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Construction sites remain highly perilous work environments globally, exposing employees to 
numerous hazards that can result in severe injuries or fatalities. To resolve this several solutions 
based on quantitative approaches have been developed. However the wide adoption of preexisting 
solutions is hindered by lack of accuracy. To this aim the development of an efficient fuzzy 
inference system has become a de-facto necessity. In this paper, we propose an edge inference 
framework based on multi-layered fuzzy logic for safety of construction workers. The proposed 
system employs an edge computing-based framework where IoT devices collect, store, and 
manage data to offer safety services. Multi-layer fuzzy logic is applied to infer the worker 
safety index based on rules that consist of construction environment factors. The multi-layer 
fuzzy logic is fed with weather, building and worker data collected from IoT nodes as inputs. 
The safety risk assessment process involves analyzing various factors. Weather information, 
such as temperature, humidity, and rainfall data, is considered to assess the risk to safety. The 
condition of the building is evaluated by analyzing load, strain, and inclination data. Additionally, 
the safety risk to workers is analyzed by taking into account their heart rate and location 
information. The initial layer’s outputs are utilized as inputs for the subsequent layer, where 
an integrated safety index is inferred. Ultimately, the safety index is generated as the final 
outcome. The system’s results are conveyed through warnings and an error measurement on a 
safety scale ranging from 1 to 10. Furthermore, web service is developed to allow the construction 
management to check the worker safety condition of the construction site in real-time, while also 
monitoring the operational status of the IoT devices, allowing for the early detection of sensor 
malfunction and the subsequent guarantee of worker safety. Extensive evaluations conducted to 
test the performance of the developed framework verify its efficiency to provide improved risk 
assessment, real-time monitoring, and proactive safety actions, encouraging a safer and more 
productive work environment.
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1. Introduction

The construction industry is one of the most hazardous industries in the world [1]. In the United States, 5,333 fatal industrial 
accidents were reported in 2019 [2]. Injuries, occupational risks, and accidents are just a few of the threats that construction 
site workers face. Consequently, the construction sector is characterized by its capacity to subject workers to a range of severe 
and potentially catastrophic hazards [3]. Due to the dynamic nature of the construction industry and the many hazardous duties 
performed on construction sites, health and safety issues for construction workers are complex [4]. Construction safety systems 
and information and communication technologies are the subjects of considerable study to prevent construction site accidents [5]. 
These activities include sensor-based location monitoring and hazard detection systems that protect underground workers [6], safety 
management systems for a group of tower cranes that use a set of custom sensors to detect the operating status of tower cranes used 
on construction sites [7], and safety management systems that mount various cameras and sensors on worker helmets to monitor the 
condition of workers and construction sites [8].

The term “Internet of Things” refers to a system composed of physical objects from the real world as well as sensors attached 
to or integrated into these objects, and which is linked to the internet via wired and wireless network technology. It is the future 
information and communication technology that will digitalize physical objects [9]. IoT devices can connect to the internet via a 
variety of different technologies, including GPRS, GSM, LTE, and 3G for wide-area connectivity, ZigBee, Bluetooth, Wi-Fi for local 
connectivity, and so on. IoT devices communicate their current status as well as the environmental data they have collected with 
other software programs, individuals, and other things via the aforementioned internet technology. The IoT has made tremendous 
advances in making the world smarter in a variety of fields, including smart healthcare, smart cities, smart homes, and smart buildings 
[10]. There are constrained resources for IoT-enabled things. Data collectors, sensors, actuators, autos, cameras, cars, and trains are 
all examples of devices that use IoT technology [11]. Also, there is a wide range of IoT devices. Connected objects are electrical 
gadgets that can interpret their environment and respond accordingly to digital data. It takes in external stimuli in analog or digital 
form and displays them in a format that can be understood by machines as well as humans. Embedding nodes in a vehicle or a house 
with various wireless networking capabilities like Bluetooth, Wi-Fi, ZigBee, and so on is possible [12].

Data collected through IoT can be used in the decision-making process only when it is processed through specialized knowledge. 
A fuzzy logic system (FLS) is a rule-based expert system that transforms input data into meaningful outputs by expressing expert 
knowledge as fuzzy sets and rules [13]. FLS has many practical applications in the construction sector. For example, operations of 
maintenance [14], construction risk management [15], decision-making support in construction control systems [16], or sustainabil-

ity [17]. In addition, the uncertainties of occupational threats of the construction site are modelized with a fuzzy system [18]. FLS 
may contain a priori expertise and may represent systems for which a mathematical model cannot be obtained. The author [19]

proposes a multi-grade fuzzy-based safety practice index calculation mechanism. To calculate the safety index, a conceptual model 
is implemented. The unique advantage of using fuzzy logic is that it allows clear quantitative calculations that are compatible and 
avoid bias. To quantifies, the ease of landing a spacecraft on a planetary surface, the author [20] introduces a fuzzy logic-based 
safety index that uses sensor-derived topographical characteristic measurements. These properties include roughness, slope, etc. The 
proposed terrain safety representation incorporates an intuitive and linguistic approach for expressing robust terrain characteristics 
concerning inaccuracies and uncertainties in sensor measurements. Integrating data capture technology at some stage of the con-

struction project process, along with the use of IoT paradigms and FLS, introduces an exciting challenge that can provide significant 
benefits for real-time accident prevention at the construction project stage.

These perspectives have motivated current work with the idea of defining IoT infrastructure as the core of ubiquitous computing 
and using Fuzzy Markup Language (JFML) to define automatic data transfer from sensors to monitor the risk of falling objects at some 
stage of the construction process [21]. Further the study’s motivation is driven by the alarming risks faced by construction workers 
on a daily basis, highlighting the urgent need for a robust safety framework. Existing quantitative solutions may lack the desired 
accuracy, necessitating the development of a powerful fuzzy inference system. This study aims to present a comprehensive strategy 
in light of the dangerous working conditions faced by construction workers around the world and the requirement for precise safety 
solutions. By putting forth a new multi-layered fuzzy logic-based edge inference framework, we hope to fill in the gaps in current 
research and promote a safer working environment. The research questions below direct our investigation.

• RQ1: How can a multi-layered fuzzy logic-based edge inference framework effectively enhance real-time safety assessment for 
construction workers?

