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Abstract

Background: The clinical impact of hypoxia in solid tumours is indisputable and yet questions about the sensitivity
of hypoxia-PET imaging have impeded its uptake into routine clinical practice. Notably, the binding rate of
hypoxia-sensitive PET tracers is slow, comparable to the rate of diffusive equilibration in some tissue types, including
mucinous and necrotic tissue. This means that tracer uptake on the scale of a PET imaging voxel—large enough to
include such tissue and hypoxic cells—can be as much determined by tissue transport properties as it is by hypoxia.
Dynamic PET imaging of 20 patients with pancreatic ductal adenocarcinoma was used to assess the impact of
transport on surrogate metrics of hypoxia: the tumour-to-blood ratio [TBR(t)] at time t post-tracer injection and the
trapping rate k3 inferred from a two-tissue compartment model. Transport quantities obtained from this model
included the vascular influx and efflux rate coefficients, k1 and k2, and the distribution volume vd ≡ k1/ (k2 + k3).

Results: Correlations between voxel- and whole tumour-scale k3 and TBR values were weak to modest: the
population average of the Pearson correlation coefficients (r) between voxel-scale k3 and TBR (1 h) [TBR(2 h)] values
was 0.10 [0.01] in the 20 patients, while the correlation between tumour-scale k3 and TBR(2 h) values was 0.58. Using
Patlak’s formula to correct uptake for the distribution volume, correlations became strong (r = 0.80[ 0.52] and
r = 0.93, respectively). The distribution volume was substantially below unity for a large fraction of tumours studied,
with vd ranging from 0.68 to 1 (population average, 0.85). Surprisingly, k3 values were strongly correlated with vd in all
patients. A model was proposed to explain this in which k3 is a combination of the hypoxia-sensitive tracer binding
rate kb and the rate keq of equilibration in slow-equilibrating regions occupying a volume fraction 1 − vd of the
imaged tissue. This model was used to calculate the proposed hypoxia surrogate marker kb.

Conclusions: Hypoxia-sensitive PET tracers are slow to reach diffusive equilibrium in a substantial fraction of
pancreatic tumours, confounding quantification of hypoxia using both static (TBR) and dynamic (k3) PET imaging. TBR
is reduced by distribution volume effects and k3 is enhanced by slow equilibration. We proposed a novel model to
quantify tissue transport properties and hypoxia-sensitive tracer binding in order to improve the sensitivity of
hypoxia-PET imaging.
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Background
Positron emission tomography imaging of hypoxia is
a promising way to detect hypoxia non-invasively
in solid tumours [1, 2]. A major challenge to this
approach is that the binding rate of hypoxia-sensitive
PET tracers such as fluoromisonidazole (FMISO) and
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fluoroazomycinarabinoside (FAZA) is slow as compared
to, e.g., flurodeoxyglucose (FDG), and can be comparable
to diffusive equilibration rates in tumour tissues.
As an example, a typical threshold used to decide

whether or not a PET voxel hypoxic is that the voxel-scale
tracer concentration exceeds that in blood by 20% after 2
h; i.e.,TBR (2 h) >1.2 [3–5]. This means that the binding
rate of tracer in hypoxic tissue is

kb � 0.2
2h

= 0.1 h−1. (1)
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In comparison, the rate at which tracer diffuses across a
distance l through the extravascular space of tissue scales
as

keq ∼ D/l2, (2)

where D is the diffusivity of the tracer. For FAZA and sim-
ilarly sized molecules (on the order of several hundred
Daltons), D ∼ 10 μm2/s in most tissue [6, 7]. Hence, tak-
ing l ∼ 100 μm to be the distance between capillaries,
the equilibration rate keq ∼ 20 h−1 for tracer is typically
much faster than the binding rate, and comparable to the
rate of extravasation, k1.
On the other hand, for tissue with substantial mucous

deposits (common in carcinomas [8] such as pancre-
atic ductal adenocarcinoma [9]), where diffusivity can be
slowed by two or more orders of magnitude [10, 11], the
rate of equilibration slows drastically, becoming compara-
ble to the binding rate. This can also happen in tissue with
necrotic regions (l � 500 μm) interspersed with hypoxic
cells.
Slow diffusive equilibration has two important conse-

