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Abstract Introduction: The study objective was to build a machine learning model to predict incident mild
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cognitive impairment, Alzheimer’s Disease, and related dementias from structured data using admin-
istrative and electronic health record sources.
Methods: A cohort of patients (n5 121,907) and controls (n5 5,307,045) was created for modeling
using data within 2 years of patient’s incident diagnosis date. Additional cohorts 3–8 years removed
from index data are used for prediction. Training cohorts were matched on age, gender, index year,
and utilization, and fit with a gradient boosting machine, lightGBM.
Results: Incident 2-year model quality on a held-out test set had a sensitivity of 47% and area-under-
the-curve of 87%. In the 3-year model, the learned labels achieved 24% (71%), which dropped to 15%
(72%) in year 8.
Discussion: The ability of the model to discriminate incident cases of dementia implies that it can be
a worthwhile tool to screen patients for trial recruitment and patient management.
� 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Accurate prediction of future onset of Alzheimer’s dis-
ease or related dementias (ADRD) has several important
practical applications. In particular, it facilitates the identifi-
cation of individuals who are at high risk of developing
ADRD to support the clinical development of novel treat-
ments. Commonly, patients are identified after they have
already experienced significant neurodegeneration. Predic-
tive models that can identify patients who will subsequently
develop dementia might create the opportunity for such per-
sons to be evaluated for potential contributors to cognitive
impairment (e.g., high-risk medications, depression, medi-
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cal illnesses), participate in prevention-based interventions,
as well as identify candidates for clinical trials. Persons pre-
dicted to be at risk can also be offered the opportunity for
more thoughtful planning for the future. Finally, predicting
the onset of ADRD can be very helpful for identifying indi-
viduals who are at risk of institutionalization. Community
support services may help to delay institutionalization, as
well as help families to cope with the host of planning issues
raised by the loss of independence resulting from dementia
[1].

A number of prior dementia risk models have been pub-
lished in the peer-reviewed literature [2–10]. These have
been shown to have moderate discriminatory capabilities
(area under the curve ranging from 0.60 to 0.78). Most of
these studies used clinical data for model estimation that
limits their generalizability to other settings. Additionally,
these prior studies do not directly address a key
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assumption of supervised machine learning methods—are
the labels on the data correct? For ADRD, we know that
the rules used to label disease onset are error prone due to
undercoding, provider variation, and other factors. This
raises numerous questions for the application of machine
learning. Would a model cement in place current non-
optimal diagnostic practices if it uses the raw labels? To
what extent is moderate model quality due to erroneous la-
bels versus other limitations of the modeling process?
What can be done to enhance the quality of the labels before
applying the machine learning models?

This paper extends previous research by basing model
estimation on a very large integrated dataset of medical
claims and electronic health record data, as well as the use
of more sophisticated machine learning estimation methods.
In particular, we utilize label learning methods designed to
address the inaccuracy of diagnostic coding typically found
in administrative claims and electronic health record (EHR)
datasets. We hypothesized that the use of larger, more com-
plex data, label learning, and sophisticated machine learning
methods lead to substantial improvements in predictive al-
gorithms for dementia, that is, raising sensitivity to 25% or
more over the 16% result of Nori [10].
2. Methods

This study used de-identified administrative claims and
EHR data between 2007 and 2017 from the OptumLabs�
DataWarehouse (OLDW) [11]. The database contains longi-
tudinal health information on enrollees and patients, repre-
senting a diverse mixture of ages, ethnicities, and
geographical regions across the United States. The claims
data in OLDW includes medical and pharmacy claims, lab-
oratory results, and enrollment records for commercial and
Medicare Advantage enrollees. Since this study involved
the analysis of preexisting, de-identified data, it was exempt
from Institutional Review Board approval.

The study dates from 1/1/2007 to 12/31/2017 coincide
with the earliest date that EHR data is available, and the
end of the latest year after the project was initiated. Patients
are 45 years old or more on their confirmation date.