• RQ2: How can IoT data, encompassing weather, building conditions, and worker information, be effectively integrated into the 
multi-layer fuzzy logic system to ensure accurate safety risk assessments?

Our proposed system leverages edge computing-based IoT devices to collect, store, and manage data effectively. By employing multi-

layer fuzzy logic, we derive a worker risk index for the construction site based on the data collected at the site. This index serves as a 
valuable indicator of safety levels. Administrators gain real-time access to the web page, allowing them to monitor the safety status 
of construction site workers. Furthermore, the system enables administrators to oversee the performance of IoT devices, thereby 
facilitating early detection of sensor malfunctions and ensuring worker safety. The proposed study encompasses several significant 
contributions, including:

1. Development of an innovative Worker Safety Prediction System: We introduce an innovative on-site worker safety prediction 
2

system that leverages multi-layer fuzzy logic within an AIoT framework for outdoor construction settings.
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2. Edge Computing Integration for Enhanced Safety: Our approach strategically integrates weather data, building conditions, and 
worker information through an edge computing network. This integration aligns with the evolving demands of IoT and ensures 
more efficient and resource-effective safety prediction.

3. Advanced Fuzzy Logic Quantification: Employing sophisticated fuzzy logic techniques, we provide a robust methodology for 
quantifying the stability of construction sites. This quantitative approach enhances the precision and clarity of site evaluation 
using numerical expressions.

4. Real-time Monitoring and Hazard Mitigation: Through the deployment of a sensor-based system, we enable real-time monitoring 
of construction site conditions. This implementation empowers proactive risk management, contributing to the overall safety of 
workers in dynamic construction environments.

The rest of the paper is structured as follows: Section 2 provides an overview of relevant studies. Section 3 introduces the 
proposed multi-layer fuzzy logic-based construction worker safety inference system. Section 4 details the materials and methods, 
and section 5, implementation results. Section 6 provides an evaluation of the performance of the proposed worker safety inference 
system. Section 8 concludes the paper by discussing future research directions.

2. Related work

Due to the risky working environment of construction sites, the personal safety of construction workers is frequently exposed to 
potential safety and health risks during the construction process [22]. According to international occupational safety statistics, the 
construction industry has one of the highest rates of occupational accidents [23]. The National Census of Fatal Occupational Injuries 
survey conducted by the U.S. Bureau of Labor Statistics in 2015 indicates that due to fatalities and illness, there were 4836 workers 
died on construction sites, 9% of injuries occurred in a hazardous environment and 3% of accidents were due to explosions and fire 
[24]. According to the accident investigation, the characteristics of the industry, wrong human behaviour, poor environment, and 
poor safety management are the main causes of accidents [25].

2.1. Integration of IoT technologies for comprehensive construction site safety monitoring and management

Several studies have been conducted to ensure the safety of personnel at the construction site. The impact of the construction site 
environment often exposes workers to a variety of health risks. Some studies monitor worker health status to ensure safety. Different 
systems such as the Physiological Status Monitoring (PSM) system and GPS tracking sensor automatically collect and analyze the 
physiological data which include body posture, heart rate, breathing rate, body speed, and body acceleration to estimate worker 
and construction equipment operator health status [26,27]. The authors [28] developed a real-time intelligent video surveillance 
system that identifies specific dangers and the operational status of equipment (such as excavators). This system can detect people 
and whether the equipment is moving or stationary within hazardous zones. It offers quick feedback on unsafe behaviour, enabling 
prompt interventions to prevent such incidents from happening again.

Workers are exposed to health and safety risks not only by weather factors in the construction work environment but also by 
certain materials that pose a hazard. To inform construction workers with early warning alarms, automated collecting of these 
inclement weather factors and injurious elements is necessary. In the study [29], a novel weather monitoring system was created 
utilizing a variety of sensors connected to a Raspberry Pi. This system enables the tracking of weather variables such as temperature, 
humidity, PM 2.5 and PM 10 levels, as well as the Air Quality Index (AQI). There is a study that improves the safety management of 
harmful gases at underground construction sites by combining Building Information Modeling (BIM) and Wireless Sensor Networks 
(WSN) technology. The gas concentrations and environmental data (temperature and humidity) from various site locations were 
collected and fed into the site BIM model. The model can dynamically display the condition information of the building site collected 
through the sensor node by changing the corresponding colour to the BIM model to monitor the complete safety condition [30]. 
The study of [31] created an IoT network model to enhance the monitoring of construction site safety in real time. The aim was to 
not only decrease accident rates but also to store digital data for future training and system improvements. This model introduces a 
cost-effective solution for optimizing construction safety, catering to the needs of all stakeholders.

To monitor safety and productivity, tracking and locating techniques are important in industrial applications. There are many 
technologies, for example, GPS [32], RFID and RF localization [33], UWB [34,35], sonar, magnetic field, and radar are introduced for 
safety monitoring. The author [36] proposed another safety monitoring system based on infrared and ultrasonic sensors to protect 
workers on construction sites. When workers approach a specific hazardous region in a construction site, the safety monitoring 
system alerts workers through a Mobile Sensing Device (MSD). However, this system only relies on an estimate of the proximity 
between the MSD and workers. In other words, it did not provide safety managers and construction with comprehensive information 
about the construction environment and worker’s behaviour. The tracking system developed by the author [37] integrates BIM, RFID 
sensors, and cloud communication technologies for the safety management of indoor construction. However, this study involves 
costly infrastructure- as it applies proximity-based location tracking that requires many signal readers. Resultingly, the system can 
be intrusive for operators and ended up leveraging BIM to visualize resources and space. The author [38] presents a low-cost indoor 
tracking system that utilizes motion sensors, Bluetooth Low-energy (BLE), and BIM. The proposed system may be effective for field 
investigations, but because it uses internal motion sensors in mobile devices, it is not flexible enough for general tracking.

The study [39] develops a cloud-based on-site application for the safety monitoring system. The system consisted of a cloud-
3

based communication platform, hazard identification based on BIM, and a location detection function based on BLE. The hazardous 
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Table 1

Summary of existing notable works done and research gaps addressed.