quences for quantifying tumour hypoxia based on tracer
uptake. First, if an imaging voxel contains both hypoxic
cells and either mucous or small necroses, the voxel-scale
TBR value will be reduced by the fact that tracer does not
reach diffusive equilibrium at the standard imaging time,
between 2 and 3 h post-injection. Hence, the sensitivity
of static PET imaging to hypoxia is diminished. Second,
as tracer slowly equilibrates in mucinous and necrotic tis-
sue, its concentration increases at a rate comparable to
that due to hypoxia-induced binding and a compartment
model [12–15] may not be able to distinguish the two pro-
cesses. In this case, we hypothesize that the trapping rate
k3 represents a sum of the binding rate kb and the rate of
equilibration. Quantifying hypoxia based on k3 will thus
overestimate its extent since k3 ≥ kb.
In this paper, we seek to test these hypotheses by mod-

eling the pharmamcokinetics of FAZA in 20 patients
with pancreatic ductal adenocarcinoma (PDAC), apply-
ing basic principles of diffusive equilibration to interpret
transport data calculated from a standard two-tissue com-
partment model.

Methods
Patient population and PET/CT scans
Data was taken from 20 patients with biopsy-confirmed
pancreatic ductal adenocarcinoma and FAZA-PET scans.
Dynamic PET imaging scans were acquired over 1 h fol-
lowing injection of FAZA. The 1-h time-activity curves
(TAC1) were each binned into 34 frames: 12 10-s frames,
followed by 8 32-s frames, followed by 7 2-min frames,
followed by 7 5-min frames. Patients returned for a
static PET scan at 2 h. CT scans used for co-registration
were taken at the beginning of the dynamic and static

PET scans. Further details of this patient cohort and the
PET/CT scans have been described previously [16].

Region of interest contours
PET activity data was obtained for regions of interest
(ROIs) contoured using co-registered CT images. Tumour
ROIs were contoured by a radiologist using the CT scan
at 2 h. This was co-registered manually to the initial
CT scan and the two CT ROI sets were co-registered to
the dynamic and static PET scans. In order to minimize
effects resulting from high liver uptake of FAZA, aorta
ROIs were contoured from the same range of PET/CT
slices (along the cranial-caudal axis) as the tumour ROIs.
At the level of the pancreas, the aorta is between 1.5 and
2 cm in diameter; tominimize partial volume effects, ROIs
in the aorta were restricted to 0.75 cm in diameter and
combined so that at least 25 PET voxels (3.9×3.9×3.3
mm3 each) were imaged.

Compartment model analysis
Dynamic PET TACs of FAZA were analyzed using the
two-tissue compartment model [12–15, 17–19]:

dCd(t)
dt

= k1CIn(t) − [k2 + k3]Cd(t) (3)

and
dCb(t)
dt

= k3Cd(t). (4)

Here, the concentration of tracer in the extravascular
space of an imaged region has been partitioned into an
unbound, diffusing component Cd as well as a component
Cb that is bound by hypoxia. CIn is the “input” function,
which we took to be the imaged tracer concentration in
the aorta, as described above. As noted earlier, k1 and k2
are the vascular influx and efflux coefficients and k3 is the
tracer trapping rate. The total tracer concentration in an
imaged region is

C(t) = vbCIn(t) + (1 − vb) [Cd(t) + Cb(t)] , (5)

where vb is the volume fraction occupied by blood in the
region of interest.
The above model was fitted to both the 1-h TACs

(TAC1) as well as the combined 2-h TACs (TAC2) com-
prising the 1-h TACs plus static scans at 2 h (in part to
asses co-registration errors, which should be greater for
TAC2). Coefficients (vb, k1, k2, and k3) were determined
by minimizing

