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Abstract

Due to advances in automated image acquisition and analysis, whole-brain connectomes 

with 100,000 or more neurons are on the horizon. Proofreading of whole-brain automated 

reconstructions will require many person-years of effort, due to the huge volumes of data 

involved. Here we present FlyWire, an online community for proofreading neural circuits in 

a Drosophila melanogaster brain, and explain how its computational and social structures are 

organized to scale up to whole-brain connectomics. Browser-based 3D interactive segmentation 
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by collaborative editing of a spatially chunked supervoxel graph makes it possible to distribute 

proofreading to individuals located virtually anywhere in the world. Information in the edit history 

is programmatically accessible for a variety of uses such as estimating proofreading accuracy 

or building incentive systems. An open community accelerates proofreading by recruiting more 

participants and accelerates scientific discovery by requiring information sharing. We demonstrate 

how FlyWire enables circuit analysis by reconstructing and analysing the connectome of 

mechanosensory neurons.

INTRODUCTION

Electron microscopy (EM) is currently the only technique capable of reconstructing all 

connections in a nervous system. While the activity of large populations of neurons or even 

entire vertebrate brains 1 can be observed via calcium imaging, adult connectomes have been 

mapped for only one species, C. elegans 2,3. However, connectomes of more complex brains 

are now on the horizon. A milestone has been the recent release of a Drosophila hemibrain 

connectome 4. Part of a fly brain was imaged by EM and automatically reconstructed using 

deep learning. Errors in the reconstruction were corrected by 50 person-years of human 

proofreading to create a first draft of the hemibrain connectome.

The entire fly brain connectome would be of interest, because of the role of Drosophila 
melanogaster as a model organism for circuit neuroscience. Flies are capable of a 

wide array of complex behaviors, including social communication, aggression, spatial 

navigation, decision-making, and learning 5–9. While the hemibrain connectome is useful for 

Drosophila circuit neuroscience, circuits that extend outside the hemibrain volume cannot be 

reconstructed (Extended Figure 1).

Therefore, we have created FlyWire, an open online community for proofreading a 

connectome of a whole brain (flywire.ai). FlyWire is based on a previously released EM 

dataset of a full adult fly brain (FAFB) 10. While FlyWire is dedicated to the fly brain, it 

introduces several methods that should be generally applicable to whole-brain connectomics. 

The first is a data structure called the ChunkedGraph, which is the basis for proofreading. 

Like previous systems 11–14, FlyWire represents neurons as connected components in a 

graph of supervoxels (groups of voxels). A naive implementation of this underlying data 

structure would scale poorly to large datasets. The ChunkedGraph divides the graph spatially 

into chunks based on the supervoxels’ location in the dataset and adds a hierarchy of 

extra vertices and edges to cache information about connected components. We show that 

edit operations are over an order of magnitude faster than in systems relying on a naive 

implementation of the supervoxel graph. In addition, the ChunkedGraph enables real-time 

collaboration and stores the history of all edits.

FlyWire also has an open social structure. Membership in the community is open to 

everyone. Community members immediately share the results of proofreading with each 

other. In contrast, another effort for reconstructing circuits from the FAFB dataset is 

structured as a “walled garden” community 15,16, and members are selected to avoid 

conflicts between labs working on the same circuit. Rather than restrict membership, 

FlyWire attempts to avoid conflicts by enforcing sharing of reconstructions with attribution. 
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The hemibrain was reconstructed through a closed proofreading process that mobilized 

paid workers, and updated results are released to the public as the internal proofreading 

progresses 4. Our principle of openness was inspired by a previous project to reconstruct 

larval Drosophila circuits (A. Cardona, personal communication).

The walled garden community has historically used manual skeletonization to reconstruct 

neural circuits from FAFB 15,16. Since manual skeletonization is laborious, the walled 

garden community is starting to migrate to semi-automated reconstruction 17 based on 

combining automatically generated skeletons 18. FlyWire, in addition to being open, enables 

true 3D interactive proofreading of a volumetric segmentation.

Finally, in FlyWire, the accuracy of the automated reconstruction was boosted by realigning 

the serial section images using deep learning 19. In the published FAFB dataset, aligned with 

conventional computer vision algorithms 10, misalignments were numerous enough to be the 

dominant failure mode for automated reconstruction.

We estimate that FlyWire proofreading requires roughly 19 minutes of human effort per 

neuron. Using FlyWire we produced a complete connectivity diagram between known early 

mechanosensory neurons and discovered previously unknown connection patterns. FlyWire 

was also recently used to map the connectivity of Drosophila neurons related to a persistent 

internal state 20 and higher-order auditory neurons 21.

RESULTS

Neuron segmentation

We realigned the serial section images of the FAFB dataset10, and generated an automated 

segmentation (Extended Data Fig. 2). The automatically generated segments often show 

many or all of the expected parts of a fly neuron: a soma, dendrites, axon terminals, and a 

primary neurite (the usually unbranched proximal neurite connecting the soma to branching 

arbors downstream).

We examined reconstructions of well-known cell types before and after proofreading (Fig. 

1). The automated segmentation is often accurate to begin with (quantification below) and 

unique morphological features across the examined cells are visible without proofreading. 

Qualitative comparison between images of light microscopy-level stains of the giant fiber 

neurons 22 (Fig. 1 a,c,e) and a mushroom body APL neuron23 (Fig. 1 b,d,f) show that 

our semi-automated segmentation procedures are able to capture large enough portions of 

neurons to be easily recognizable.

Chunked supervoxel graph as data structure for proofreading

Proofreading consists of two basic operations: merging falsely disconnected segments and 

splitting falsely merged ones. For efficient editing of the automatically generated segments, 

we represent the segmentation as a supervoxel graph. Each graph node is a supervoxel, an 

atomic group of voxels that is never split (Fig. 2a,b). At any moment in time, the current 

segmentation is represented by the connected components of the supervoxel graph (Fig. 

2c). Two segments can be merged into one by adding an edge to the graph (Fig. 2d). One 
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segment can be split into two by removing edges (Fig. 2e,f). Users can place points on 

both sides of a proposed split (Fig. 2g) and our system identifies the edges that need to be 

removed to separate them. Our system deploys a max-flow min-cut algorithm operating on a 

local cutout of the supervoxel graph using predicted edge weights as capacities (Fig. 2h).

Scaling proofreading to a community demands that all users can access the latest state of 

the segmentation and that multiple users can work on the same neuron without introducing 

inconsistencies. Therefore, edits must be resolved quickly and visuals must be updated for 

the user. At the same time, older states of the segmentation must be accessible for review 

and publications. However, reads, writes, and computations on the supervoxel graph can be 

time-consuming, because they scale at least linearly with the size of the components. That 

is because edits have global effects on the connected components even though they only 

introduce local changes (Fig. 2f). Because of these challenges, no system for community-

based proofreading of entire neurons exists that scales to datasets as large as FAFB. Existing 

systems on smaller datasets restrict what proofreaders can work on 11 or do not allow open 

proofreading by a community 4.