Study Application 
area

Methodology Main contributions Research gap addressed

Zhang et al. [22] Construction 
safety

IoT-based health 
monitoring

Physiological data analysis 
for worker Health monitoring

health and safety monitoring

Luo et al. [28] Construction 
safety

Video-based 
behaviour

recognition

Video surveillance system for 
preventing accidents on sites

Identify specific hazards in 
real-time

Joseph et al. [29] IoT technology Sensor-based data 
collection

IoT devices for sensing 
environmental factors

Iot based weather monitoring 
system

Cheung et al. [30] Construction 
safety

BIM and WSN 
integration

BIM-integrated safety 
management at underground 
sites

Safety management through 
BIM-WSN

Chung et al. [31] IoT 
Application

IoT-based safety 
monitoring

Safety monitoring system to 
reduce accident rates

IoT network technology for 
construction site safety

Singh et al. [47] Occupational 
safety

manufacturing 
industries

SPSS based regression 
analysis monitoring

Developed an occupational 
Safety Evaluation Index 
(OSEI)

Park et al. [38] Safety tracking BLE, motion 
sensors, BIM

Indoor tracking system using 
BLE and BIM

Flexible indoor tracking

Mahmoudi et al. [41] Decision-

making 
models

Fuzzy logic Utilizing fuzzy logic for 
decision-making models

Devised a method for solving 
multi-objective linear 
programming

Topal et al. [43] Construction 
tasks

Fuzzy risk 
assessment model

Risk evaluation for 
small-scale construction tasks

Safety risk assessment

Danish et al. [45] Underground 
coal mines

Fuzzy logic 
controller

Fuzzy logic-based prediction 
of mine fires

Safety prediction

Hendiani et al. [46] Social 
sustainability

Fuzzy logic 
evaluation

Fuzzy logic assessment of 
social sustainability

Social sustainability

Current Research Construction 
safety

Multi-layered fuzzy 
logic

Real-time safety assessment 
and risk inference

Comprehensive safety

locations are defined manually or automatically in a BIM model. To identify incidents where workers are approaching risk areas, the 
worker locations are collected in real-time. Then, the output of the safety monitoring system is instantly spread over the cloud for 
effective safety control. Many studies manage construction site safety using weather information, worker location, and health status 
respectively by integrating with IoT technology, but no study considers the environment, building, and workers at the same time.

2.2. Application of fuzzy logic for enhanced construction safety and beyond

Fuzzy logic has also been used in many fields such as constructions [40], decision-making models [41], and project management 
[42], where it is used to model uncertainty and evaluate performance. To provide a safer and healthier work environment for 
construction workers, the author in [43] proposed a fuzzy risk assessment model to evaluate the risks connected with various 
construction tasks in the small-scale construction sector. Also, in the study [44], fuzzy logic is utilized as an analytical and scientific 
method to identify and mitigate risks in construction projects. The study explains how fuzzy logic can be used to construct fuzzy rules 
that can be applied as a referent database in the task of risk analysis. Moreover, they highlight how fuzzy theory can mathematically 
formulate many concepts and variables which are considered unclear and ambiguous, thus preparing the ground for presenting 
arguments and making decisions in uncertain situations. To predict mine fires in underground coal mines, the study in [45] used 
the fuzzy logic controller that processes all fuzzy inputs using IF-THEN rules and creates fuzzy output sets for decision-making. 
Multiple IF-THEN rules are created for predicting coal fires with the fuzzy logic system. The authors in [46] utilized fuzzy logic 
to evaluate the social sustainability status of associated construction projects. The proposed approach involves gathering important 
social sustainability attributes and utilizing a fuzzy construction social sustainability index to uncover hindrances and difficulties 
related to the concept of socially sustainable construction. Table 1 presents a summary of the notable works done for ensuring 
human safety in various domains and the research gaps addressed by these systems.

In summary, the data presented in Table 1 offers a comprehensive examination of significant research undertaken in several fields 
such as construction safety, IoT technology, occupational safety, decision-making models, and related areas. The data highlights the 
specific deficiencies that these studies aim to address. Every study contributes notable progress to their respective fields, including 
activities such as examining physiological data for the purpose of monitoring worker health and developing safety monitoring systems 
based on IoT. The present study presents a novel approach that utilizes a multi-layered fuzzy logic framework to enable real-time 
evaluation of safety and inference of risks in the construction industry. Through the utilization of this sophisticated methodology, 
our proposed system adeptly addresses significant deficiencies within the sector, providing a comprehensive and robust solution for 
enhancing safety in a comprehensive manner. The results of our research demonstrate an increased efficacy of our proposed approach 
in mitigating critical safety issues within construction settings, as compared to the previously mentioned studies. This deduction is 
4

derived through thorough examination and empirical application of our research findings.
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Fig. 1. Proposed conceptual architecture for worker safety inference in outdoor construction AIoT environment.

3. Proposed construction worker safety inference system based on multi-layer fuzzy logic

3.1. Proposed system for worker safety inference in the construction site

We propose an on-site safety index based on the multi-layer fuzzy logic approach, for construction workers, aimed at enhancing 
their safety at the construction site. Fig. 1 provides an operational overview of the proposed system. The system includes IoT devices, 
edge gateways, a server, and clients. The IoT devices are responsible for collecting information about the construction site and the 
workers. The edge gateways manage the information from the IoT devices, temporarily store the collected data, and facilitate the 
connection between the server and the IoT devices through edge computing services. The server utilizes the collected data to predict 
the safety conditions of the construction site. Clients can monitor the information provided by the server. To predict the safety 
of workers on the outdoor construction site, IoT devices accumulate environmental information and worker status information. 
The environmental information includes data on weather conditions and building specifications, while worker status information 
comprises heart rate and location data. The required data are periodically collected by the IoT devices, transferred to the edge 
gateway, and then delivered to the server.

The framework employed in our study strategically utilises the capabilities of the edge server, referred to as EdgeX, which is 
strategically positioned in close proximity to the construction site. The selection of this particular design option plays a crucial role 
in addressing the obstacle of data management infrastructure. The system effectively alleviates potential bottlenecks related to data 
processing and storage by conducting data processing at the edge, using the data obtained from IoT devices. This approach reduces 
the burden on centralised data management systems. The edge server assumes a critical role in facilitating efficient data management 
by receiving data from diverse IoT devices deployed across the construction site. The data that has been gathered is subjected to a 
rigorous processing procedure within the server, encompassing various tasks including data cleansing, filtering, and aggregation. The 
process of optimising data preparation not only improves the quality of the input data but also facilitates the efficiency of subsequent 
analysis.