χ2 =
N∑

i
wi [Cmodel(ti) − Cdata(ti)]2 , (6)

where Cmodel(ti) are the model activity values [Eqs. (3)–
(5)] and Cdata(ti) are the measured values acquired during
the N discrete time frames; N = 34 for TAC1 and N = 35
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for TAC2. To avoid over-weighting short-duration early
time frames, we used the weighting function wi = δti in
Eq. 6, where δti was the duration of the ith time frame
(because the t = 2 h time-point in TAC2 did not rep-
resent a true 1-h time bin beyond the TAC1 data set, we
used δt35 = δt34 = 5 min). Equation 6 was minimized
in Wolfram Mathematica 11.1 using its built-in numer-
ical minimization routine (NMinimize) with Cmodel(ti)
calculated using trapezoidal integration.
An important tissue transport quantity is the distribu-

tion volume:

vd ≡ k1
k2 + k3

. (7)

It represents the volume fraction of an imaged ROI
in which tracer initially fills; i.e., rapidly equilibrates in.
Patlak’s formula [20, 21],

TBR(t) = vb+(1−vb)vd+Ki(1−vb)
∫ t
0 dτ CIn(τ )

CIn(t)
, (8)

for the tumour-to-blood ratio at time t was used to
“correct” TBR for distribution volume effects:

TBRcorrected(t) ≡ TBR(t) − vb(1 − vd)
vd

= 1 + k3(1 − vb)
∫ t
0 dτ CIn(τ )

CIn(t)
.

(9)

In Eq. (8), Ki ≡ k3vd is sometimes referred to as the
“net trapping rate”. TBRcorrected represents the theoreti-
cal tumour-to-blood ratio that would have arisen had the
distribution volume been unity.
Correlations were analyzed between k3, vd, TBR, and

TBRcorrected, where TBR was calculated as

TBR(t) ≡ Cdata(t)
CIn(t)

(10)

at both t = 1 and 2 h. Pearson correlation coefficients
were calculated to quantify correlations between voxel-
and tumour-scale values of these quantities. Voxel-scale
coefficients were calculated by fitting the above model
to the individual TACs for each voxel, while tumour-
scale values were obtained using the average TAC in each
tumour. Correlations were reported as the population
average (over twenty tumours) of the intra-tumour voxel-
scale r values (“voxel-scale”) and as correlations between
tumour-scale values (“tumour-scale”).

Results
Correlations between TBR and k3
Comparing voxel-scale k3 and TBR values in each tumour,
weak correlations were found at 1 h (average of voxel-scale

r values= 0.10) and at 2 h (r value= 0.01). Patient-specific
results are shown in Online Resource 1 (Additional file 1).
Strong correlations were found between voxel-scale k3
and TBRcorrected at 1 h (population average r value =
0.80) and moderate correlations were found at 2 h (r
value = 0.53). Although standard imaging protocols call
for measurement of TBR at least 2 h after tracer injec-
tion, transport coefficient (vb, k1, k2, k3) values obtained
using the 1- and 2-h data sets were equivalent to within fit
errors to the compartment model. The reduction in corre-
lations is thus a metric for co-registration errors between
the 1- and 2-h data sets, as well as the diminished valid-
ity of Eq. (8), which is only a good approximation at times
less than the equilibration time 1/keq [21]. Representative
voxel-scale correlations are shown in Figs. 1a–d for one
patient. Table 1 displays population averages of voxel-scale
correlations using the 2-h data sets as well as the mean
values of the corresponding quantities.

a b

c d

e f

Fig. 1 Correlations between tumour-to-blood uptake ratios and the
trapping rate are enhanced when uptake is corrected for the
distribution volume. Left side: tumour-to-blood uptake ratio of FAZA
versus trapping rate; right: tumour-to-blood uptake ratio corrected for
the distribution volume versus trapping rate. a and b voxel-scale
values for a representative patient tumour (pt. 2) using TAC1. c and
d same as a and b but with TAC2. e and f Tumour-scale values using
TAC2 for all 20 tumours. Pearson correlation coefficients are shown
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Table 1 Top: Correlation matrix of Pearson correlation
coefficients between the mean voxel-scale parameters across the
twenty tumours studied using the 2-h data sets. Bottom:
Population average values of the corresponding voxel-scale
coefficients. Standard deviations of mean values across patients
are indicated in parentheses

k3[ h−1] vd TBR TBRcorrected

k3 − −0.59 0.01 0.52

vd −0.59 − 0.35 −0.58

TBR 0.01 0.35 − 0.50

TBRcorrected 0.52 −0.58 0.50 −

k3 [h−1] vd TBR TBRcorrected

0.30 (0.20) 0.85 (0.10) 1.06 (0.13) 1.25 (0.20)

Whole-tumour kinetics are less sensitive to co-
registration errors and tumour-scale trapping rate exhib-
ited modest correlations with TBR (across twenty
patients, mean r = 0.58) but strong correlations with
TBRcorrected (mean r = 0.93); see Fig. 1e, f and Table 2.
Mean tumour-scale values of k3, vd, TBR, and TBRcorrected
were identical to the values shown in Table 1 to within a
few percent.