We designed the ChunkedGraph data structure to address these challenges (Fig. 3a). The 

ChunkedGraph leverages the fact that edits only change a small region of a neuron, leaving 

the rest unchanged. It caches information about connected components spatially, allowing 

it to update components rapidly after edits, and restricts the part of the graph that needs 

to be accessed. For this, the nodes of the supervoxel graph are divided into spatial chunks 

(Extended Data Fig. 3). A supervoxel spanning chunk borders is carved into multiple 

supervoxels, each contained within a chunk. Each chunk also stores edges between the 

supervoxels in that chunk. We build an octree on top for storing the connected component 

information (Fig. 3b). In this tree, abstract nodes in higher layers represent connected 

components in the spatially underlying graph (Fig. 3b–d). Because the ChunkedGraph 

decouples regions of the same neuron from each other, regions unaffected by an edit do 

not need to be read and included into calculations, and changes only need to propagate 

up the tree hierarchy (Fig. 3c, Extended Data Fig. 4). Each segment is a tree, and the 

ChunkedGraph is a forest of all the segments.

The ChunkedGraph is initialized by ingesting the initial supervoxel graph created by our 

automated segmentation pipeline 24–26. Our pipeline creates supervoxels by grouping voxels 

that belong to the same cell with high confidence, according to the affinity-predicting neural 

network (Supplementary Figure 1) 26. Edges are added to the ChunkedGraph for every pair 

of neighboring supervoxels in the same segment. Edge weights are also available from the 

automated segmentation pipeline, and are ingested into the ChunkedGraph. Proofreading 

starts from this initial condition, and proceeds by adding and subtracting edges from the 

ChunkedGraph.

Visualization of segments in 2D and 3D

FlyWire provides several visualizations for users to find and correct segmentation errors 

(Extended Data Fig. 5a). Three orthogonal 2D cross sections of the grayscale EM image 

are available (xy, xz, yz). 2D cross sections of the segmentation are displayed in color, 

and can be overlaid on the EM images. FlyWire also displays a 3D rendering (mesh) of 
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selected segments. All of these visualizations utilize Google’s Neuroglancer software 27, 

which enables viewing of volumetric images in a web browser.

When a user interactively selects a supervoxel with a mouse click, the system rapidly 

displays all supervoxels belonging to the same segment within the field of view by 

searching the ChunkedGraph as follows. The search first traverses the tree from the selected 

supervoxel to the root node at the top level of the hierarchy. For mapping supervoxel to root, 

the server responded with a median time of 47 ms and 95th percentile of 111 ms (Fig. 3e, 

n=12,096). Once the search has reached the root, it proceeds back down the tree to identify 

all supervoxels connected to it within the displayed area, making use of the octree structure 

of the ChunkedGraph. For mapping root to supervoxels, the server responded with a median 

time of 48 ms and 95th percentile of 465 ms per displayed chunk (n=3,080,494). Such fast 

response times are crucial for a globally distributed system if every user is to see the latest 

state of the segmentation and no data are stored locally. The above times are server response 

times measured during FlyWire’s beta phase (graph with 2.38 billion supervoxels).

Proofreading by editing the supervoxel graph

Interactive proofreading (Fig. 2g) is implemented using the ChunkedGraph as follows. The 

user specifies a merge by selecting two supervoxels with mouse clicks. An edge between 

this pair is added to the supervoxel graph (Fig. 2d, Extended Data Fig. 5). Merge edits took 

940 ms at median, and 1841 ms at 95th percentile (n=4,612) (Fig. 3f). The user specifies a 

split operation by selecting supervoxels with mouse clicks (Fig. 2e,g). The system applies 

a min-cut algorithm to remove a set of edges with minimum weight that leaves the two 

supervoxels in separate segments (Fig. 2g,h). Split edits had a median time of 1,818 ms, and 

95th percentile time of 7,137 ms (n=2,497) (Fig. 3f).

After each edit, the ChunkedGraph generates new abstract nodes in higher layers (> 1, 

colored nodes in Fig. 3c and Extended Data Fig. 4b). Here, the tree is only traversed in its 

height and not its width because connected components in neighboring regions are cached 

in abstract nodes. We use the same abstraction for fast mesh generation of new components 

by restricting the application of costly and slow meshing algorithms (e.g. marching cubes) 

to single chunks. We only compute meshes from the segmentation for abstract nodes on 

level 2 (Extended Fig. 3d) and then stitch these to larger components according to the 

hierarchy such that each abstract node up to a predefined layer has a corresponding mesh. 

The ChunkedGraph dynamically generates instructions for which mesh files to load for a 

given component.

We compared the performance of the ChunkedGraph versus an equivalent naive 

implementation of the supervoxel graph (Fig. 3h,i). We measured two different parts of 

split operations: reading of edges to compute a split and the min-cut algorithm. The 

ChunkedGraph benefits from being able to restrict the operations to a subregion (Fig. 

3g), leading to orders of magnitude faster reading and calculations (Fig. 3h,i). The 

ChunkedGraph incurs a minor overhead only notable for very small components.

The ChunkedGraph allows concurrent and unrestricted proofreading by many users through 

serializing edits on a per-neuron level. Edits generate new, timestamped nodes on higher 
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levels (Fig. 3c, Extended Data Fig. 4b), allowing the retrieval of any older state of the 

segmentation by applying a time filter during tree traversal. Edits can only be applied to 

the latest version of the segmentation. We implemented the ChunkedGraph with Google’s 

BigTable 28, a low-latency NoSQL database. A user’s ability to view a cell from any 

timepoint in the proofreading process is helpful for reviewing one’s own work or the work of 

others (Fig. 4a). This is analogous to viewing past versions of a Wikipedia article, which are 

recreated using the edit history 29.

Extracting synaptic connections

With hundreds of millions of synapses in the fly brain 30, automated synaptic partner 

identification is required for connectivity analysis at scale. Several methods have been 

proposed for synapse detection in large EM datasets 30–35 but only a few solved the 

problem of partner assignments in polyadic synapses in the fly 30,34,36,37. FlyWire should 

be compatible with existing and future methods that identify synaptic partners and their 

pre- and postsynaptic sites. Furthermore, we imported the synapses identified in a study on 

the whole fly brain30 into our realigned coordinate space and made them available to the 

community.

A fly neuron consists of a thicker, microtubule-rich “backbone” and numerous thin “twigs” 
38 (Fig. 4a). The distinction can be subjective in borderline cases, but is useful in practice. 

The automated segmentation contains many small “orphan twigs” not assigned to any 

large neuronal object. Attaching orphan twigs to backbones is time-consuming and difficult 

because twigs contain thin processes. Therefore, we largely avoided correcting orphan twigs. 

The hemibrain project similarly avoids proofreading orphan twigs 4. This comes at some 

cost: synapses involving orphan twigs will be missing from the reconstruction. Fortunately, 

many fly neurons are redundantly connected, with up to hundreds of synapses between a 

connected pair 39. If omissions of synapses are statistically independent, then connections 

will be recalled with a probability that increases with the number of synapses involved 38.