Significantly, the processed data is effectively stored within a specialised database, which is an essential component of the edge 
server’s functioning. The purpose of this database is to function as a centralised storage system for the processed data, guaranteeing 
its ease of access and availability for subsequent analysis and inference.

One crucial element of our framework’s approach to addressing the data management challenge is the implementation of a sys-

tematic conversion process subsequent to data processing. The data that has been gathered is subsequently processed and organised 
according to a clearly defined methodology, resulting in its conversion into a numerical format. The numerical representation pro-

vides valuable insights into the risk level associated with the construction site, enabling a quantitative assessment of safety concerns.

The core of this quantification process is centred around the utilisation of a function that generates a safety index. The safety 
index value is generated by this function using refined and numerical data as input, providing a quantitative measure of the risk level 
at the construction site. Through the utilisation of this function, our framework provides a distinct and standardised measure for 
5

appraising safety conditions, thereby augmenting the accuracy and efficacy of safety evaluations. The edge server, located near the 
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Fig. 2. Block diagram of construction worker safety inference system.

Fig. 3. Edge gateway functional block diagram for data collection.

construction site, processes the data collected from the IoT devices to predict the safety status of the construction site where workers 
are present. The server collects, processes, and stores the data in a database, converting it into a numerical value that represents the 
risk level of the construction site through a safety index generation function. Additionally, the client has access to device and data 
visualization functions, allowing them to monitor the state of the IoT devices and review the history of collected data. The client can 
be any device with internet connectivity, such as a mobile phone, computer, or tablet, connected to the edge server.

Fig. 2 provides an architectural overview of our construction worker safety platform, which serves to enhance the safety of 
workers at construction sites. The core of the system is an edge server that performs safety analysis on collected data using a multi-

layer fuzzy logic approach. To infer the condition of the construction site, we analyze various types of data. Weather information is 
crucial for verifying the safety of the working environment. Building condition information is utilized to monitor the status of the 
structures on the site. Furthermore, worker information is leveraged to assess both the health condition and proximity to danger 
zones for workers. The edge server plays a pivotal role in monitoring the status of connected data collection resources and provides 
a comprehensive visualization of the collected data. This functionality empowers workers to proactively identify and understand 
potential risks by assessing the safety status of their current location on the construction site through the edge server.

Fig. 3 illustrates the functional block of an edge gateway responsible for data collection. An edge gateway acts as a host for edge 
computing services and encompasses various EdgeX services. These services encompass core metadata, which stores information 
about IoT devices managed by the edge gateway, and core data, which facilitates the storage and dissemination of data from IoT 
devices. Additionally, there is a core command that converts IoT device services into command formats for delivery, and a repository 
that provides storage space. The core metadata enables inquiry, registration, deletion, and updating functionalities for IoT devices, 
device profiles, and device service information. The device profile contains details about the services offered by the device. Core 
6

data allows querying, adding, and deleting of data collected from IoT devices, as well as delivering the data to applications. The core 
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Fig. 4. Edge server architecture for device virtualization, monitoring and data visualization.

Fig. 5. Sequence diagram for edge gateway registration to the safety inference system.

command provides query and command functions for the services provided by IoT devices. Furthermore, a device service ensures 
connectivity to IoT devices, aiding in their registration with the edge gateway and serving as a bridge for data transmission and 
command delivery.

Fig. 4 showcases the functional block of an edge server, which comprises four key components: device virtualization, data 
visualization, safety index, and database. The device virtualization function enables device registration, allowing managers to monitor 
the state of construction sites within the system. During the registration of an edge gateway, the device virtualization function verifies 
the gateway’s status, retrieves information on connected devices, and records the connection relationship in the database. The data 
visualization function simplifies the presentation of data stored in the database for users. It integrates device information with a 
map, represents construction site safety information through bar charts, and displays existing construction site accident cases in 
a table format. Additionally, it provides administrators with functions to easily record, update, delete, and inquire about accident 
case information. The safety index function, in conjunction with the data collection function, converts real-time construction site 
information into a safety index. By inputting environment, building, and worker status information into fuzzy logic, the safety index 
function generates safety information as output. The database serves as a comprehensive repository for all system-related information, 
housing the necessary data for operation.

Fig. 5 depicts the sequence diagram for edge gateway registration. The process begins when the user sends a registration request 
7

to the edge server through a client browser. To ensure no duplicate registrations occur, the edge server checks the database for 
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Fig. 6. Sequence diagram for detailed device information visualization.

existing registration information. If no registered information is found, the provided details are stored in the database. Next, the 
address information of the edge gateway is used to retrieve the managed device’s information. The obtained device information, 
along with the connection relationship to the edge gateway, is saved in the database. Finally, a success message is sent to the client, 
signalling the completion of the registration process.

Fig. 6 illustrates the sequence diagram for visualizing detailed device information. This information encompasses details about the 
connected edge gateway, the device’s location and basic information, as well as statistical data collected. The process of obtaining and 
presenting this detailed information is as follows: When a request for detailed information is made, the relevant data associated with 
the device is retrieved from the database. This includes the edge gateway data linked to the device. Next, the device information is 
fetched from the database, enabling access to specific details about the device. Subsequently, detailed device information is collected 
from the core metadata service of the edge gateway. This service provides comprehensive information about the device. Finally, the 
accumulated information is visualized and displayed on a web page through the edge server, enabling users to view and interact 
with the detailed device information.

Fig. 7 displays the sequence diagram for the data collection function. There exists a mutual dependency between the edge server 
and IoT devices, as the edge server processes data collected from these devices. To ensure smooth system operations, the edge 
server provides users with the capability to manually initiate the data collection function through a command interface. When a user 
sends a data collection command to the edge server via the command interface, the command interface triggers the data collection 
process based on the command received. It accomplishes this by invoking the request constructor, which generates a request for data 
collection from the IoT device. The request generator accesses the database through the database connector to retrieve information 
about the edge gateway and the resources provided by the edge gateway. With this information, the request generator requests the 
edge gateway to respond with the collected data. As the response from the edge gateway is in JSON file format, the data value is 
extracted by parsing the JSON file. This extracted data value is then delivered and saved to the database for further processing and 
analysis.