Relationship between vd and k3
In all patients, voxel-scale k3 values were found to depend
strongly on vd (population average of voxel-scale r-values
= -0.59; see Table 1), with k3 increasing as vd decreases.
Figures 2a and d show two representative examples. Para-
metric maps of a transverse slice in each of these patients
are shown in Fig. 3. Tumour-scale correlations between vd
and k3 are reduced (r = −0.34) but still substantial; see
Table 2.
To account for the unexpected correlations between

k3 and vd, we propose a model (shown schematically in
Fig. 4) in which an imaged voxel is comprised of two tissue
types: one in which tracer reaches diffusive equilibration
rapidly (with concentration C(r)), and one in which it
reaches equilibrium slowly (with concentration C(s)):

Cd(t) = vsC(s)
d + (1 − vs)C(r)

d (t). (11)

Here, vs represents the voxel volume fraction in which
tracer is slow to equilibrate. As noted in the Introduction,

Table 2 Correlation matrix of Pearson correlation coefficients
between the tumour-scale parameters across the twenty
tumours studied using the 2-h data sets

k3 vd TBR TBRcorrected

k3 − −0.34 0.58 0.93

vd −0.34 − 0.30 −0.26

TBR 0.58 −0.26 − 0.66

TBRcorrected 0.93 −0.26 0.66 −

tracer will equilibrate slowly in mucinous and necrotic
tissue owing to the slow diffusivity and long diffusive
distances, respectively.
Having defined the above sub-compartments, the

distributed-parameter compartment model [22]
that describes the effects of having regions of
slow-equilibration is

dC(r)
d (t)
dt

= k1
1 − vs

[
CIn(t) − C(r)

d (t)
]

−
(
kb + keqvs

1 − vs

)
C(r)
d (t) + keqvs

1 − vs
C(s)
d (t),

(12)

dC(s)
d (t)
dt

= keq
[
C(r)
d (t) − C(s)

d (t)
]
, (13)

and
dCb(t)
dt

= kbC(r)
d (t). (14)

The factors of 1 − vs and vs here ensure detailed bal-
ance amongst the compartments. kb is the binding rate
due to hypoxia and keq represents the equilibration rate
in the regions of slow-equilibration. Recall from the Intro-
duction that we expect it to be on the order of (0.1 → 1)
h−1 when equilibration is driven by diffusion; see Eq. (2).
In writing Eq. (14), it has been assumed that tracer does
not bind inside regions of slow-equilibration since, e.g.,
necrotic cells and extracellular mucous deposits do not
bind hypoxia-PET nitroimidazole tracers [12].
At times k−1

1 � t � k−1
eq , after diffusive equili-

bration is achieved in the rapidly equilibrating regions[
C(r)
d (t) � CIn(t)

]
but not yet in the slow-equilibrating

regions, the tissue-to-blood ratio is readily obtained by
integrating Eqs. (12)–(14):

TBR(t) � vb + (1 − vb)(1 − vs)

+
(
kb + keqvs

1 − vs

)
(1 − vb)(1 − vs)

∫ t
0 dτ C(r)

d (τ )

CIn(t)
.