The outcome variable of all the cohorts is an incident
diagnosis of ADRD, including mild cognitive impairment
(MCI). The study chose this mixed set of diagnoses because
of the confusion in patient presentation among these condi-
tions that leads to inaccurate or incomplete coding of inci-
dent disease [12]. In this paper, we adopt a label learning
methodology designed to address this issue [13]. Full details
on the medical coding and rules used to establish the
outcome variable and the cohorts are in the Supplementary
Material A. Fig. 1 provides the attrition table for the struc-
tural EHR (SEHR) cohort in the label learning phase.
Table 1 provides sample sizes and summary statistics for
each of the data sets. The SEHR, EHR-only subset is less
than 0.2% of the data (N 5 8644) and omitted in Table 1
as a non-representative subset but included in the analysis.
The remainder of this section is an overview of the data sets.

This study compared models estimated using three test
data sets to understand better how clinical data adds infor-
mation to the diagnosis. The simplest data set is claims-
only. This data set uses 2 years of continuous enrollment
in medical and pharmacy benefits. It uses only administra-
tive data, not EHR data. The SEHR data set also uses
2 years of continuous enrollment exactly as the claims-
only data, but it adds the cognitive testing inclusion rule
and adds the structured EMR diagnoses and prescriptions
written as data for analysis. The last cohort is an Open-
World dataset that uses administrative data and EMR
data without continuous enrollment. In place of continuous
enrollment from a benefits file, this cohort uses a health
care encounter in a calendar year as an indication of a pa-
tient’s ability to access health care services. Consecutive
years of encounters were used in place of 2 years of contin-
uous enrollment. Everyone in the Open-World cohort must
have two encounters (one in each year), but the other two
cohorts only have one or more. Within this Open-World
cohort are three distinct sets of patients; those with only
claims data, those with only EHR data, and those with
mixed data sources. Complete descriptive tables on each
of the prediction cohorts are provided in the
Supplementary Material B.

In all cohorts, the data included claims’ diagnoses (ICD-
10 and ICD-9 codes), NDC codes for pharmacy claims,
procedure codes, and demographics (age, gender, and utili-
zation measured as unique service days). The study needed
to use ICD-10 and ICD-9 codes because the time frame
included the transition from ICD-9 to ICD-10. All ICD-10
codes were mapped back to ICD-9 codes before creating
the variables using the CMS mappings [14]. The CPT codes
were limited to radiology (7*), psychiatric interviews
(908*), or neurological testing (961*).

In the SEHR and Open-World cohorts, the EHR data pro-
vided diagnosis codes, procedure codes, and prescriptions
written in a structured format; no clinical notes were used.
These EHR data are merged with the claims data without dif-
ferentiation.

In the SEHR 2-year incident cohort, there are 13,586
unique medical codes available for the analytic models.
Table 1 shows that the Open-World data skew older, as
expected, due to more Medicare-eligible patients. The
Open-World data subsets show diversity in the prevalence
of cardiovascular disease and mood disorders due to the
combination of 2 required visits (more than Claims or
SEHR) and missingness of some visits in the OW-EHR
and OW-Mixed sets.
2.1. Analytic Methods

The study uses two stages of prediction to predict ADRD
over a range of 3 to 8 years prior to incident diagnosis, which
was determined by having a 2-year clean period. This



Fig. 1. Attrition of the two-year cohort into the training, validation and test data.
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process is inspired by semi-supervised learning, where a
small set of labeled data is used to create a model to predict
data labels [13]. This model is applied to a much larger set of
unlabeled data to create labels, and then the larger data set
with predicted labels are used to create more accurate pre-
dictive models. The additional size of the second model al-
lows more accuracy on the same task.

We adopt this two-stage method not to use more unla-
beled data, but to improve the incomplete and error-prone
case and control labels created from claims and EHR data
[12]. These data sources underreport patients with the dis-
ease, implying there are controls that should be cases; in
other instances, cases may be mislabeled. By modeling the
cases and controls at the time of diagnosis, we create a
consistent probability label for all patients—consistent,
meaning that two patients with the same data profile have
the same fitted value from the model. This overcomes a
key issue of provider variation in recording diagnoses for
the patients. This provider variation can undermine the qual-
ity of the machine learning by embedding too much noise in
the outcome.

