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Abstract: In the design of cantilevered balconies of buildings, many stability problems exist con-
cerning vertical plates, in which reaching a critical load plays an important role during the stability
analysis of the plate. At the same time, the concrete forming vertical plate, as a typical brittle material,
has larger compressive strength but lower tensile strength, which means the tensile and compression
properties of concrete are different. However, due to the complexities of such analyses, this difference
has not been considered. In this study, the variational method is used to analyze stability problems
of cantilever vertical plates with bimodular effect, in which different loading conditions and plate
shapes are also taken into account. For the effective implementation of a variational method, the
bending strain energy based on bimodular theory is established first, and critical loads of four
stability problems are obtained. The results indicate that the bimodular effect, as well as different
loading types and plate shapes, have influences on the final critical loads, resulting in varying degrees
of buckling. In particular, if the average value of the tensile modulus and compressive modulus
remain unchanged, the introduction of the bimodular effect will weaken, to some extent, the bending
stiffness of the plate. Among the four stability problems, a rectangular plate with its top and bottom
loaded is most likely to buckle; next is a rectangular plate with its top loaded, followed by a triangular
plate with its bottom loaded. A rectangular plate with its bottom loaded is least likely to buckle. This
work may serve as a theoretical reference for the refined analysis of vertical plates. Plates are made
of concrete or similar material whose bimodular effect is relatively obvious and cannot be ignored
arbitrarily; otherwise the greater inaccuracies will be encountered in building designs.

Keywords: variational method; stability analysis; cantilever vertical plate; bimodular effect;
critical load

1. Introduction

In structural engineering, the analysis and design of cantilevered balconies are of
huge importance, especially for long-cantilevered balconies. Basically, there are four struc-
tural forms for long-cantilevered balconies: (a) O-shaped, (b) L-shaped, (c) C-shaped and
(d) U-shaped, as shown in Figure 1, in which & and [ are the height and length of the can-
tilever vertical plate, respectively. In Figure 1, it may be seen that for a cantilever vertical
plate, there are two basic shapes: rectangular, as shown in (a) and (c), and triangular, as
shown in (b) and (d). In the four structural forms, the rectangular or triangular plate serves
as an important structural element in resisting external loads from the top and bottom of
the balcony; therefore, it is a key load-bearing component in cantilevered balconies. Among
static, dynamic and stability analyses for cantilever vertical plates, the stability problem is
particularly prominent because the vertical plate must reach a certain height if it is to meet
the design and functional requirements of the building’s architecture; compressive stress in
the plate becomes inevitable, inducing elastic buckling due to the relatively low plate thick-
ness. On the other hand, most parts constituting the balcony plate are made of concrete,
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which has greater compressive strength but lower tensile strength. This disparity between
tensile and compressive strength also seems to mean that the tensile and compressive
properties of concrete are different. This creates an issue of concern, i.e., what are the effects
of different types and degrees of tension and compression? Therefore, this paper provides
a stability analysis of cantilever vertical plates from a long-cantilevered balcony in which
the applied material has different properties in terms of tension and compression. We will
first discuss the elastic buckling problems of plates and the corresponding solutions, before
addressing the bimodular problem, as discussed in existing studies.

>

Figure 1. Four structural forms of longer-cantilevered balconies: (a) O-shaped, (b) L-shaped,
(c) C-shaped and (d) U-shaped.