We quantified synapses missing due to orphan twigs by evaluating the segmentation at 612 

randomly picked synaptic locations. For each of these synapses an expert judged whether 

the pre- and postsynaptic reconstructions were at a backbone or twig and whether the twig 

was attached to a backbone or orphan (Fig. 4b–d). We found that 40.6% of all postsynaptic 

and 78.2% of presynaptic twigs were attached to backbones. We expect our conservative 

proofreading to at least include all backbone and attached-twig segments in a proofread 

neuron leading to an estimate of 44.6% of synapses with pre- and postsynaptic segments 

attached after proofreading. Hence, major connections (>9 synapses, 99.7% with at least one 

synapse) and most minor connections with at least 3 synapses are maintained (83% with at 

least one synapse) 38,40.

For analysis, we assign synapses to neurons based on their pre- and postsynaptic coordinates 

(Fig. 4e) and release updated versions of the synapse table as proofreading progresses.

Quantification of proofreading effort and accuracy

To assess the effort required to proofread neuronal backbones, we proofread 183 neurons 

mostly with projections in early mechanosensory neuropils (antennal mechanosensory and 
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motor center (AMMC), wedge (WED), and ventrolateral protocerebrum (VLP)). Three 

different people in successive rounds were instructed to proofread backbones thoroughly. 

The number of corrections decreased after the first round (Fig. 5a); notably large corrections 

(volumetric difference > 1μm3) decreased from a median of 7 in the first round to medians 

of 1 and 0 in the second and third round (Fig. 5b).

To quantify the impact of the different proofreading rounds further, we next compared 

the reconstructions before each round to their state after the third round. We calculated 

F1-Scores with respect to volumetric completeness and correct synapse assignments (pre- 

and postsynaptic irrespectively) (Fig. 5c,d). One round of proofreading already recovered an 

accurate morphology and synapse assignment in most cells (median F1 Scores: volumetric: 

0.99, synapse-based: 0.99). We then explored a faster proofreading regimen, proofreading 

a random subset of these cells again, focusing only on major edits. This regimen took a 

median of 13 minutes per cell while recovering accurate reconstructions (mean proofreading 

time: 19.1 minutes, median F1 Scores: volumetric: 0.99, synapse-based: 0.99, Extended 

Data Fig. 6).

We further assessed the quality of the automated segmentation by comparing these 183 

neurons with a database of light microscopy-level images of fly neurons (FlyCircuit41) 

using NBLAST42(Extended Data Fig. 7a,b). We found matches in FlyCircuit for 174 triple-

proofread neurons. We asked for how many of these FlyWire’s automated reconstruction 

would have sufficed to find a correct match (Extended Data Fig. 7c,d). For 70% of the 

unproofread segments (122 out of 174), the best hit in FlyCircuit was from the same broad 

cell type as the best hit after proofreading (Extended Data Fig. 7e,f). Further, the exact hit 

was found within the top 10 matches for 71% of the neurons (123 out of 174).

Researchers can proofread to their desired level of accuracy; some have reported scientific 

benefits without any proofreading at all. For others it may be sufficient to proofread 

backbones but not twigs20.

Connections and subtypes in mechanosensory pathways

To validate FlyWire as a circuit discovery platform, we proofread and analyzed 178 

mechanosensory neurons (belonging to seven cell classes) in the AMMC, WED, and 

VLP neuropils in both hemispheres (Fig. 6a,b). These neurons were found based on their 

previously identified morphology and cell body location 43–47 (Supplementary Table 1).

Airborne mechanosensory stimuli activate receptor neurons in the Johnston’s Organ (JO) of 

the antenna, and JO neuron subtypes send broadly tonotopic projections to different zones 

within the AMMC 47,48. AMMC neurons in turn send projections to the WED and VLP 
44. We identified neurons with dendrites in AMMC zones A (AMMC-A1, AMMC-A2, 

GFN (giant fiber neuron)) and B (AMMC-B1, AMMC-B2), which receive inputs largely 

from JO-As and JO-Bs respectively 49. Although prior work identified only 10 AMMC-

B1 neurons per hemisphere 44,49, we identified 59 and 58 neurons in the left and right 

hemisphere, respectively, all with a B1 morphology (Extended Data Fig. 8). We additionally 

identified neurons belonging to cell types WED-VLP (aka iVLP-VLP 44) and WV-WV (aka 

iVLP-iVLP 44 or WED-WED 50).
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AMMC-B1 neurons respond strongly to sound frequencies present in conspecific courtship 

songs 51 and are thought to target WED-VLPs, based on the proximity of their processes 44, 

forming a putative pathway for courtship song processing. GFNs and AMMC-A1 neurons 

on the other hand, while responsive to song stimuli 43,50, are core components of the 

Drosophila escape pathway 52,53. We assessed whether there was any overlap between these 

two pathways and also looked for subtypes, based on connectivity and morphology, within 

each neuron class. To do this, we created a wiring diagram between all 178 identified 

neurons across both hemispheres (Fig. 6b,c, Extended Data Fig. 9).

Our analysis confirms previously proposed pathways between AMMC-A1 and GFN 54 

as well as AMMC-B1 and WED-VLPs 44. However, we found that only a minority of 

the AMMC-B1 neurons innervated WED-VLPs (left: 14 out of 59, right: 14 out of 58, 

Supplementary Table 1, Fig. 6d,e): two subgroups of AMMC-B1s targeted two subgroups 

of WED-VLPs. This partition of WED-VLPs was directly related to input from ipsilateral 

AMMC-A2s (Fig. 6d) and a morphological separation of their arbors (Fig. 6f). WED-VLP-1 

neurons receive convergent input from AMMC-B1–1 and ipsilateral AMMC-A2 neurons, 

positioning them to encode both sound stimulus motion energy (via A2) and directional 

sound frequency information (via B1) 51.

AMMC-B1 neurons all receive inputs from JO-B neurons 49, but we find they can be 

divided into at least 5 subtypes based on connectivity with other neurons (Extended Data 

Fig. 8, Supplementary Table 2). AMMC-B1–1 and AMMC-B1–2 neurons project to WED-

VLP neurons, AMMC-B1–4 neurons target only the WV-WV neurons, and AMMC-B1–

3 neurons send outputs to the GFN and AMMC-A1 neurons (Fig. 6e,g), suggesting the 

existence of cross-talk between the JO-B pathway (thought to be exclusive for processing 

courtship song) and the escape pathway (Fig. 6h). AMMC-B1-u (u for unidentified) neurons 

synapsed almost exclusively on neurons not included in our set of 178 neurons. We found 

that the axonal arbors of AMMC-B1–1, −2 and −3 striate the WED in both hemispheres, 

revealing how these subtypes make distinct connections (Fig. 6f). AMMC-B2 neurons 

receive input from ipsilateral JO-B neurons, are GABAergic, and proposed to sharpen the 

tuning of AMMC-B1 for sound frequencies 46; we found that they only target AMMC-B1 

neurons in the contralateral hemisphere (Fig. 6c, Extended Fig. 1a), suggesting a role in 

the spatial localization of sounds, a challenging problem for flies with their closely spaced 

antennal auditory receivers 55.

