lasso and
KNeighbors prediction errors have larger range. Gradient Boosting out-
performed the other models, because most of its prediction errors are
concentrated evenly around 0 ug/m3.

Second, the results of seasonal prediction show that the four models
had the best prediction performances in winter time and the worst in
summer time. This is likely because particulate pollution in the Beijing-
Tianjin-Hebei region is generally more serious in winter time, with
PM2.5 concentration much higher than in other three seasons. In contrast,
in summer the particulate pollution level is low while ozone pollution is
the primary pollutant.

Lastly, in the model overall evaluation, the Gradient Boosting model
had comparatively ideal performance in terms of training time and
occupied memory size compared to the other three.

Social and economic and urban development factors have also been
proven to affect the PM2.5 concentration. For future work, it is mean-
ingful to add these features into the modeling process, thus models
untangling interconnections between multi-disciplinary features and air
quality can be built, based on which richer environmental implications
will be attained. In addition, as the time series dataset is enlarged after
gathering more recent data, effects of environmental protection policies
issued by central government in recent years, e.g. Three-year Action Plan
to Fight Air Pollution (2018) and Further Prevention and Control of Pollution
(2021) on air pollution control can be simulated and evaluated.
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