The elastic buckling problem associated with plates has been extensively investigated
over the last century. All kinds of plate shapes, different boundary conditions and ap-
plied in-plane force distributions have been considered, and buckling critical loads are
documented in some stability handbooks [1], standard texts on plates [2—4] and in a large
number of technical papers (for example, [5,6]). Under different boundary constraints,
Wang et al. [7] investigated the elastic buckling problem of vertical plates under body
forces (self-weight) in which the extensive buckling body force parameters presented were
shown to be useful to engineers for designing structures or machines with vertical plate
components. Wang [8] studied the buckling of a standing plate subjected to self-weight
and top load, in which an initial value method which was accurate, and more efficient
than previous methods, was used. His results indicated that the effects of self-weight and
top load both contribute to buckling, although their contributions are not linear. Notably,
for narrow plates, if top load dominates, it does not matter whether an end is clamped
or simply supported, while if self-weight dominates, the buckling of a narrow plate de-
pends only on the bottom condition. The buckling problems of rectangular plates with
various boundary conditions under nonuniform, in-plane loads were investigated in [9-11].
It was found that the critical buckling load is associated with loading form and constraint
conditions. Jedrysiak and Michalak [12] dealt with the stability problem of thin compos-
ite plates with a smooth and slow gradation of macroscopic properties. In their study,
governing equations of the tolerance models for the stability of thin plates with functionally
graded structures were derived. Chréscielewski [13] investigated the torsional buckling
phenomenon of thin-walled I-beam columns. In their study, the effect of initial deflection
on the torsional buckling load of a thin-walled I-beam column was discussed, and the
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localization of local buckling modes was studied. Magnucka-Blandzi [14] studied the
bending and buckling of a circular plate with symmetrically varying mechanical proper-
ties. Magnucki and Magnucka-Blandzi [15] generalized the model of sandwich structure,
in which analytical studies of bending and buckling problems of rectangular plates were
presented. Through an experiment and numerical simulation, Zhang et al. [16] investigated
the compressive buckling behavior of a double-sided, laser-welded Al-Li alloy aircraft
fuselage panel. Kolakowski and Jankowski [17,18] investigated the effect of the membrane
components of transverse forces on the magnitudes of total transverse forces in the nonlin-
ear stability of plate structures, and noted some inconsistencies in nonlinear buckling in
first-order and higher-order shear deformation theory. Cheng [19,20] applied a variational
method to analyze the lateral instability problem of cantilever rectangular plates, obtaining
the critical loads of plates under the action of a concentrated force, uniformly-distributed
loads, triangularly-distributed loads and a concentrated couple. His results indicated that
the values of the critical loads are associated with the bending stiffness of the plate and the
aspect ratio of rectangular plane, as well as with the choice of the corresponding deflection
function. In this study, we focus on determining the critical buckling load. Therefore,
the variational method is applied.

Among the various methods of solving the stability problem of plates, there are
basically three which apply analytical techniques. The first is the triangle series expansion
method, which first requires the buckling differential equation of the plate to be expressed
in terms of the deflection and internal forces, and then yields the associated internal forces.
The use of this method is limited as, in some cases, it is difficult to establish the buckling
differential equation. The second is the differential method, which also makes use of the
buckling differential equation. The third is the variational method based on the law of
energy, which only requires knowledge of the bending strain energy of the plate and the
work done by external forces, thus avoiding the need to include the buckling differential
equation. Although the variational method can be used to determine the critical load only,
and the displacement and internal forces under the critical load remain unknown, it is still
believed that the method may serve as an effective way to determine critical loads, which
is particularly important in analyses of plate stability, while the displacement and internal
forces are generally obtained as secondary elements, especially in the design of plate.

On the other hand, the structural material also plays an important role in the analysis
and design of the structural elements. Generally, the structural material forming the
vertical plates in cantilevered balconies is concrete, which is regarded as continuous,
elastic, homogeneous and isotropic. However, many studies have indicated that most
materials, including ceramics, plastics, concrete, graphite, powder metallurgy materials,
polymeric materials and some composites exhibit different tensile and compressive strains
under the same tension or compression stress [21,22]. Thus, certain materials exhibit
different elastic moduli for tension and compression; these materials are referred to as
“bimodular” materials [23]. The concrete used in the present analysis, without exception,
is a bimodular material. As a brittle material, the concrete forming vertical plates possesses
larger compressive strength but lower tensile strength, which means that its tensile and
compression properties are different. Up to now, few reports have been published on
concrete with a bimodular effect, even though consideration of the bimodular effect of
structural concrete is crucial.