Fig. 8 illustrates the sequence diagram for device service initialization. The device service serves as a vital link between the edge 
gateway and the IoT device. During the initialization stage, the device information is not only managed by the edge gateway but 
also registered in the core metadata to establish a connection. The device service initiates by checking the operational status of the 
connected edge gateway. If the edge gateway is not running, the execution is halted. However, if it is running, the process proceeds 
to the next step. The device service registers its information in the core metadata to establish a connection with the edge gateway. 
Next, it queries the profile of the connected device and gathers information about the resources it provides. This data is then stored 
in the edge gateway’s core metadata. The information recorded in the core metadata is crucial for the edge gateway to establish a 
8

connection with the device, enabling the collection of data and transmission of commands.
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Fig. 7. Sequence diagram for data collection from simulated IoT devices.

Fig. 8. Sequence diagram for device service initialization.

4. Materials and methods

4.1. Multi-later fuzzy logic controller engine for worker safety inference in the construction site

Fig. 9 depicts the multi-layer fuzzy logic architecture for the worker safety inference engine. During the input phase, data related 
to the construction environment, including building conditions, weather, and the workers’ health status, is collected. These input 
data are represented by numerical values, which are then inputted into the fuzzy logic controllers for building, weather, and worker 
factors. Each fuzzy logic controller consists of three main components: a fuzzy function that converts the numerical value into a fuzzy 
set, a predictive interference engine, and a de-fuzzification function that converts the fuzzy set back into a numerical value. These 
components work together to process and analyze the input data. In the next step, the results from each factor of the construction 
site are passed on to the second layer of the fuzzy logic controller. This layer predicts the integrated safety level and generates the 
9

final result based on the combined inputs from the different factors.
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Fig. 9. Multi-layer fuzzy logic architecture for worker safety inference engine.

Fig. 10. Layered architecture of multi-layer rule-based modelling for worker safety index.

As depicted in Fig. 10, the multi-layer fuzzy logic system takes into account weather information, building information, and 
worker information collected from IoT devices as inputs. It assesses the risk associated with weather conditions based on factors 
such as wind, temperature, and precipitation. Additionally, it evaluates the safety of the building by considering parameters like 
load, strain, and inclination. The safety risk pertaining to the worker is analyzed by examining the worker’s heart rate and location 
information. The results obtained from the first layer of the fuzzy logic system serve as inputs for the second layer, which combines 
the individual assessments to infer an integrated safety index. This integrated safety index represents the overall safety level of the 
construction site. Finally, the safety index is expressed on a scale ranging from 1 to 10, with three distinct grades: safe, warning, 
and error. This scale provides a visual representation of the safety level, allowing stakeholders to easily understand and interpret the 
safety conditions at the construction site.

The language that represents the human consciousness process has semantic ambiguity in its expression. Fuzzification preserves 
the diversity of interpretation by giving the input information a degree of belonging to a linguistic representation (fuzzy set) and the 
membership degree for each linguistic variable range from 0 to 1. Fig. 11 illustrates membership functions for the load, strain, and 
inclinometer of the building.

1. The fuzzy sets for linguistic variable load (Fig. 11(a)) are categorized into three categories: loose, medium, and dense.

2. The fuzzy sets for linguistic variable strain (Fig. 11(b)) are categorized into three categories: habitable, caution, and danger.

3. The fuzzy sets for the linguistic variable inclinometer (Fig. 11(c)) are categorized into three categories: maintenance, reinforce-

ment, and emergency repair.

The range of each building’s information data varies between 1 and 10. If the range of each input data is lower than 1 then it will be 
set to the first linguistic variable. If the range of each input data is more than 10 it will be set to the last level linguistic variable.
10

Fig. 12 depicts membership functions for the weather.
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Fig. 11. Fuzzy logic fuzzification for building: (a) Fuzzy sets for load, (b) Fuzzy sets for strain, (c) Fuzzy sets for inclinometer.

Fig. 12. Fuzzy logic fuzzification for weather: (a) Fuzzy sets for temperature, (b) Fuzzy sets for precipitation, (c) Fuzzy sets for wind.

Fig. 13. Fuzzy logic fuzzification: (a) Fuzzy sets for heart, (b) Fuzzy sets for location.

1. The fuzzy sets for linguistic variable temperature (Fig. 12(a)) are categorized into three categories: cold, normal, and hot.

2. The fuzzy sets for linguistic variable precipitation (Fig. 12(b)) are categorized into three categories: dry, wet, and v-wet.

3. The fuzzy sets for the linguistic variable wind (Fig. 12(c)) are categorized into three categories: slow, mean, and fast.

The range of temperature information data varies between 4 and 29. If the input data is lower than 4 then it will be set to cold, if it 
is more than 29 it will be set to hot. The range of precipitation information data varies between 7 and 614. If the input data is lower 
than 7 then it will be set to dry, if it is more than 614 it will be set to v-wet which means very wet. The range of wind information 
data varies between 0 and 10. If the input data is lower than 0 then it will be set to slow, if it is more than 10 it will be set to fast.

Fig. 13 shows membership functions for a worker.

1. The fuzzy sets for the linguistic variable heart (Fig. 13(a)) are categorized into three categories: bradyarrhythmia, normal, and 
tachyarrhythmias.

2. The fuzzy sets for linguistic variable location (Fig. 13(b)) are categorized into two categories: ok, and danger.

The heart information data exhibits a range spanning from 50 to 150. If the input data is less than 50, it will be classified as 
bradyarrhythmia; conversely, if it exceeds 150, it will be categorized as tachyarrhythmias. The range of location information data 
spans from 0 to 1. If the input data is less than zero, it will be assigned the value “ok”; if it is greater than one, it will be assigned the 
value “danger”.

The safety risks of workers on a construction site are varied. Construction sites have different safety risks to workers depending 
11

on the stage of construction. The membership function as shown in Fig. 14 is set to give weights using fuzzy logic according to 
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Fig. 14. Fuzzy logic fuzzification for weighting parameters of the construction process.

Table 2

Fuzzy logic rule table for building.

Building

Load Strain Inclinometer Safety

Loose Habitable Maintenance Safe

Loose Caution Reinforcement Warning

Loose Danger Emergency repair Error

Medium Habitable Maintenance Safe

Medium Caution Reinforcement Warning

Medium Danger Emergency repair Error

Dense Habitable Maintenance Error

Dense Caution Reinforcement Error

Dense Danger Emergency repair Error

. . .