(15)

In arriving at this result, we have neglected back-flux
from the slow-diffusion region, dropping the contribu-
tion arising from C(s)

d in Eq. (13). This is valid as long as
t � k−1

eq .
Since C(r)

d (t) → CIn(t) for t � k−1
1 , Eq. (15) is identical

to the Patlak result Eq. (8), with

vs = 1 − vd. (16)

and

k3 = kb + keq (1 − vd)
vd

≡ kb + Keq(vd), (17)
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a b c

d e f

Fig. 2 Dependence of the trapping rate on tracer equilibration and binding. a and d show voxel-scale trapping rate values versus voxel-scale TBR
values for patients 1 and 2, respectively. b and e show the corresponding equilibration rates, calculated from Eq. (19); the solid lines indicate fits to
Eq. (18), yielding keq = 0.45 h−1 for pt. 1 and keq = 0.52 h−1 for pt. 2. (c) and (f): The voxel-scale binding rates kb calculated from Eq. (17) using the
Keq values shown in b and e

where we have defined

Keq(vd) ≡ keq(1 − vd)/vd. (18)

Equations (16) and (17) are our main theoretical results.
They show that the distribution volume vd defined in
Eq. (7) is the volume fraction of tissue in which tracer
rapidly equilibrates and that the standard two-tissue com-
partment model trapping rate in general represents the
sum of the rate of binding due to hypoxia and the equili-
bration rate. In turn, this means that it is not possible to
distinguish binding from equilibration from just the shape
of the time-activity curves.
To distinguish kb and Keq in k3, voxel-scale k3 values

were arranged into bins based on distribution volume val-
ues. Because there will always be a cohort of normoxic
voxels in a tumour for which kb = 0 (unless the hypoxic
fraction is unity, simple Poissonian statistics dictates as
much), it is assumed that the lowestM values of k3 in these

bins represent equilibration:

Keq [(vd)i] = 1
M

M∑

j=1
min

[{k3}(vd)i
]
j . (19)

Equation (19) is strictly valid in the limit where the vari-
ance in keq values is much smaller than the variance in kb
values (so that the two distributions can be distinguished).
The choice ofM is dictated by their relative sizes:

M
Nb

=
(

σkeq

/
keq

)

√(
σkeq

/
keq

)2 + (
σkb

/
kb

)2
, (20)

where Nb is the total number of values within each bin,
σX and X denote the standard deviation and mean val-
ues of X = kb or keq. Assuming that the relative vari-
ance

(
σkb

/
kb

)
is equal to that for the oxygen partial

Fig. 3 Examples of negative correlations between k3 and vd and discordance between k3 and TBR in parametric maps for patients 1 and 2. From left
to right: pre-PET transverse CT scan; FAZA-PET TBR at 1 h for the tumour contour shown on the CT; TBR at 2 h; k3 map; vd map. Strong negative
correlations between k3 and vd are evident. In both tumour slices, there are regions where vd is well-below unity and variations in k3 and TBR are
discordant
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Fig. 4 Schematic of our partitioning model. From left to right: at t = 0 (left panel), tracer (gray-filled regions) is only in the capillary; for
k−1
1 � t � k−1

eq (middle panel), tracer fills the rapid-equilibration regions and begins to bind where hypoxia arises; for t � k−1
eq (right panel), tracer

fills all regions, including the slow-equilibration regions that occupy a volume fraction vs of the region of interest

pressure PO2 (the case, e.g., when the two are related by
a Michaelis-Menten-type relation [12]), the variance in kb
is expected to be large, based on the broad distribution
of PO2 levels in tumours:

(
σPO2

/
PO2

)
� 1 [23]. In con-

trast, the relative variance in keq—reflecting that of the
size l of the regions in which tracer is slow to equilibrate—
is small. This was estimated by calculating the variance
in the minimum k3 value in each bin with respect to a
vd-dependent average (see, e.g., the curve fits in Fig. 2).
Across our twenty patients, we found an average value(

σkeq

/
keq

)
∼ 0.4. As a compromise to having a suffi-

cient number of voxels to ensure the validity of statistics
and few enough to have sufficient resolution in vd-space
to carry out these curve fits, bins were chosen to contain
ten voxels. Hence, we chose M = 0.4 × 10 = 4. A sensi-
tivity analysis of the predicted equilibration rates and the
choice ofM is presented in Online Resource 2 (Additional
file 2).
An example of this algorithm is shown for two patients