Overall, two bimodular material models are widely used in theoretical analyses within
the field of engineering. One is the criterion of positive-negative signs in the longitudinal
strain of fibers, as proposed by Bert [24]. This model is mainly applicable to orthotropic
materials, and is therefore widely used for research on laminated composites [25-28].
The other model is the criterion of positive-negative signs of principal stress put forward
by Ambartsumyan [29], which is mainly applicable to isotropic materials. In structural
engineering, the stress state along certain principal directions is a key issue in stress analyses
of components like beams and plates, since it is this factor that determines whether the
point is under tension or compression. Due to the fact that this bimodular theory defines
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the constitutive model based on principal directions, and the principal stress is generally
obtained as the final result but not as a known condition before solving, this inevitably
gives rise to difficulties in terms of describing the stress state of a given point. This model
also lacks the ability to describe the experimental results of elastic coefficients in complex
states of stress. Analytical solutions are available in a few cases, although they only concern
the static, dynamic and thermal problems of beams and plates [30-34]. In some complex
problems, it is necessary to resort to a finite element method (FEM) based on an iterative
technique [35-38].

To date, numerous studies have been published concerning the stability problem for
plates under different loads. However, for vertical plates, there is significantly less reported
research. From the literature we collected, reports concerning vertical plates mainly in-
cluded the elastic buckling problem of vertical plates under body forces (self-weight) [7],
the buckling of a standing plate subjected to self-weight and top load [8], the lateral in-
stability problem of cantilever rectangular plates under the action of concentrated force,
uniformly-distributed loads, triangularly-distributed loads and concentrated couple [19],
and the buckling of cantilever rectangular plates under symmetrical edge loading [20].
Among these works, there are obviously two aspects that could be improved upon. One is
the fact that none of these studies took into account the bimodular effect of the material,
which seems to be problematic. If the material possesses a significant bimodular effect,
the error due to the absence of this parameter will be significant. Another may come from
the plate shape. For example, triangular plates are seldom discussed (IN.B. the originality
of the present study is not constituted by our inclusion of triangular plates alone). Broadly
speaking, investigations of the stability problems of cantilever vertical plates with different
loading types and plate shapes, also considering the bimodular effect of the materials,
will be helpful for future analyses of the buckling problem of plates from the perspective
of design optimization.

In this study, the variational method is used to solve the stability problem of cantilever
vertical plates with bimodular effect, in which different loading types and plate shapes
which are widely applied in the construction of real balconies are considered. This paper is
arranged as follows. In Section 2, four stability problems of plates with bimodular effect
are presented. For the purpose of the effective implementation of the variational method
based on bimodular theory, in Section 3, the strain potential energy of a bimodular plate
is derived and the work done by external loads is presented. In Section 4, the variational
method is applied to determine the critical loads in the four stability problems. The four
critical loads without bimodular effect are discussed and the bimodular effect on critical
loads is analyzed in Section 5. Some important conclusions are drawn in Section 6.

2. Stability Problem of Bimodular Cantilever Vertical Plates

Given the structural forms of the balconies presented in Figure 1, two rectangular
and two triangular types of cantilever vertical plates are analyzed, as shown in Figure 2.
The cantilever length of the plate and the height of the plate are denoted by [ and #,
respectively. In Figure 2, the xoy plane coordinate system is established, and o is the
origin of the coordinate system. According to the force transmission characteristic of the
components, the loads are transferred from top to bottom in turn, so that all the loads act
downward. Among the stability problems shown in Figure 2, Case (a) is typical, since the
vertical plate is subjected to loads from the top and bottom simultaneously. Cases (b) and (c)
are supplementary problems, intended to serve as comparisons with Case (a). Comparing
Figures 1 and 2, it is easy to see that Cases (a), (b) and (c) in Figure 2 correspond to the
O-shaped and C-shaped balconies in Figure 1, while Case (d) corresponds to the L-shaped
and U-shaped balconies in Figure 1, in which the cantilever vertical plate is triangular, with
its bottom loaded only. For simplification and ease of comparison, we regard all loads g
as being uniformly distributed, and for Cases (a), the magnitudes of the two loads are the
same when the vertical plate is under the combined action of the top and bottom loads.
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Figure 2. Four stability problems with bimodular effect: (a) Rectangular cantilever vertical plate
with top and bottom loaded, (b) Rectangular cantilever vertical plate with top loaded, (c) Rectan-
gular cantilever vertical plate with bottom loaded and (d) Triangular cantilever vertical plate with
bottom loaded.