WV-WVs are GABAergic 44 with cell bodies in the center of the brain and symmetrical 

processes in both hemispheres - these neurons are therefore well positioned to provide 

feedback inhibition within the circuit. We identified a subgroup that targets GFN, AMMC-

A1 and AMMC-A2 neurons in both hemispheres (WV-WV-3) as well as a subgroup that 

strongly synapses onto WED-VLPs (WV-WV-1). Lastly, we identified a group (WV-WV-2) 

receiving input predominantly from AMMC-B1–2 and AMMC-B1–3 neurons but not from 

AMMC-B1–1 neurons (Fig. 6i). These three types of WV-WV neurons showed a correlation 

between the location of cell bodies and arborizations.

This analysis highlights the value of mapping connections across both brain hemispheres 

and supports the utility of EM connectomics in finding links between (previously considered 
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distinct) pathways, understanding how functional properties of different cell types converge 

via connections onto common downstream cells, and identifying distinctions in morphology 

and connectivity within known cell types.

Community organization

Users are currently being recruited from Drosophila labs. Professional scientists are 

inherently incentivized for productivity and accuracy because their own discoveries depend 

on their proofreading. Later on, we plan to expand recruitment to non-scientists.

During onboarding, users study self-guided training materials (“Training Materials” on 

https://flywire.ai, Supplementary Note 1, Supplementary Video 1), and practice proofreading 

in a “Sandbox” dataset. Users are granted proofreading privileges in the real dataset after 

passing an entry test. In Wikipedia, unqualified or malicious users may introduce mistakes 

into articles. However, even without tests the completeness and accuracy of articles in 

Wikipedia tends to increase over time as users detect and correct omissions or errors in 

articles; Wikipedia is approximately as accurate as traditional encyclopedias 56. FlyWire 

utilizes the same basic mechanism of crowd wisdom as Wikipedia, iterative collaborative 

editing, while adding a safety layer through entry-level testing and subsequent spot checks 

of proofreading quality.

Members must consent to follow the FlyWire community principles (https://flywire.ai), 

designed in consultation with the founders of other fly EM efforts in both larva and 

adult. These efforts (including FlyWire) all require that contributors must be contacted 

and credited, and provide an interface to retrieve contributor information. FlyWire’s most 

important principle is openness, allowing anyone to join, and (following training) edit any 

neuron. When using FlyWire reconstructions in a scientific publication, users must make 

their neurons “public” and available to all, for which we provide a public neuron viewer 

(as for the neurons in this publication, Supplementary Table 2). Careful credit assignment 

procedures attempt to make FlyWire fair while maintaining its openness.

DISCUSSION

FlyWire is an implementation of our proposal for an open community to proofread an 

automated reconstruction of the entire Drosophila melanogaster brain. Most of the neurons 

analyzed here have bilateral axonal projections, but a few have unilateral projections, 

supporting the value of analyzing the connectome across the two hemispheres. FlyWire’s 

completeness of the brain allows researchers to identify all partners of a neuron within the 

brain.

As a resource, FlyWire follows in the footsteps of other connectomics resources for 

Drosophila melanogaster such as the hemibrain 4 and the walled garden community. FlyWire 

builds on the openness principle of the previous project to reconstruct larval Drosophila 
circuits and advances over existing resources by combining this social structure with 

methods to enable proofreading of neurons across the whole brain.
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It is likely that each whole brain connectome will require proofreading by many people 

for years, in spite of increases in the accuracy of automated reconstruction. We propose 

that whole-brain connectomics for each animal species could benefit from a decentralized 

approach that crowdsources proofreading to the researchers of that species. This approach 

would make circuits available with zero delay, accelerating research. Researchers would be 

able to prioritize proofreading of their own circuits of interest, and researchers could choose 

to proofread to any accuracy level required by their own scientific questions.

Using the current segmentation’s mean backbone proofreading time of approximately 19 

minutes per neuron, and an estimate that the Drosophila brain contains approximately 

100,000 cells, a whole-brain connectome of these backbones with their existing twigs would 

require 16 person-years of proofreading assuming the use of automatic synapse detection. 

Ongoing improvements in both the automatic segmentation and the proofreading interface 

will reduce the number of errors further and make it possible to find and correct the 

remaining ones more rapidly. Proofreading may be sped up by future automatic detection of 

likely errors and suggestions of corrections 57.

At this writing, over 160 researchers from over 40 labs have been onboarded and trained 

for FlyWire, and membership is expanding. There are hundreds of labs studying Drosophila 
neural circuits worldwide, and the Drosophila research community has a long history of 

sharing and collaboration. Furthermore, the automated segmentation is now so accurate that 

research questions can be answered by only modest proofreading effort.

METHODS

Alignment

We started with a published aligned dataset 10 (v14). Using a previously described method 19 

we trained neural networks through self-supervision to predict pairwise displacement fields 

between neighboring sections. Here, every location stores a vector pointing to its source 

location. We introduced a smoothness regularization into the training to ensure continuous 

transformations. This prior was relaxed at image artifacts such as cracks and folds. We first 

trained a convolutional neural network to detect image artifacts from a manually labeled 

training set, then used the predicted masks to adjust the smoothness prior during training of 

the displacement field network. We combined the pairwise displacement fields to generate 

a displacement field for every section, and applied the result to the data to create a newly 

aligned stack.

Cross alignment registration and brain renderings

Our alignment created a vector field for transformations from FlyWire’s space (v14.1) to the 

original alignment space (v14). In order to transform data from v14 into v14.1 (e.g. synapses 

and brain renderings), we created an inverse transformation of the vector field at a resolution 

of 64 × 64 × 40 nm. Locations in v14 were transferred to v14.1 by applying the closest 

displacement vector from the inverse transformation.

The v14 brain rendering was acquired from the hemibrain website: https://

flyconnectome.github.io/hemibrainr/reference/hemibrain.surf.html. The v14 whole brain 
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neuropil rendering was acquired from the virtual fly brain website: https://

fafb.catmaid.virtualflybrain.org/.

Segmentation ground truth

We made use of the publicly available ground truth from the CREMI challenge (https://

cremi.org) to train our convolutional neural network for predicting affinities. We realigned 

these ground truth blocks as they contained misalignments as well.

Segmentation

We applied our segmentation pipeline 24–26 without the use of long-range affinities. 

Additionally, we introduced a size-dependent threshold to break big, dumbbell shaped 

mergers occuring at low threshold. In the affinity graph, we ignored any edges between 

two large segments s1, s2 if mean(affinities(s1, s2)) < 0.5 and min(s1, s2) > 1,000 and 

max(s1, s2) > 10,000 representing supervoxel counts.

The ChunkedGraph proofreading backend

Supervoxel graph.—The ChunkedGraph was initialized by ingesting the initial 

supervoxel graph created by our automated segmentation pipeline 25. In this graph, every 

touching pair of supervoxels is connected by an edge. The weight of each edge was 

calculated by taking the mean of all predicted affinities from the affinity-producing neural 

network along the pair’s contact. Supervoxels were cut apart along chunk boundaries 

to ensure they are fully contained within a chunk (Extended Data Fig. 3 b,c). Pairs of 

supervoxels created by this cutting process were connected with infinitely strong “cross-

chunk edges”. The initial agglomeration determined which edges are “on” and “off”; 

“cross-chunk edges” are always on. The connected components in the graph of “on” edges 

represent the initial segments or “root objects.” Supervoxels are immutable, only the status 

of their edges changes and new edges might be added.