in Figs. 2 and 5. Voxel-scale values of Keq in each of these
bins as determined by Eq. (19) are plotted in Fig. 2b and e.
The solid lines in this figure are fits to Keq(vd) = keq(1 −
vd)/vd. (The poor fit in Fig. 2e for λ � 0.6 may be due
to a percolation effect: for distribution volumes less than
∼ 0.65, regions of slow equilibration begin to overlap [24]
and vd will become dependent on the mean size l of these
regions. Hence, from Eq. (2), keq will also begin to depend
on vd). Also shown in Fig. 2c and f are the voxel-scale
binding rates determined from Eqs. (17) and (19). Figure 5
shows parametric maps of k3, keq and kb for the same
tumour slices shown in Fig. 3.
The correlation matrix between derived voxel-scale

parameters from our model is shown in Table 3 along
with population averages of these parameters. The relative
sizes of the correlations between k3 andKeq (r = 0.57) and
kb (r = 0.86) are measures of how much equilibration and
binding were found to contribute to the net trapping rate

k3. Most of the vd dependence of k3 is contained in Keq, as
evidenced by the strong correlations between vd and Keq
(r = −0.73) but comparatively weak correlations kb and
vd (r = −0.27). Not shown are correlations between these
quantities and the vascular influx rate k1 since these were
small (|r| < 0.15) for all cases.
The vd-dependence of k3 in our model is a consequence

only of mass conservation and the assumption that there
exists a compartment in which tracer is slow to reach
diffusive equilibrium. It does not depend on a specific
microscopic model for equilibration. We tested the pre-
diction given by Eq. (17) by fitting the binnedKeq values to
a function of the form Keq(vd, γ ) = keq [(1 − vd)/vd]γ to
determine how close γ was to its predicted value of unity.
Averaging over all tumours, we found γ = (0.9 ± 0.4),
with the error given by the standard deviation of values
across all tumours. This confirms that our model in which
tracer equilibrates slowly in a fraction 1 − vd of tissue
is consistent with our data. The mean equilibration rate
derived from these fits was keq = 0.44 h−1 (standard devi-
ation of 0.29 h−1 across all patients), corresponding to an
equilibration time of 1/keq ∼ 2.3 h.

Discussion
It is well-appreciated that the uptake of hypoxia-sensitive
PET tracers is dependent on tissue transport properties as
well as hypoxia [13, 14, 17, 18, 25]. In principle, dynamic
PET modeling corrects for transport properties such as
slow tissue diffusivity that can impede the uptake of tracer
and reduce sensitivity to hypoxia when such features are
co-localized with hypoxia in PET voxels. This is especially
problematic since PET voxels are typically large enough
[∼ (4 mm)3] to include diverse cell populations, with
widely varying pathology [26]. The quantity of primary
interest in a compartment model analysis of dynamic
PET imaging is the trapping rate k3, commonly believed
to be sensitive to hypoxia via the underlying binding
kinetics [12–14]. Static PET imaging is more feasible
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Fig. 5 Parametric maps for an axial tumour slice from patients 1 (left) and 2 (right) showing the spatial distribution of binding and equilibration rates

clinically, however, and it is often assumed that one
can adopt static imaging in place of kinetic imaging
when some appropriate uptake metric–SUV for FDG-
PET or TBR for hypoxia-PET–is well-correlated with
k3 [27, 28].

Table 3 Top: Correlation matrix of Pearson correlation
coefficients between the mean voxel-scale parameters across the
twenty tumours studied using the 2-h data sets. Bottom:
Population-averages of the corresponding voxel-scale rate
coefficients; values are shown in units of h−1. Standard
deviations of mean values across patients are indicated in
parentheses. Also shown is the population average keq value,
which was calculated from fits to data from all voxels in each
tumour, as described in the text

k3 Keq kb vd

k3 − 0.57 0.86 −0.59

Keq 0.57 − 0.18 −0.73

kb 0.86 0.18 − −0.27

vd −0.59 −0.73 −0.27 −
k3 Keq kb keq

0.30 (0.20) 0.17 (0.15) 0.14 (0.08) 0.44 (0.29)