In this study, we alter the standard semi-supervised ma-
chine learning method by adding a time component. In this
work, the first stage of label learning creates a propensity
model of a patient being like the incident diagnosed patients
using data in a two year window ending at the index date; the
Table 1

Data source sample sizes and summary statistics

Cohort Subset N Age mean (SD)

Encounters

mean (SD)

Claims ClaimsOnly 5,640,637 60.0 (10.7) 10.7 (21.6)

SEHR ClaimsOnly 4,810,730 59.8 (10.6) 10.6 (21.0)

SEHR Mixed 609,578 61.7 (11.3) 11.3 (29.4)

Open-World ClaimsOnly 8,348,496 60.4 (10.7) 10.7 (24.1)

Open-World EHROnIy 7,276,426 62.6 (11.4) 11.4 (17.4)

Open-World Mixed 1,602,898 60.6 (10.7) 10.7 (27.4)
second stage of prediction then uses these propensity scores
to update the outcome for a model using data in windows for
years 3 and 4, 4 and 5, up to 8 and 9 years removed from the
patient’s index date (i.e., 6 different new models).

We set the new outcome labels based on the details of the
inter-quartile range of the case’s calibrated scores in the la-
bel learning model. Patients scoring below the 25th percen-
tile of the case’s scores are set to controls, and those above
the 75th percentile are set to cases. More simply, we reset
the labels of the least likely cases to be controls, and most
likely controls to be cases. Because this label change is per-
formed based on the percentiles of the cases, the thresholds
wind up changing approximately 1% of all scores (50% in
2% prevalent cases). In a clinical setting, one could choose
the lower and upper threshold of scores to reflect the eco-
nomics of these choices using the profile of the learned label
distribution.

All model fitting is performed with LightGBM [15].
LightGBM is an open-source implementation of a gradient
boosting framework that uses a sequence of trees to solve
classification or regression models. Details of the variable
selection and model fitting and post-fitting calibration pro-
cesses are in the Supplementary Material C. Special care
was taken, so the process is automated and simple. The
same fitting steps are applied to the label learning and pre-
diction stages.
Case

prevalence, % Female, %

Cardiovascular

disease prevalence, %

Mood disorder

prevalence, %

2.1 52.8 46.2 14.6

2.1 52.3 45.1 13.9

3.5 56.2 55.1 19.3

2.7 54.7 43.9 14.4

3.7 59.0 34.2 14.1

4.1 57.6 47.7 19.1



Table 2

Label Learning Model results by age group

Age group Sensitivity AUC Lift True positives False positives True negatives False negatives Case, % Case count Total count

45,55 0.29 0.89 94.0 403 977 444,939 977 0.31 1380 447,296

55,60 0.34 0.90 63.8 325 622 175,999 622 0.53 947 177,568

60,64 0.39 0.90 48.8 374 583 117,945 583 0.80 957 119,485

64,70 0.38 0.88 24.0 844 1396 139,148 1396 1.57 2240 142,784

70,75 0.43 0.85 10.7 1499 1998 81,507 1998 4.02 3497 87,002

75,80 0.49 0.83 5.2 2722 2818 49,961 2818 9.50 5540 58,319

80,99 0.53 0.81 2.9 5205 4634 39,639 4634 18.18 9839 54,112

Summary 0.47 0.87 20.9 11,372 13,028 1,049,138 13,028 2.25 24,400 1,086,566

Abbreviation: AUC, area-under-the-curve.
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The label learning model is trained only on the SEHR
data. This data set was chosen because it is nearly the
same as the claims-only data (so it is simple to collect),
and its use of cognitive tests may increase the accuracy of
the index date versus the claims only data. This trained
model is used to score the Claims-only and Open-World
data sets to create their learned labels.