Hierarchy.—In the ChunkedGraph, every connected component is represented as an octree, 

with the supervoxels as leaves (layer 1, L1) and the root objects on top (root layer, 

LR) (layer 5 in Figure 3b). L2 nodes represent connected components in the underlying 

supervoxel graph. L2 and higher nodes are connected by chunk crossing edges forming 

higher layer nodes. Every node represents one connected component in the spatially 

underlying chunk, with nodes in higher layers representing larger chunks. A root object 

can have multiple connected components in any intermediate layer chunk because their 

connectedness might only become apparent on a higher layer. Nodes in Lx usually have 

parents in Lx+1 but layers might be skipped if no lateral nodes exist at a given layer. Nodes 

in the LR and L2 are never skipped.

Node naming scheme.—Every node is represented with an unsigned 64-bit integer. 

Node IDs consist of 6 parts. (1) The first 8 bits are reserved for the layer. (2) The next three 

parts encode the chunk coordinate (x,y,z). The size of these segments varies between layers 

and is usually set to the maximal number of bits needed to encode all chunk coordinates. 

The ChunkedGraph maintains a lookup table with layer → N(bits). (4) 8 bits for a counter 
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ID (5) The remaining bits are used for uniqueness and together with (4) build the segment 

IDs.

This naming scheme ensures that all nodes from one chunk are adjacent in ID space. It 

grants a larger space of unique segment IDs to chunks with larger spatial extent because 

fewer bits are needed for the chunk coordinates in higher layers. IDs are generated by atomic 

counters, counting up the segment ID (5). There are multiple counters per chunk, each with 

their own subspace (4), to increase performance.

Edits and Locking.—Before performing an edit, the trees of the root objects affected 

by an edit (one or two) are locked from performing other parallel edits such that edits 

to the same root object are applied sequentially. Edits define edges that should either be 

turned “off” or “on” or added if not yet present. After switching edge properties, new 

connected components are computed in each L2 chunk affected by the edit. These changes 

are propagated up the hierarchy, combining or not combining the newly formed L2 nodes 

with other later nodes from the former root objects. Ultimately, a merge generates a new 

root node and a split generates either one or two new root nodes (a split might only generate 

one new root node if the removed edges did not result in a change of the global connected 

component).

Timestamps and versioning.—Each connection between a parent and a child node 

is assigned a timestamp. Timestamps are generated during edits and the initial ingest. 

Different timestamps can be used to follow a different path through the hierarchy, with older 

timestamps reaching root nodes representing an earlier representation of a neuron. Root 

nodes represent a snapshot of a neuron in time that is valid between two edits.

Multipoint cut.—To help the user perform split operations, the ChunkedGraph implements 

a max-flow min-cut algorithm based on sources and sinks defined by the user to find the 

edges that should be removed.

ChunkedGraph performance analysis

During the beta phase of FlyWire, we measured server response times for various requests 

by all users (Fig. 3e,f). These numbers reflect real interactions and are affected by server and 

database load and are therefore an underestimate of the capability of our system.

We used real split edits as the basis for the comparison of the ChunkedGraph with a naive 

implementation that had been performed in FlyWire’s beta phase prior to this analysis. For 

this comparison, we used the same BigTable table but ignored the additional ChunkedGraph 

hierarchy for the naive implementation.

Proofreading frontend

We adapted the Neuroglancer Frontend to command split and merge operations to our server 

backend. The FlyWire interface (Extended Data Fig. 5a) extends Neuroglancer with features 

that support community-based proofreading. A sidebar features resources to help users get 

started and a global leaderboard, showing top contributors by number of edits completed 

in the past day or week. FlyWire updates Neuroglancer’s navigation bar with icons that 
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fit more functionality in limited screen space, including user profile, settings, return to 

home view, share link generator, and collapsible layer controls that allow more room for 

proofreading. A dataset chooser lets users switch between the Sandbox and Production data. 

An integrated tutorial with animations and positional pop-ups guides first-time users through 

the basics of viewing and editing neurons.

Proofreading evaluation

To obtain the number of edits for each neuron, we excluded edits made to chop neurons 

apart for inspection, that were later reversed by merging those pieces back together. We also 

excluded edits to a segment that was removed from that neuron later in the proofreading 

process. To clarify this, consider the example where a neuron was merged to a big 

component containing segments from multiple other neurons. We did not count edits for 

removing other neuronal segments from that component towards the edit count for the 

neuron at hand. More specifically, we only considered merge operations where all merge 

locations remained in the neuron at the end of proofreading and split operations where 

exactly one side of the split was contained in the final neuron.

For each final neuron, there are multiple contributing initial segments from the automated 

reconstruction. We selected the segment from the automated reconstruction that had the 

largest volumetric overlap with the neuron after three rounds of proofreading as the segment 

we evaluated for the automated reconstructions.

We calculated the volumetric change of edits and the volumetric completeness from the 

segmentation by collecting the supervoxels that were added or removed and adding up the 

voxels within each of them. We then multiplied this number with the nominal resolution of 

the segmentation (16 × 16 × 40 nm).

NBLAST-based segmentation quality analysis and comparison to FlyCircuit

We gathered skeleton locations of 16129 cells in FlyCircuit 42,58. In this set, all cells 

had been mirrored to the left side of the brain if their cell body was located in the right 

hemisphere.

We computed skeletons for 183 triple-proofread neurons and their versions throughout 

proofreading (Auto, round 1, round 2, round 3) using pcg_skel (https://github.com/

AllenInstitute/pcg_skel, with invalidation_d=2), which uses the ChunkedGraphs structure 

to generate skeletons. Next we used navis to map all skeletons to the left hemisphere in 

accordance with the FlyCircuit data before transforming them into the FlyCircuit space 

(FCWB). navis is based on natverse (https://github.com/schlegelp/navis)59. Using navis we 

computed NBLAST scores for all transformed FlyWire skeletons. We computed forward 

and backward scores as well as their mean. We used the mean score for ranking matches in 

FlyCircuit.

For each triple-proofread neuron in FlyWire, we assessed the best matching neuron in 

FlyCircuit according to the mean NBLAST score. In a review step, a cell from FlyWire was 

manually assessed to match a cell from FlyCircuit if they were recognizable as belonging 

to the same broad cell type (e.g., WV-WV), without making finer distinctions between 
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subtypes (N=174 of 183). For example, a neuron was considered related to AMMC-B1 if 

it showed the characteristic commissure and primary neurite regardless of whether the finer 

backbone branches matched.

To determine how many FlyWire neurons are identifiable before proofreading, we assessed 

whether the FlyCircuit cell matched to the automated reconstruction belonged to the same 

broad cell type as the FlyCircuit cell matched to the triple-proofread reconstruction. We 

limited this comparison to the FlyWire neurons found to have a match in FlyCircuit.