Table 3

Fuzzy logic rule table for weather.

Weather

Temperature Precipitation Wind Safety

Cold Dry Slow Error

Cold Wet Mean Safe

Cold Vwet Fast Error

Normal Dry slow Error

Normal wet Mean Safe

Normal Vwet Fast Error

Hot Dry Slow Error

Hot Wet Mean Waring

Hot Vwet Fast Error

. . .

the construction stage. Weights of “safe, general, anxiety, caution, danger” are assigned according to the steps. Depending on the 
language expression, the weight value is given a value between 1 and 10.

The objective of transforming diverse input data pertaining to buildings into linguistic expressions, known as fuzzification, is 
to achieve the establishment of building stability. For instance, as the load increases in density, the stability becomes increasingly 
precarious. In the context of expressing stability based on input information, it can be observed that there exists a proportional 
relationship between load, strain, and inclination. The evaluation of the fuzzy input information is performed within the rule. Fuzzy 
inference rules in the form of “IF-Antecedent, THEN-Consequent” are defined in Table 2.

The weather exerts an influence on the safety of workers at a construction site. Working under adverse weather conditions, such 
as strong winds or heavy rain, poses a potential risk to the safety of workers and is considered to be an irresponsible practice. 
Similarly, it is advisable to cease working when the temperature exceeds or falls below optimal levels. The guidelines pertaining to 
the communication of worker safety utilizing weather data within the construction site are presented in Table 3.

There are various factors that influence the safety of workers at construction sites, including the overall health status of workers 
and the specific circumstances under which they are exposed to hazardous conditions. The assessment of workers’ health is typically 
conducted by monitoring their heart rate, while the collection of workers’ location data is utilized to ascertain their proximity to 
hazardous areas. Table 4 is the rules for expressing the safety state using the worker’s personal information.

The safety of workers on a construction site is affected by factors such as weather, building conditions, and worker conditions. 
The rules for expressing the safety status of the current construction site by considering all the conditions comprehensively were 
12

defined in Table 5.
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Table 4

Fuzzy logic rule table for worker.

Worker

Location Heart Safety

Danger Slow bradyarrhythmias Error

Ok Slow bradyarrhythmias Warning

Danger Normal Error

Ok Normal Safe

Danger Tachyarrhythmias Error

Ok Tachyarrhythmias Warning

Table 5

Fuzzy logic rule table for safety index.

Safety index

Weather Building Worker Safety

Safe Safe Safe Safe

Safe Warning Warning Warning

Safe Error Error Error

Warning Safe Safe Safe

Warning Warning Warning Warning

Warning Error Error Error

Error Safe Safe Error

Error Warning Warning Error

Error Error Error Error

. . .

Fig. 15. Entity relationship diagram for the proposed construction worker safety inference system database.

The following Fig. 15 is an ER (Entity Relationship) diagram of the database used in the system. Section 1 comprises the tables 
pertaining to edge devices and edge nodes, which serve as repositories for data concerning devices and edge gateways. Additionally, 
the devices_nodes table is responsible for managing the relationships between these entities. Section 2 provides tables that display 
the names that have been registered on edge devices. The data acquired from the device is stored in its corresponding table. Table 3

functions as a repository for storing records of accidents that have taken place at construction sites. Section 4 of the document en-

compasses a pair of tables. The initial table is designated for the storage of safety values associated with the environment, structures, 
and personnel situated at the construction site. The second table is specifically allocated for the purpose of storing the integrated 
13

safety index.
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Table 6

Developmental environment of the proposed worker safety prediction approach.

Entity Hardware Softwares

Edge 
Server

Ubuntu 20.04 Desktop 
(VM)

HTML5, CSS3, Bootstrap, JavaScript, 
Python 3.8, Visual Studio Code, Flask, 
MariaDB

Edge 
Gateway

Raspberry Pi 4 Model 
4B, Ubuntu 20.04 Server

Golang 3.6, Visual Studio Code, 
EdgeX, Docker, Docker Compose

Fig. 16. Implementation configuration for worker safety inference system.

5. Implementation of proposed construction worker safety inference system

5.1. Developed environment configuration for edge server and IoT devices of proposed construction worker safety inference platform

The worker safety system in construction comprises an edge gateway responsible for gathering environmental data and worker 
personal information. Additionally, there is an edge server that virtualizes, visualizes, and monitors worker safety utilizing the 
collected data. To facilitate an intuitive representation of worker safety, the edge server was implemented as a web application 
using the Flask framework, leveraging the Python programming language. The development process involved coding in Python using 
the Visual Studio Code development tool on Ubuntu 20.04. For data collection, Raspberry Pi devices were chosen. The Ubuntu 
20.04 server was installed and services were programmed using Golang and Visual Studio Code. Docker was employed on the Edge 
Gateway to execute the EdgeX microservices. A detailed development environment for the edge server and edge gateway is presented 
in Table 6.

Our proposed system has been implemented as depicted in Fig. 16. Every edge gateway is responsible for managing IoT devices 
that are tasked with collecting data related to construction sites. The edge gateway comprises three distinct devices that are ex-

clusively designed for the purpose of managing weather, building, and worker data. The data collected is regularly stored in the 
database through the utilization of the data collection function of the edge server. The safety level of the construction site is quan-

tified by converting the stored data into a numerical value using the safety index function. Furthermore, the system integrates a 
data and device visualization feature, enabling users to observe the data stored within the database. Through the establishment of 
a connection between the edge server and a client, a multitude of operations can be executed. The aforementioned functionalities 
encompass device registration, status monitoring, data verification, and safety identification. The integration of connectivity into the 
system enhances its overall capabilities and offers users a more efficient means of interacting with the system.

Fig. 17 presents the device profile responsible for providing building-related data. This device consists of three components: 
Inclinometer-Device, Load-Device, and Strain-Device. The Inclinometer-Device offers a resource called Inclinometer-value, which 
provides data in the Float32 data type. The Load-Device supports both reading and writing commands for the Load-value resource. 
14

The details of the sensing device configuration profile for building information are presented below.
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Fig. 17. Sensing device configuration profile for building information.