Predictive models are fit to the SEHR, Claims-Only, and
Open-World cohorts separately. For the Open-World cohort
model, quality assessments are computed on the subsets of
patients who have claims-only data, EHR-only data, and
mixed data. These subsets provide additional data to under-
stand how the model may generalize to various data inputs.

To evaluate the results, we used an array of comparisons.
First, we used a baseline of predicting the original label from
each data set, that is, each cohort, and each time period, 18
models in all. Second, we fitted each model to the learned la-
bels using the same process.

A direct comparison of the results is not obvious. The two
models for a single data set have changed their outcomes and
the prevalence of their outcomes. The degree of change de-
pends on the survivorship of patients from the label learning
Table 3

Comparison of onset model quality for original versus learned labels

Original labels L

Prediction

threshold

Sensitivity of

ADRD

Specificity of

ADRD

Positive

predictive

value of

ADRD

Proportion of

cohort

over threshold

P

t

Choosing by threshold greater than

0.75 0.060 1.000 0.857 0.002 0

0.50 0.180 0.998 0.681 0.006 0

0.20 0.388 0.987 0.405 0.021 0

Choosing by sensitivity

0.102 0.50 0.971 0.282 0.040 0

0.007 0.90 0.545 0.043 0.465 0

0.004 0.95 0.325 0.031 0.681 0

Choosing by specificity

0.064 0.572 0.95 0.209 0.061 0

0.223 0.353 0.99 0.448 0.018 0

0.610 0.128 0.999 0.747 0.004 0

Abbreviation: ADRD, Alzheimer’s disease or related dementias.
period into the time period of the prediction. While many
comparisons could be computed, in the end, changing the la-
bels in this data-driven way would be similar to changing the
way the inclusion rules are computed, then comparing model
fits.
3. Results

In the label learning model, test data held out from the
same data source shows an excellent fit of 87% area-un-
der-the-curve (AUC) and a sensitivity of 0.47 (Table 2).
Since AUC can be a misleading indicator of fit as it tends
to perform very well in highly unbalanced samples, we
also computed the sensitivity of the models. The study
uses multiple thresholds to compute the sensitivity within
the model because of the wide range in prevalence in the
outcome across the age groups. In each age group, the model
chooses the thresholds to be the age-based case prevalences.
Choosing the threshold by case prevalence forces false pos-
itives and false negatives to be equal, which in turn forces
sensitivity to equal the positive predictive value
(Supplementary Material C). From these age group
earned labels

rediction

hreshold

Sensitivity of

ADRD

Specificity of

ADRD

Positive

predictive

value of

ADRD

Proportion of

cohort over

threshold

.75 0.075 1.000 1.000 0.002

.50 0.283 1.000 1.000 0.006

.20 0.619 0.991 0.604 0.021

.328 0.50 0.999 0.926 0.011

.040 0.90 0.921 0.196 0.096

.031 0.95 0.893 0.160 0.124

.061 0.830 0.95 0.262 0.066

.189 0.634 0.99 0.576 0.023

.326 0.503 0.999 0.916 0.012



Table 4

Sensitivity (area-under-the-curve) scores over different time windows

Time window Outcome label SEHR OW-C OW-E OW-M Claims

Label Learning Original 0.47 (0.87) 0.49 (0.87) 0.41 (0.83) 0.50 (0.86) 0.46 (0.87)

3 year Original 0.26 (0.70) 0.29 (0.70) 0.26 (0.67) 0.29 (0.68) 0.23 (0.69)

3 year Learned 0.24 (0.71) 0.28 (0.73) 0.27 (0.72) 0.30 (0.72) 0.24 (0.71)

4 year Original 0.27 (0.67) 0.29 (0.68) 0.26 (0.66) 0.29 (0.66) 0.25 (0.69)

4 year Learned 0.21 (0.68) 0.27 (0.72) 0.26 (0.72) 0.29 (0.71) 0.20 (0.71)

5 year Original 0.25 (0.64) 0.27 (0.63) 0.24 (0.61) 0.26 (0.62) 0.25 (0.67)