Twig and backbone synapse evaluation

We randomly collected 999 synapses from a dataset of predicted synapses 30. One expert 

evaluated all synapses as true positive (615), false positive (285) or ambiguous (99) 

synapses. Next, this expert evaluated the reconstructions of the pre- and postsynaptic 

sides of the true positive synapses as either belonging to a twig that was attached to a 

backbone (“twig - attached”), twig that was not attached to a backbone (“twig - orphan”) or 

“backbone.”

Identifying all cells within a class

We aimed to find every cell of the mechanosensory types investigated here. To do so, a 

location was chosen in the soma tract of a cell lineage, where proximal neurites were tightly 

grouped into a clear bundle, often surrounded by glia. Alternatively, in some cell types 

without tightly clustered proximal neurites, a location was chosen in a distinctive region of 

the backbone where these cells showed bundling. By examining in XY, YZ and XZ, a view 

was chosen that displayed the bundle in cross-section, to ensure that all cells in the bundle 

were visible. Every neuron in that cross-section was then examined to find the desired cell 

type. Any neuron that could not be classified was proofread until identification was possible. 

We expect this approach to reveal most or all cells within a lineage, however there could 

be reasons why some might be missed (such as a proximal neurite that travels outside the 

bundle). Locations used: AMMC-A1, right: (103406, 54035, 4640), left: (159748, 56141, 

3678). AMMC-B2 commissure: (132104, 71166, 3416). WED-VLP, left: (172786, 69380, 

2254), right: (88476, 65205, 3043). WED-WED and AMMC-AMMC (same midline soma 

tract): (132008, 84118, 4272). AMMC-B1: not all were tightly bundled, so two locations 

were used per hemisphere for cross-sections: left: (151298, 69205, 1686) and (152447, 

61490, 3218), right: (111828, 67177, 2127) and (111214, 60441, 3615). GFN and AMMC-

A2: only one cell exists per hemisphere (confirmed for AMMC-A2 by examining all other 

neurons within its commissure).

We noticed that some of the AMMC-B1 neurons in the left hemisphere systematically 

lacked a part of their arbor (e.g., see AMMC-B1–1 and −2 in Extended Data Fig. 8). This 

could not be attributed to errors in the segmentation or artifacts during the imaging process, 

and may be due to a developmental deformity in this small region of this fly’s brain. Apart 

from this deformity, the connectivity and morphology of these neurons appeared to be 

similar to the corresponding neurons in the other hemisphere.
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Synapse proofreading and thresholding

We used a dataset of automatically detected synapses 30 for the analysis of the 

mechanosensory connectome (Fig. 6). We filtered the synapse table with a threshold on 

the “cleft_score” of 50.

During analysis, we noticed a higher occurrence of false positive synapses between some 

cell types. These were usually cell types that had a high number of contacts due to spatial 

proximity. We randomly inspected about 25 synapses per <cell type> to <cell type> (e.g. 

AMMC-B1 to WED-VLP or AMMC-B1 to AMMC-B1) and disregarded connections with 

mostly false positive or questionable synapses. This exclusion mostly affected connections 

within cell types (e.g. AMMC-B1 to AMMC-B1). We did not remove single false positive 

synapses; the remaining <cell type> to <cell type> connections reported in Figure 6 still 

have false positive synapses among them.

Cell type division by connectivity

We divided cell types into subtypes according to their connectivity and then verified the 

subdivision morphologically (Supplementary Table 1).

WED-VLP: Neurons receiving more than 10 synapses from the ipsilateral AMMC-A2 were 

classified as WED-VLP-1, all others as WED-VLP-2.

AMMC-B1: We first selected neurons with more than 30 synapses onto any WED-VLP. 

These were then labeled as AMMC-B1–1 if they made more than 50% of their WED-VLP 

synapses onto WED-VLP-1 and AMMC-B1–2 otherwise. Out of the remaining AMMC-B1 

neurons (not −1 or −2), those with more than 80 synapses onto any WV-WV neuron 

were labeled as AMMC-B1–3. From the remaining AMMC-B1 cells, we labeled those as 

AMMC-B1–4 if they made at least 20 synapses onto AMMC-A1, AMMC-A2 and GFN 

cells combined. The remaining cells were classified as AMMC-B1-u.

WV-WV: First, we labeled all WV-WV neurons with more than 20 synapses onto AMMC-

A1, AMMC-A2 and GFN combined as WV-WV-3. Out of the remaining neurons, we 

labeled those with more than 100 synapses onto WED-VLP as WV-WV-1. WV-WV-2 was 

made up of all remaining WV-WV neurons.

Proofreading time calculation for a full fly brain

We based our estimate of the proofreading time for an entire fly brain on the measured mean 

proofreading time of 19.1 minutes multiplied with an estimated 100,000 neurons in the fly 

brain. We assumed 2000h of work per year and person.

Proofreading neurons in FlyWire

183 neurons were proofread by 13 proofreaders consisting of both scientists and 

expert tracers from the Seung and Murthy labs in three rounds. Errors corrected 

during proofreading form two distinct categories: “false splits” and “false merges.” 

The former are locations where the automatic segmentation prematurely terminates a 

neuronal process, which require adding pieces to the cell, and the latter are locations 
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where the automatic segmentation includes erroneous segments which must be removed 

from the cell. Proofreading efforts to locate these areas focused largely on the larger, 

microtubule-rich backbones of the neurons. Smaller, microtubule-free twigs were added 

if discovered incidentally while proofreading backbones, but were not actively sought 

out as continuations. Proofreaders first identified and corrected any large-scale errors, 

such as multiple distinct somata merged together. The proofreader then initiated a radial 

proofreading pattern of the neuron, starting from the soma, proofreading one process 

to completion, then returning to the initial branching point to begin the next neurite. 

“Breadcrumb” annotations, placed along a branch and especially at forking points in the 

arbor, enabled proofreaders to keep track of their progress, particularly in large, dense 

arbors.

Proofreading relied first on the 3D morphology of the neurites, then on the 2D EM 

image stack for closer scrutiny when an area appeared morphologically suspect. Structural 

features that might be cause for suspicion in mammalian neurons, such as extensive self-

fasciculation, were much more common in this Drosophila dataset. The idea of what 

constitutes “normal” morphology in proofreading was updated to accommodate these 

characteristics, and abnormal morphology was most conspicuous when viewing a cell as 

a whole. Multipolarity, suddenly reversed “flow” of branching direction, uncharacteristically 

dense or sparse patches in an arbor, or other instances of architectural irregularity warranted 

closer inspection. Smaller-scale features could also raise suspicion: abruptly truncated 

branches, unnaturally hard angles or smooth surfaces, large parallel backbones, narrowly 

pinched terminals, and wide, flat, porous extensions were given extra review.