In this paper, we have investigated dynamic and static
PET in 20 patients with pancreatic adenocarcinoma
(PDAC) and found k3 values to be only modestly corre-
lated with TBR. Using Patlak’s formula to analyze these
correlations, we found that a highly variable distribution
volume across patients was primarily responsible for the
reduced correlations, consistent with recent findings of
FMISO kinetics in head and neck tumours [25].
Correcting for the distribution volume, correlations

were considerably stronger and the corrected tumour-to-
blood ratio was increased (see Fig. 1). This shows that
tracer uptake at 2 h in these patients is sensitive both
to hypoxia and tissue transport properties (distribution
volume), with the result that variability in tissue transport
properties reduces the sensitivity of static PET imaging
to hypoxia. Figure 6 compares hypoxic fractions in the
twenty tumours calculated using: a.) the fraction of vox-
els for which TBR>1.2 and b.) the fraction of voxels for
which kb > 0.2 h−1, a threshold chosen such that the two
hypoxic fractions agree when transport effects are small
(vd > 0.9). When transport effects are substantial (vd <

0.9), correlations between the two methods of calculating
hypoxic fractions are greatly reduced (r goes from 0.92 to
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< ( = )
> ( = )

Fig. 6 Impact of transport on calculation of hypoxic fraction. When
vd > 0.9, hypoxic fractions calculated from TBR>1.2 (HF) and
kb > 0.2 h−1 (HFkin) are in substantial agreement. When vd < 0.9,
correlations are greatly diminished (r = 0.68), with HF
underestimating hypoxia

0.68), with the TBR approach underreporting hypoxia on
average.
At first glance, this would suggest that these tumours

would benefit from dynamic PET imaging. The trapping
rate was found to exhibit a strong dependence on the
distribution volume, however, implying that k3 describes
both the binding rate due to hypoxia as well as the rate
of equilibration. A model was developed to explain this
in which the extravascular tissue space was divided into
two regions, one in which tracer rapidly achieved diffusive
equilibration and one in which it equilibrated slowly. The
population-averaged equilibration rate keq � (0.44±0.29)
h−1 in the latter region is consistent with our estimate in
the Introduction of having either mucinous regions (on
the order of tens to hundreds of microns in extent) where
diffusivity is greatly slowed or micronecroses, smaller
than a PET imaging voxel but larger than∼500μmacross.
The long equilibration time

[
1/keq ∼ 2.3 h

]
implied by

this result means that unbound tracer will not equilibrate
until well-after tracer injection, at times t � 1/keq. At
this time, the concentration of tracer in both the slow-
and fast-equilibrating regions will approach that in blood
and the effect of the distribution volume on TBR will van-
ish. Ideally, static hypoxia-PET imaging would be carried
out when t � 1/keq in order to remove this sensitivity to
transport. Unfortunately, the half-life of 18F is short and
imaging times are typically restricted to be 3 h or less. (In
our study, it was felt that accrual would be challenged by
imaging patients past 2 h.)
If slow equilibration were due to necroses, k1–a mea-

sure of perfusion–would be correlated with keq. No such

correlations were found, leading us to hypothesize that
mucous deposits comprised the regions of slow equilibra-
tion. Necroses are also rare in PDAC, whereas mucous
gel-forming mucins are commonly over-expressed [9].
Amongst the twenty patients, the tumour volume fraction
vd in which tracer equilibrated rapidly varied from 0.68
to 1, with an average value of 0.85. This implies muci-
nous region volume fractions ranging from 0 to 30%, with
an average value of 15%. Tumours were resected in four
patients and examined by a pathologist [I.S.]. Although
not a sufficient number to be able to definitively attribute
the reduced distribution volume to mucous, the patients
with the smallest and largest distribution volumes of this
four exhibited significant and negligiblemucin expression,
respectively; see Fig. 7.
Our conclusion that equilibration is slow in parts of

pancreatic tumours is not inconsistent with claims by
us [21] and others [25] that tumour-scale equilibration
rates are rapid. The characteristic equilibration rate in
the fast-equilibrating regions can be approximated by k1
which, even for the hypo-perfused PDAC tumours stud-
ied in this work, was fast compared to kb and keq. The
population average of the tumour-scale k1 values was
∼ 0.3 min−1 [16]. Regions of slow-equilibration occupy
a relatively small fraction of the tumours and hence, the
tumour-scale equilibration rate is not strongly affected by
these.
Although we have proposed a scheme to differenti-

ate binding from equilibration, and hence, to quantify
hypoxic status via the surrogate binding rate kb, the accu-
racy of this approach relies on the assumption that the
variance in the equilibration rate is much smaller than the
variance in the binding rate:

(
σkeq

/
keq

)
� (

σkb
/
kb

)
.