5 year Learned 0.22 (0.66) 0.24 (0.71) 0.21 (0.71) 0.25 (0.70) 0.23 (0.68)

6 year Original 0.26 (0.68) 0.27 (0.65) 0.23 (0.64) 0.27 (0.64) 0.25 (0.69)

6 year Learned 0.22 (0.67) 0.24 (0.69) 0.23 (0.69) 0.25 (0.69) 0.23 (0.69)

7 year Original 0.25 (0.65) 0.25 (0.67) 0.21 (0.64) 0.26 (0.66) 0.26 (0.68)

7 year Learned 0.22 (0.67) 0.21 (0.69) 0.20 (0.67) 0.22 (0.68) 0.18 (0.68)

8 year Original 0.25 (0.63) 0.25 (0.63) 0.22 (0.60) 0.28 (0.62) 0.24 (0.59)

8 year Learned 0.15 (0.72) 0.21 (0.65) 0.21 (0.63) 0.25 (0.66) 0.18 (0.70)

Abbreviations: SEHR, structured electronic health record data; OW-C, Open World claims only data; OW-E, Open World EHR data; OW-M Open World

mixed data.

Table 5

Top 10 Features that explain the model prediction in Label Learning*

Type of variable Code Time window (days) Code description Percent gain Cumulative gain

icd9 78097 730 Altered Mental Status 7.2 7.2

cpt4 70551 730 Magnetic Resonance (e.g., Proton) Imaging,

Brain (including Brain Stem); Without

Contrast Material

6.4 13.6

etg 319900 60 Neurological Diseases Signs & Symptoms 4.4 18.0

cpt4 70450 730 Computed Tomography, Head Or Brain;

Without Contrast Material

4.2 22.3

cpt4 70551 60 Magnetic Resonance (e.g., Proton) Imaging,

Brain (including Brain Stem); Without

Contrast Material

4.0 26.3

cpt4 96118 730 Neuropsychological Testing (e.g., Halstead-

reitan Neuropsychological Battery,

Wechsler Memory Scales And Wisconsin

Card Sorting Test), Per Hour Of The

Psychologist’s Or Physician’s Time, Both

Face-to-face Time Administering Tests To

The Patient And Time Interpreting These

Test Results And Preparing The Report

3.4 29.7

etg 319900 730 Neurological Diseases Signs & Symptoms 2.4 32.1

cpt4 96116 730 Neurobehavioral Status Exam (clinical

Assessment Of Thinking, Reasoning And

Judgment, e.g., Acquired Knowledge,

Attention, Language, Memory, Planning

And Problem Solving, And Visual Spatial

Abilities), Per Hour Of The Psychologist’s

Or Physician’s Time, Both Face-to-face

Time With The Patient And Time

Interpreting Test Results And Preparing

The Report

2.4 34.5

etg 239300 730 Psychotic & Schizophrenic Disorders 2.3 36.8

cpt4 96118 60 Neuropsychological Testing (e.g., Halstead-

Reitan Neuropsychological Battery,

Wechsler Memory Scales And Wisconsin

Card Sorting Test), Per Hour Of The

Psychologist’s Or Physician’s Time, Both

Face-to-face Time Administering Tests To

The Patient And Time Interpreting These

Test Results And Preparing The Report

2.3 39.1

*Additional features reported in Supplementary Material D.
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assignments, the global model quality measures can be
computed. Table 2 shows the label learning model quality
per age-group as fit to the original labels. The model per-
forms best in the elderly (0.53 sensitivity, 81% AUC), where
the prevalence and health care utilization is highest and has
the least sensitivity in the youngest. However, model
discrimination, as measured by AUC, is highest in the pop-
ulations less than 70 years old, and least in those over 70.

Table 3 shows how the model fit to the original labels can
be used with different thresholds and measures in the test
data. The thresholds are for calibrated scores; they reflect
the fraction of cases in the raw score neighborhoods. Adja-
cent to the original label results is the result for changing
only the outcomes to the learned labels while keeping the
fitted values the same. This demonstrates the large improve-
ment in the quality measures when changing the labels. This
is not to say a model fit to the learned labels would have this
performance; the data for the prediction models is in
Table 4.