Besides inspection of the 3D cell shape, features of the 2D EM image were also used for 

proofreading. Determining what constitutes a segment’s border was crucial when extending 

a false split, and special attention was paid to features that might disrupt or obscure the 

border of a segment, such as cell membranes that were parallel with the direction of the 

slice plane (the Z-direction). Tracking an endoplasmic reticulum (ER) tubule or microtubule 

was often used to confirm continuations in these cases, while a sudden change in the overall 

direction of microtubule flow could indicate a false merge. The apparent darkness of a 

neurite’s cytosol, the presence and size of any vesicle clouds, and the appearance of other 

intracellular organelles were also used to verify the continuation of a segment. When a cell’s 

proofreading was complete, its general shape was validated against other neurons of the 

same type.

After thorough proofreading of neurons by experts, we then evaluated whether neurons 

could be proofread more quickly while still producing acceptable quality (referred to as 

“Fast” proofreading in Extended Data Fig. 6). Experts were given neurons they had not 

previously worked on, in an unedited state, and instructions to look only for major edits. 

(For example, only fix accidental mergers if they would cut off a significant piece of 

backbone.) Proofreaders were instructed to skip edits that were very time-consuming to 

resolve, and to skip accidental mergers with small pieces of glia.
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Data availability

FlyWire’s EM data and unproofread segmentation are publicly available. FlyWire’s 

proofread segmentation is available to the community first as outlined in FlyWire’s 

principle. Published proofread neurons are publicly available. FlyWire’s website (flywire.ai) 

describes how to access these different data sources.

All neuron reconstructions used in this manuscript are available and linked in 

Supplementary Table 2. Additionally, all data necessary to reproduce the analyses in this 

manuscript are available through the data analysis github repository (https://github.com/

seung-lab/FlyWirePaper). This includes the connectivity map between all neurons included 

in the mechanosensory analyses.

For the comparison with FlyCircuit neurons we used the dotprops of a public dataset 58 

(https://zenodo.org/record/5205616).

Code availability

All repositories presented in this manuscript are open-sourced and available through the 

seung-lab github project. Specifically, our implementation of the ChunkedGraph is available 

there (https://github.com/seung-lab/PyChunkedGraph). Further, the code to reproduce all 

figures in this manuscript is available on github as well (https://github.com/seung-lab/

FlyWirePaper).

Extended Data

Extended Data Fig. 1: Full brain rendering and comparison with the hemibrain.
(a, b) A neuropil rendering of the fly brain (white) is overlaid with a rendering of the 

hemibrain and proofread reconstructions of neurons from the antennal mechanosensory and 

motor center (AMMC). The proofread reconstructions of (a) the AMMC-A2 neuron from 

the right hemisphere and (b) an WV-WV neuron are added. Scale bar: 50 μm
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Extended Data Fig. 2: Quality of EM image alignment.
(a, b) Chunked pearson correlation (CPC) between two neighboring sections in the original 

alignment (v14) and our re-aligned data (v14.1). (a) Relative change of CPC between the 

original and our re-aligned data per section. (b) Histogram of the CPC improvements from 

(a) (dashed red line is at 0). (c, d, e) Example images used for the CPC calculation in (a) 

where (c) the CPC improved through a better alignment around an artifact, (d) the CPC is 

almost identical and (e) the CPC overall improved due to a stretch of poorly aligned sections 

in the original data that were resolved in v14.1.
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Extended Data Fig. 3: Chunking the dataset.
(a) Automated segmentation overlayed on the EM data. Each different color represents an 

individual putative neuron. (b) The underlying supervoxel data is chunked (white dotted 

lines) such that each supervoxel is fully contained in one chunk. (c) A close up view of 

the box in (b). (d) Application of the same chunking scheme to the meshes, requiring only 

minimal mesh recomputations after edits. (e) Diversity of the number of supervoxels in 

each chunk (median: 25661). (f) The median supervoxel contains 792 voxels. All very small 

supervoxels (< 200 voxels) are the result of chunking.
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Extended Data Fig. 4: Proofreading with the ChunkedGraph.
(a,)In the ChunkedGraph connected component information is stored in an octree structure 

where each abstract node (black nodes in levels >1) represents the connected component 

in the spatially underlying graph (dashed lines represent chunk boundaries). Nodes on the 

highest layer represent entire neuronal components. (b) Edits in the ChunkedGraph (here, 

a merge; indicated by the red arrow and added red edge) affect the supervoxel graph to 

recompute the neuronal connected components. (c) The same neuron shown in Fig 2 after 

proofreading with each merged component shown in a different color. Scale bar (c): 10 μm
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Extended Data Fig. 5: The FlyWire proofreading platform.
(a) The most common view in FlyWire displays four panels: a bar with links and a 

leaderboard of top proofreaders (left), the EM image in grayscale overlaid with segmentation 

in color (second panel from left), a 3D view of selected cell segments (third panel), and 

menus with multiple tools (right). (b) Annotation tools include points, which can be used for 

a variety of purposes such as marking particular cells or synapses.
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Extended Data Fig. 6: Fast proofreading in FlyWire.
Analysis of 60 neurons included in the triple proofreading analysis and fast proofreading 

analysis. (a) Comparison of the F1-Scores (0–1, higher is better; with respect to 

proofreading results after three rounds) between different proofreading rounds according 

to volumetric completeness (medians: Auto: 0.777, 1: 0.992, 2: 0.999, Fast: 0.988 means: 

Auto: 0.729, 1: 0.975, 2: 0.992, Fast: 0.968) and (b) assigned synapses (medians: Auto: 

0.799, 1: 0.992, 2: 0.999, Fast: 0.988, means: Auto: 0.746, 1: 0.958, 2: 0.986, Fast: 0.945). 

“Auto” refers to reconstructions without proofreading. Boxes are interquartile ranges (IQR), 

whiskers are set at 1.5 x IQR.

Extended Data Fig. 7: NBLAST based analysis of segmentation accuracy.
Comparison of NBLAST matches and scores of 183 neurons before and after proofreading 

to assess the quality of the automated segmentation. (a) NBLAST scores of all 183 
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triple-proofread neurons (Fig 5) against 16129 neurons in FlyCircuit. For each neuron in 

FlyWire we found the best hit in FlyCircuit according to the mean of the two NBLAST 

scores. (b) scores for the best matches labeled by manual labels of match vs. no match 

(N(match)=174 out of 183). (c) mean scores of the FlyWire neurons with matches before 

and after proofreading (N=174 neurons). (d) Histogram of the change in NBLAST score 

before and after proofreading. (e) Rankings of each FlyCircuit neuron matched to a triple 

proofread neuron in FlyWire among the 16129 neurons before proofreading and after one 

round of proofreading. (f) NBLAST scores of the unproofread segments grouped by whether 

they matched or did not match the broad cell type after proofreading.

Dorkenwald et al. Page 23

Nat Methods. Author manuscript; available in PMC 2022 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 8: Renderings of AMMC-B1 subtypes
Neurons grouped by subtype and hemisphere. AMMC, WED brain regions are shown for 

reference. The neuropil mesh is shown to the same scale. Scale bar: 50 μm
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Extended Data Fig. 9: Connectivity diagrams.
(a) Diagram from Figure 6b reordered by putative subtype (b) Same diagram as in Figure 6b 

with different colormap threshold.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Assessing segmentation quality using known neurons.
(a-d) Comparison of light microscopy-level stains of giant fiber neurons 22 (a) and a 

mushroom body APL neuron 23(b, red) to FlyWire’s AI-predicted segmentation of these 

cells (c,d). Arrows in (c) point at falsely merged pieces in the automated segmentation. 