Only then can we attribute the lowest few k3 values in each
vd bin to Keq and not kb.
The fact that the estimated

(
σkeq

/
keq

)
was only

marginally smaller than
(
σkb

/
kb

)
means that our analysis

did not completely distinguish equilibration and binding.
In effectively assuming that the variance in the equili-
bration rate was zero, our analysis erred on the side of
underestimating the equilibration rate and hence, over-
estimated the binding rate kb. At the same time, our
scheme still represents an improvement over hypoxia
quantification using k3 since k3 will always be larger
than our estimated kb, which in turn is likely larger
than the true kb. Full validation of our approach will
rely on comparing our estimates of kb and oxygen lev-
els using other methods such as immunohistochemical
staining of resected tumours. We plan on doing this in
the future.
Beyond hypoxia quantification, dynamic PET imaging

reveals additional information about tumour physiology
that may prove to be clinically important [13, 14, 25, 29].
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Fig. 7 Resected histology slices from two patients (16 and 17 in Online Resource 1 (Additional file 1)), illustrating the hypothesized dependence of
the distribution volume on mucin expression. The tumour on the left exhibits little mucin while that on the right exhibits abundant apical mucin.
The average distribution volumes for these tumours are 0.92 and 0.76, respectively, representing above- and below average levels. The black scale
bars in the lower-right hand corners of these plots indicates a length of 200 μm; in comparison, a PET voxel is ∼4 mm across. Brown regions
indicate staining for pimonidazole

In our case, we have found that the distribution volume
of FAZA (and likely all freely-diffusible PET tracers)
quantifies the amount of mucous present in pancre-
atic tumours. Over-expression of the mucous gel-forming
mucin MUC5AC in PDAC is prognostic for shorter sur-
vival time [30], greater metastatic potential [9, 31], and
immune system avoidance [32]. We hypothesize that
the distribution volume in other tumour sites will like-
wise provide complementary physiological information
beyond hypoxic status.
A key question raised by this work is whether or not the

tissue transport effects identified here confound hypoxia
quantification using other hypoxia-PET tracers such as
FMISO and in other tumour sites. The primary imped-
iment to tracer equilibration is slow diffusivity. FAZA
has been estimated to diffuse marginally faster than
FMISO [7], and so the issues identified here should impact
FMISO to a comparable degree. Indeed, similar effects
as the ones reported here have arisen in FMISO imag-
ing of pre-clinical tumour models [33], as well as clinical
pharmacokinetic studies of head and neck tumours [17,
25]. In all cases, a variable distribution volume dimin-
ished correlations between TBR and k3. [The fact that
Ki = vdk3 but not k3 was found to be well-correlated
with TBR in Ref. [33] can be understood from Eq. (8):
Ki removes the variance in TBR arising from vd in the
trapping term, but not the first two terms on the right-
hand side of this equation.] In recent work, Grkovski et
al. discuss the important role of the distribution volume
in static PET hypoxia quantification and also report sig-
nificant negative correlations between k3 and vd [25]. The

present work builds on these analyses by proposing a
model in which k3 is sensitive both to hypoxia-induced
binding as well as diffusive equilibration of un-bound
tracer.

Conclusions
The uptake of hypoxia-sensitive PET tracers in pancreatic
tumours depends in a significant way on both tissue trans-
port properties as well as the presence of hypoxia. Both
dynamic- and static-PET based hypoxia surrogates—k3
and TBR—are affected by regions where diffusive equi-
librium is achieved very slowly, over several hours. We
have proposed a scheme to extract the hypoxia-sensitive
tracer binding rate as well as the from dynamic PET data
and proposed this as a novel hypoxia biomarker. Our
results are of relevance for all hypoxia-PET tracers and any
tumour site where transport of small-molecular weight
agents is challenged.
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