Tables 2 and 4 also show the model lift statistic. Lift is the
ratio of sensitivity to the prevalence and better highlights im-
provements in sensitivity for low prevalence models.

The label learning model is also used to score data from
claims-only and three subsets of the Open-World data,
claims-only, EHR-only and mixed (OW-C, OW-E, and
OW-M) (Table 4). These 4 tests show the sensitivity de-
grades only slightly for OW-E (0.41, 83%) and claims-
only (0.46, 87%), and improves in OW-C (0.49, 87%) and
OW-M (0.50, 86%). The OW-E cohort has the fewest en-
counters per member due to missingness, so the lower qual-
ity of that model is understandable.

As the time horizon grows from 3 to 8 years, the model
accuracy falls as the patient population size declines as fewer
incident patients are available, and the number of medical
encounters falls.

Fitting to the learned labels generally results in slightly
lower sensitivity but better AUC values (Table 4). This holds
true in each data set and across the years.

Table 5 reports the top ten features in the label learning
model. These include several codes indicating neurological
testing, presence of neurological diseases, and diagnoses
of altered mental status and presence of psychotic and
schizophrenic disorders. Details on other features in the
model are provided in the Supplementary Materials A–D.
4. Discussion

The results presented in this paper contribute to a growing
literature on dementia risk models, although relatively few
have used claims or EHR data. A recent systematic review
of dementia risk prediction models [16] found models that
could be grouped into five categories: (1) demographic fac-
tors only; (2) cognitive-based (cognitive test scores); (3)
health variables and risk factors; (4) genetic risk scores;
and (5) multivariable models that combined demographic
with health and lifestyle factors. However, of the 21 models
reviewed, only four used model validation techniques by
testing the models on different data than was used for esti-
mation. Consequently, it is difficult to know how the models
would perform in other settings.

Previously, traditional regression modeling techniques
have been applied to clinical data to successfully identify
early cases of ADRD [17], to cluster patients into fast versus
slow progression sub-types [18], to distinguish mild cogni-
tive impairment or normal aging from early dementia [19],
and to assist in the interpretation and clinical significance
of findings from neuroimaging studies [20–24].

Recently, administrative claims data have been used to
develop dementia risk models with performance similar
to other models in the published literature [9,10]. Models
using claims data are more widely available for large pop-
ulations, offering the potential for their practical use in
screening and identifying patients. These studies also
included validation components. Our study used label
learning methods that address dementia undercoding and
miscoding. In one study, Alzheimer’s disease and related
dementias were recorded as a diagnosis for less than
25% of patients with moderate to severe cognitive impair-
ment [25]; and in another, physicians were unaware of
cognitive impairment in more than 40% of their cogni-
tively impaired patients [26]. Among participants in a
Medicare Alzheimer’s Disease Demonstration, less than
20% of participants were classified with dementia of the
Alzheimer type based on a year’s worth of claims data,
although 68% carried that diagnosis upon referral [27]. A
review of seven studies examining the extent to which de-
mentia is omitted as a cause of death, found that the report-
ing on death certificates ranged from 7.2% to 41.8% [28].

This prior work [9,10,17–24] does not address the issue of
errors in labeling the patients as cases and controls. When a
patient’s diagnoses are incorrectly assigned, the machine
learning algorithm will learn the wrong patterns. As this
study shows, assigning a learned label can improve some
measures of model quality, but there remains an issue of
ground-truth about the assignment of the new labels.
Improving methods to assess diagnostic accuracy, as well
as promoting cognitive data collection during clinical en-
counters, should be an area of further active research.

Table 3 shows that different thresholds can serve different
purposes. Awide-ranging public service announcement can
target 90% of at-risk people by contacting less than half the
population (46.5%), or if one wishes to use the learned la-
bels, the same 90% outreach can be done by reaching out
to 9.6% of the population. A much more targeted outreach
with 99.9% specificity would have 74.7% positive predictive
value, or 91.6% PPV in the learned labels.