Fig. 18 showcases the device profile responsible for generating weather data. To differentiate between devices, they have been 
named as Precipitation-Device, Temperature-Device, and Wind-Device, respectively. The specific data provided by each device is 
outlined under the deviceResource attribute. For instance, the Precipitation-Device offers a resource called Precipitation-value, which 
provides data in the Float32 data type. Additionally, the profile specifies the command that needs to be transmitted to the device. 
Similarly, the Temperature-Device indicates its support for reading and writing commands for the Temperature-value resources it 
provides. See the picture below for more details.

Fig. 19 showcases the device profiles that support worker-related data. The devices have been named Heart-Device and Worker-

Device, respectively, based on the type of data they provide. Examining the deviceResources of the Heart-Device, you will find a 
resource named Heart-value, which offers data in the Int32 data type. Similarly, the Worker-Device enables reading and writing 
commands for resources such as longitude-value and latitude-value. Further details are presented below in the worker information 
sensing device configuration profile.

5.2. Implementation results of worker safety inference system

Fig. 20 (a) presents the testbed displaying the installation results of the execution environment for the edge gateway. In this 
setup, three Raspberry Pi 4 models are utilized to implement IoT devices. Each device simulates the collection of weather, building, 
and worker data at the construction site. Furthermore, the edge gateway executes the temporary storage of data generated by the 
devices and facilitates the connection with the edge server.

The determination of worker safety on a construction site relies on gathering information about the environment, building 
conditions, and the workers themselves. To collect this vital information, IoT devices are employed. In our proposed system, the 
15

initial step involves registering the IoT devices responsible for data collection. Users can conveniently register and monitor the 
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Fig. 18. Weather information sensing device configuration profile.

required devices through the system’s provided web page. Fig. 20 (b) illustrates the main display page of the worker safety inference 
system which is divided into sections for edge gateways and devices. As it is the system’s first run, the page initially appears 
empty without any information. To proceed with device registration, users can click on the registration button located under the 
corresponding edge gateway section, which directs them to the registration page.

To gather essential information reflecting the condition of the construction site, it is necessary to register the corresponding 
devices. Each device responsible for collecting architectural, environmental, and worker-related data has been duly registered. Fig. 21

(see Fig. 21) depicts the registration page for the edge gateway managing building information. Users can effortlessly complete the 
registration process by simply entering the edge gateway’s name and address information, followed by clicking the registration 
button. It is important to note that names serve as unique identifiers for differentiating edge gateways, thus avoiding any repetitions. 
It is recommended to use the same name as the hostname set in the operating system. The address should include the Internet Protocol 
(IP) address, which identifies the end device on the internet, and the port number utilized by the service. Upon successful registration 
of the edge gateway, a green message will appear at the top of the screen, confirming the successful completion of the registration 
process. In this particular case, the device name is “edgex05”, while the address and port are specified as “192.168.0.24:4327”.

Fig. 22 shows the main page of the edge server. This page lists the information of registered edge gateways and IoT devices. Each 
physical object in the network is virtualized and represented as a card. The physical objects and cards are represented in a one-to-one 
relationship. The main page allows users to check the execution status of physical objects in real time. The colour of the edge of the 
card indicates the execution status of the physical object for the edge gateway. Green indicates that the object is functional, while 
blue indicates that it is non-functional. The name and address of the object can be checked through the text displayed on the card. 
The edge gateway is represented as a computer-shaped icon, while the IoT device is represented as an icon that looks like a processor. 
16

The resources provided by IoT devices are also displayed in text. There are 3 edge gateways and 8 registered IoT devices.
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Fig. 19. Worker information sensing device configuration profile.

Fig. 20. (a) Edge gateway execution testbed environment. (b) Worker safety inference system main display page.

The device monitoring screen allows users to check the running status of the edge gateway, the basic information of the platform 
running on the edge gateway, and the information of the connected device. To do this, users can simply hover their mouse over the 
corresponding item. Fig. 23 shows the result screen for checking detailed information in a popover.

When a user clicks on the name of a mirrored object card, it is converted to a screen that displays detailed information. Fig. 24

shows the detailed information for the edge gateway “edgex05”. The detailed location information is drawn on the map using the 
IoT device location information. The map not only shows the location of the edge gateway, but also basic information about it. In 
the upper right corner, there is a small widget that numerically expresses the number of connected IoT devices. If a user clicks on 
one of the listed IoT devices, it will move to a screen that displays detailed information about the corresponding device.

The edge server provides detailed information about IoT devices and edge gateways. Fig. 25 shows detailed information about an 
IoT device that collects load-related information. The device is connected to the edge gateway “edgex05” and the collected data can 
17

be checked through the bar chart below. Location information can also be found on the map.
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Fig. 21. Building information sensing device registration results.

Fig. 22. Registered sensing device monitoring and virtualization results.

Fig. 23. Registered sensing device status expression results.

Fig. 26 shows the weather-related data at the construction site. The weather-related data consists of temperature, precipitation, 
and wind. The bar chart on the left shows the 20 most recent data points for each of these variables. The bar chart on the right shows 
a safety value estimated through fuzzy logic. Different colours are used to distinguish each diagram, and appropriate labels are also 
used. The client can check the weather information and safety information at the same time on the screen.

Fig. 27 shows the worker-related data at the construction site. The worker-related data consists of heart rate and location. The 
bar chart on the left shows the most recent heart rate data for each worker. The bar chart on the right shows the most recent location 
data for each worker. The location data is used to display a marker on the map, and the worker’s health status can also be checked 
through the screen. This feature provides a convenient way to track the location and health status of workers simultaneously.

Fig. 28 shows the building-related data at the construction site. The building-related data consists of load, inclinometer, and 
strain. The bar chart on the left shows the 20 most recent load data points. The bar chart in the middle shows the 20 most recent 
18

inclinometer data points. The bar chart on the right shows the 20 most recent strain data points. The upper part of the screen shows 
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Fig. 24. Detailed information visualization for registered edge gateway of “edgex05”.

Fig. 25. Detailed information visualization for registered sensing device of load of building.
19

Fig. 26. Fuzzy logic results of weather.
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Fig. 27. Fuzzy logic results of weather.

Fig. 28. Fuzzy logic results of worker.

data-related information that constitutes the building, such as the building name, location, and type. The bar chart below is a safety 
value estimated through fuzzy logic. Different colours are used to distinguish each analysis, and appropriate labels are also used. The 
client can check the building information and related safety information at the same time on the screen.