(e,f) The same neurons shown following proofreading. (g-n) Examples of other cell types 

before and after proofreading (top and bottom of each image pair, respectively): central 

complex neurons (g,h), olfactory projection neurons (i,j), gustatory receptor neurons (k,l) 
and a lobula plate tangential cell (m,n). All views frontal except APL and central complex 
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neurons: dorso-frontal view. Scale bars: (c, d, e, f, i, j) 30 μm; (g, h, k, l) 15 μm; (m, n) 20 

μm.
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Figure 2. Proofreading the supervoxel graph.
(a) Automated segmentation overlaid on the EM data. Each color represents an individual 

putative cell. (b) Different colors represent the supervoxels that make up the putative cells. 

(c) Supervoxels belonging to a particular neuron, with an overlaid cartoon of its supervoxel 

graph. This panel corresponds to the framed square in (a) and the full panel in (b). (d) 
Touching supervoxels (circles) may be connected through edges in the graph indicating that 

they belong to the same connected component (solid lines). Merge operations add edges 

between supervoxels resulting in new neuronal components (orange). (e) Split operations 

remove edges resulting in new neuronal components (blue, purple). (f) Example neuron after 

proofreading (black). Green, blue and red components were removed during proofreading. 

While edit operations have global effects, the edits to the supervoxel graph themselves are 

performed at a local level. (g) For splits, users place points (red and blue dots) either in 2D 

(left) or 3D (center panel) that are linked to the underlying supervoxels (left panel). The 

proofreading backend then automatically determines which edges need to be removed and 

performs the split (right panel). The panels are screenshots from FlyWire’s neuroglancer. 

Dorkenwald et al. Page 32

Nat Methods. Author manuscript; available in PMC 2022 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The colored lines represent coordinate axes: red (x), green (y), blue (z). (h) For the operation 

shown in (g) the backend performs max-flow min-cut on the local supervoxel graph to 

determine the optimal cut that separates the user-defined input locations (blue and purple 

framed circles). The thickness of the edges symbolizes the edge weight (cartoon). Scale bars 

(a,b,c): 1μm; (f): 10 μm
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Figure 3. The ChunkedGraph approach for proofreading supervoxel graphs.
(a) One-dimensional representation of the supervoxels graph. In the simplest approach 

(naive), connected component information (neuronal component) is stored in a dedicated 

parent node. (b) In an alternative data structure connected component information is 

stored in an octree structure where each abstract node (black nodes in levels > 1) 

represents the connected component in the spatially underlying graph (dashed lines represent 

chunk boundaries). Nodes on the highest layer represent entire neuronal components. (c) 
Illustration of how edits to the ChunkedGraph (here, a split; indicated by the red arrow 

and removed red edge) affect the supervoxel graph to recompute the neuronal connected 

components. (d) Chunk size (represented by the grid) along each dimension in different 

layers. (e) Server response times for the remapping of the connected components from 

root to supervoxel (N=3,080,494) and supervoxel to root (N=12,096) (f) as well as splits 

(N=2,497) and merges (N=4,612) for real user interactions in the beta-phase of FlyWire. (g) 
Number of supervoxels that need to be loaded for a split (global vs local) (h, i) Reading 

speed (h) and speed of max-flow min-cut calculations (i) for the ChunkedGraph and a naïve 

approach. The red lines in (g, h, i) are mean and the shaded area standard deviation of bins 

along x-axis (10 bins); N=15,233 split operations. N in (e, f) are the number of observed 

requests to the server.
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Figure 4. Attaching automatically detected synapses to neurons.
(a) Each edit (black dot) is linked to a user and timestamp enabling the retrieval of the edit 

history and credit assignment post-hoc. (b, c) Classification of pre- (b) and post-synaptic (c) 
segments based on their morphology and whether they are attached to a bigger component 

that will be attached during a conservative procedure. (d) Examples of these assessments. 

(e) AMMC-A2 neuron (left) with automatically detected synapses displayed as balls (blue: 

presynaptic (N=5140), red: postsynaptic (N=1669), balls overlap). Scale bar: (d): 1 μm; (e) 

50 μm, (e, inset): 10 μm
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Figure 5. Proofreading in FlyWire.
Analysis of 183 triple-proofread neurons (a) Number of edits per neuron and proofreading 

round (medians: 1: 18, 2: 7, 3: 9, means: 1: 36.5, 2: 18.0, 3: 25.7). (b) Number of edits 

per neuron and proofreading round restricted to large edits (> 1μm3, medians: 1: 7, 2: 1, 

3: 0, means: 1: 10.9, 2: 2.5, 3: 2.6). (c, d) F1-Scores (0–1, higher is better; with respect 

to proofreading results after three rounds) between different proofreading rounds according 

to volumetric completeness (c) (medians: Auto: 0.730, 1: 0.989, 2: 0.999, means: Auto: 

0.665, 1: 0.968, 2: 0.984) and assigned synapses (d) (medians: Auto: 0.724, 1: 0.988, 2: 

0.998, means: Auto: 0.642, 1: 0.942, 2: 0.970). “Auto” refers to reconstructions without 

proofreading. Boxes are interquartile ranges (IQR), whiskers are set at 1.5 x IQR.
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Figure 6. Connectivity between mechanosensory neurons extracted with FlyWire.
(a) Analysis of 178 neurons innervating three mechanosensory areas in both hemispheres 

- the AMMC (green) receives direct unilateral input from mechanoreceptor neurons in 

the JO (Johnston’s Organ) of the antenna, (b) Neurons colored by their cell type (see x 

and y axes of (c) for color mappings of individual cell types). (c) Connectivity diagram 

between all 178 neurons ordered by cell type. Gray through lines divide cells from different 

hemispheres (left/top: left hemisphere, right/bottom: right hemisphere) and colored bars 

separate putative cell types within each cell class. (d) WED-VLP type 1 and 2 neurons, 
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separated based on differential inputs from ipsilateral AMMC-A2 neurons. (e) AMMC-B1 

neurons, grouped according to their outputs on to other cell types, and their connectivity 

matrix. (f) Axonal arbors of AMMC-B1 and WED-VLP subtypes in both hemispheres 

(insets). Arrows point to differences in arborization. (g) A single AMMC-B1–4 neuron 

targeting a single AMMC-A1 neuron (red: AMMC-A1, turquoise: AMMC-B1–4). We found 

66 automatically detected synapses from this AMMC-B1–4 neuron onto this AMMC-A1 

neuron (black balls). An example synapse is shown in the EM inset with the arrow pointing 

at the T-bar. (h) Connectivity diagram for mechanosensory neurons. Cell types are placed in 

their primary input region. (i) Unpaired medial neuron types with bilateral innervation called 

WV-WV, separated by their connectivity with AMMC-B1 and AMMCA1 neurons, and their 

connectivity matrix. Scale bars: 50 μm, insets in (f), (g): 10 μm, EM inset in (g): 500 nm
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