As with recent studies using claims data, the current study
includes a validation component. The use of the two-step la-
bel learning technique, combined with more sophisticated
machine learning estimation methods [13,15], results in a
model with a sensitivity of 47% and AUC of 87%
(Table 2). Model performance is strong across all age
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groups, but the lift is greatest in the youngest age groups
(e.g., improvement of 94.7%). This is particularly important
in using the models to identify potential patients for recruit-
ment into clinical studies as this results in very substantial
improvements in the efficiency with which preclinical-
early stage disease potential study subjects can be identified,
as well as potentially detecting acute progression. Model
performance is consistent across datasets and time horizons
(Table 4), with the exception of years 7 and 8, where the
reduction in data volume results in deterioration in perfor-
mance (Supplementary Material D).

Table 5 and Supplementary Material D identify the top
predictive features. The top ten predictors were dominated
by several codes indicating neurological testing, presence
of neurological diseases, signs and symptoms, and diagnoses
of altered mental status, and the presence of psychosis. De-
tails on other features in the model are provided in the
Supplementary Material D.

Although not appearing in the top ten features reported in
Table 5, evidence of vascular disease was represented among
the features explaining the top 80% of model prediction
(Supplementary Material D), which supports clinical data
suggesting an overlap of risk factors for cardiovascular dis-
ease with vascular dementia [29,30]. Mental health diagno-
ses and treatments were also prominent in both the top 10
features and the extended feature set (Supplementary
Table D.1). However, the association of dementia risk with
diabetes mellitus found in previous studies was not evident
among the top predictive features [30]. Anticholinergic
drug exposure has also been identified as a risk factor for de-
mentia [31]. Anticholinergic drugs figured prominently in
the list of top predictive features in our models as well
(Supplementary Material D).

Fitting the model to different outcome variables was per-
formed to address variation in diagnostic quality. The fits
show that the process can generate similar results at the pop-
ulation level, but that the learned labels are not a silver bullet
to creating excellent models. Changing the outcome variable
cannot address the issues of lack of precision in data collec-
tion that limit model feature quality, and therefore, model
performance. We call upon the clinical profession to place
greater emphasis on the accuracy of diagnostic information
that they enter into EHR systems and submit to payers for
reimbursement. Accurate diagnostic data is fundamental
for identifying patients for early clinical intervention, com-
munity support, financial planning, recruitment in clinical
trials, and other purposes.

Model performance can be improved in the following
areas. More precise rules for an incident disease that use pro-
vider specialty or more comprehensive confirmation rules
could increase label accuracy. Calibration of the fitted scores
can be enhanced using a smoothing model. Grid search for
optimal fits is inefficient. This grid search chose to optimize
to the sensitivity, but other objectives could give different re-
sults. Deep learning models can be used to fit the data,
enhancing the fit by exploiting the nonlinear nature of the
deep learning networks. Adding clinical data, like notes
and cognitive testing results, from the EHR system, can
add nuance that providers do not enter into structured codes.
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RESEARCH IN CONTEXT

1. Systematic review: A recent survey by Tang 2015
found that there are no dementia risk models that
rely solely on structured claims and EHR data, nor
do any use advanced machine learning methods.
Since that report, Albrecht 2018 and Nori 2018
have published regression models using claims
data, but not advanced machine learning models.

2. Interpretation: Model accuracy over 80% area-un-
der-the-curve and sensitivity over 40% is an indica-
tion that the model developed has utility to
prescreen patients for follow-up diagnosis, or eval-
uation for clinical trials. Evaluation of the model
across data sets with millions of patients and
differing enrollment criteria strengthens its general-
ization to data gathered from other settings. The
model quality is a substantial improvement over the
prior work using claims data alone.

3. Future directions: Additional progress will require
better methods, more patient and family data and bet-
ter clinical documentation to determine which pa-
tients are miss-identified in the source data.
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