Fig. 29 shows the safety numerical results of the construction site predicted using multi-layer fuzzy logic. The safety value of the 
construction site is predicted using fuzzy logic in consideration of the weather, the building condition, and the health condition of 
the workers. The safety value of each element and the final result is expressed as shown in the figure.

Workers on a construction site are exposed to different risk factors depending on the stage of construction. To more realistically 
reflect the safety of the construction site, weights are assigned to different construction stages. The construction phases of a construc-

tion site include temporary construction, machinery, concrete construction, exterior and interior construction, and finishing work. 
For the convenience of the user, each construction stage is represented by a radio button in the upper left corner of the screen. The 
corresponding result can be seen by selecting the appropriate radio button. The system returns a weight-based safety index result 
generated by inputting a safety index and a weighted value for the selected construction stage. A bar chart is used to represent the 
numerical value, the colour is generated randomly, and the latest 20 safety index results are shown. Fig. 30 shows the weight-based 
construction site safety index for the temporary construction phase.

To prevent construction accidents, past accident data is used to establish safety measures. Due to the large scale and one-time 
nature of construction projects, the data is prepared as text documents. It is expected that the creation, correction, deletion, and 
inquiry of construction safety documents will be useful for construction projects. As shown in Fig. 31, construction site accident data 
20

is displayed in a table. Since the data cannot all be displayed on the screen at once, users can scroll left, right, up, and down to view 
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Fig. 29. Fuzzy logic results for integrated safety index.

Fig. 30. Safety index results in the temporary construction phase of the worker safety inference system.

it. The figure is divided into two parts: (a) and (b). In Figure (a), there are create, change, and delete buttons on the upper left of 
the table. These buttons provide corresponding functions. At the top left of the table is a number that indicates the number of data 
points displayed at once. There is also a search function that allows users to search for desired information from the data stored in 
the database. Figure (b) is the last part of Figure (a) and shows the total number of data points stored in the database, as well as the 
number and pages of data currently being displayed.

Fig. 32 shows the screen that appears after clicking the Update button. When a user selects the row of data they want to change 
and clicks the Update button, the following screen pops up. The selected information is listed in the pop-up window, and the user 
can modify any necessary parts. Since there is a lot of data, the figure is divided into two parts: (a) and (b). When the user is finished 
editing, they can click the Update button in Figure (b) to save their changes, or they can click the Cancel button to discard their 
changes.

Fig. 33 depicts the screen that appears after clicking the Create button. When a user clicks the Create button, the following screen 
pops up. All of the columns necessary to create new accident data are listed with default values, so the user can enter data by 
referring to the default values. Since there is a lot of data, the figure is divided into two parts: (a) and (b). When the user is finished 
creating the new data, they can click the Create button in Figure (b) to save the data to the database, or they can click the Cancel 
21

button to discard their changes.
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Fig. 31. Construction accidents history data results.

Fig. 32. Construction accidents history update function page.

6. Performance analysis for proposed worker safety inference in construction site

Fig. 34 shows the delay times for retrieving data from an IoT device. There were a total of 20 test results. The delay times for all 
experiments except for the first and seventh were less than 30 milliseconds.

The safety index is derived from data collected from the edge gateway. The data is fed into a multi-layered fuzzy logic system, 
which computes the worker’s overall safety index. The time taken by the system to compute the output of the safety index is shown 
22

in Fig. 35. The highest recorded time is 1 second, and the average is 0.4 seconds.
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Fig. 33. Construction accidents history create function screen.

Fig. 34. Delay time statistics for retrieving data from IoT device.

Fig. 35. Process time statistics for inference worker safety index in construction site.

Fig. 36 shows the results of predicting the safety of a construction site. The safety value is an integrated numerical value that is 
output using the primary predicted value, which is measured based on the weather, buildings, and worker data at the construction 
site. Different types of numerical values are used to classify each value, and a total of 20 prediction results are shown in the chart. 
Although the input values for weather, buildings, and workers fluctuate, the experimental results suggest that the safety result value 
23

is always close to 5.
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Fig. 36. Comparison of each attributes safety index in construction site.

7. Discussion

The framework developed in this study takes a proactive approach to tackle the data management challenge. By leveraging edge 
computing principles, our system shifts data processing closer to the data source, alleviating the load on centralized data man-

agement systems. This design choice not only enhances system scalability but also addresses potential data processing bottlenecks. 
Moreover, our framework’s architecture is intentionally designed for compatibility with emerging data management technologies 
and standards. Recognizing the importance of adaptability to future developments, we plan to explore collaborations with experts 
in data management to refine our methods and seamlessly integrate our system into evolving data management practices. Despite 
the positive outcomes and significant contributions of our multi-layered fuzzy logic framework in enhancing construction site safety, 
it’s important to acknowledge inherent limitations. While our system comprehensively considers factors such as weather conditions, 
structural stability, and worker well-being to assess site safety, it’s important to recognize that other external variables may also 
influence safety. Notably, our model doesn’t explicitly encompass factors like equipment malfunctions, external security threats, and 
unforeseen emergencies, which could impact overall safety. Additionally, the accuracy and reliability of the safety index depend 
on the quality of data from IoT devices. These limitations highlight the need for continuous advancements in data technology and 
comprehensive modelling to enhance the dependability and breadth of our framework.

8. Conclusions

The construction industry is renowned for its complex and challenging nature, necessitating robust safety management systems. 
To address this imperative, we advocate the implementation of an innovative on-site correspondence safety index, underpinned 
by multi-layer fuzzy logic, to enhance the safety of construction workers. Our comprehensive approach involves the integration of 
edge computing and IoT devices to monitor the construction site’s environmental conditions. By embracing edge computing, we 
ensure optimal fulfilment of IoT device requirements. Leveraging temporary storage, we efficiently manage collected data, while the 
transparency protocol facilitates seamless communication among diverse IoT devices. The culmination of our efforts materializes in 
the form of a multi-layer fuzzy logic controller, pivotal in determining the safety index of the construction site. As we look ahead, 
our strategic trajectory encompasses the practical deployment of the system within a genuine construction site context, affording us 
a comprehensive evaluation of its performance and efficacy. Through these advancements, we strive to contribute to the ongoing 
enhancement of construction safety management practices.
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