Additionally, the vertical plate is made of concrete which, in the analysis, is treated
as continuous, elastic, isotropic and homogenous, but with the bimodular characteristic
indicated above. Generally, in reality, the concrete is reinforced by steel bars in order to
make it more resistant to tensile force. In the theoretical analysis presented here, however,
we only consider plain concrete without reinforcements. Therefore, our results may serve
as a theoretical reference for subsequent reinforcements. Alternatively, from the point of
view of structural design, the present theoretical analysis is based on plain concrete and
any reinforcements are considered as a safety reserve.

3. Variational Method Based on Bimodular Materials Theory
The total potential energy of the system is

[[=u-w, (1)

where U and W are the strain potential energy and the potential of external loads,
respectively. From the point of view of energy, the critical load can be obtained on condi-
tion that the work done by the variation of external loads, W, is equal to the variation of
strain potential energy, U, when the plate deforms from the in-plane state to the adjacent
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bending state. According to Rayleigh-Ritz method, when the system reaches the limit of
stable equilibrium, the total potential energy is the minimum, that is

s[[=0, @)

which may be used to determine the critical load. It should be noted that in the application
of this variational method, U and W must be expressed in terms of the z-axis displacement,
w, and that w should satisfy all boundary conditions of displacement. As for the stress
boundary conditions, w need not be satisfied, but if a part or all of it can be satisfied,
the solution accuracy is greatly improved. In addition, we also note that the calculation
of U is based on the theory of elasticity from uniform modulus. If the bimodular the-
ory of elasticity is introduced here, some important improvements may be incorporated.
In determining W, however, the bimodular effect has no any influence.

3.1. Strain Potential Energy of Bimodular Plates

First, let us derive the expression of the increase of strain potential energy U,
which may originate from two different aspects. The first is from the bending defor-
mation in the vertical plane; however, this is negligible, since the bending stiffness in the
vertical plane is very large. The second is the torsion and transverse bending under the
critical load, thus making the plate deviate from its original vertical plane. The potential
energy generated by this deformation represents the vast majority of the total potential
energy, so we only consider the deformation of torsion and bending when calculating the
increase of potential energy. This practice is similar to the buckling problem of the straight
bar in compression, in which only the bending strain energy is considered, while the strain
energy from axial compression deformation is ignored.

Figure 3 shows a rectangular thin plate with different moduli under tension and
compression which is being subjected to the vertical downward uniformly-distributed
loads, p, and which is thus bending downward and forming the tensile and compressive
areas which are bounded by an unknown neutral layer. In Figure 3, the xoy plane is
established on the unknown neutral layer and the z axis is vertical. The thickness of the
plate is t, while t; and f; stand for the tensile and compressive thickness, respectively, both
of which will be determined later. E* and u* are the tensile Young’s modulus of elasticity
and Poisson ratio, respectively; E~ and u~ are the compressive modulus and Poisson
ratio, as shown in Figure 3. The constraints of the four sides of the plate are variable;
for example, four sides may be fixed or simply-supported, two opposite sides may be fixed
or simply-supported, or other, mixed constraint modes may be applied, so long as they
cause downward bending under uniformly-distributed load, p.

Y v
z

Figure 3. Bending analysis of a bimodular rectangular thin plate.

Based on the Kirchhoff-Love hypothesis, the small-deflection bending problem of a
thin plate may be analyzed by two-dimensional thin plate bending theory, in which the
physical equation will adopt the equation in the state of plane stress, neglecting the effects
of the strain components ¢z, vy, and 7,x. Meanwhile, the introduction of the bimodular
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effect of the material has no influence on the geometrical relation based on deformation
characteristics, and therefore, the geometrical equation can still be written as

2
&x = _ggzu
gy = —2%y 3
y = ayz 7 ( )
_ P w
Yxy = _zaxayz

where w is the deflection along the z axis, and &, &y and yyy are the strain components
in two-dimensional thin plate bending theory. Note that due to subarea under tension
and compression, the stress components in the tensile and compressive areas are different,
which may be expressed as oy, (T; , ij for the tensile area and oy 10y Tay for the com-
pressive area. Thus the physical equation in the state of plane stress in the tensile area
(0 <z <ty,) may be given as

_ __E*

0’{ = @(83{ + Higy)

(Ti_ = @(€y+y &) , 4)
Tay = 2(0pm) T

and in the compressive area (—t; <z <0) as
- E— —
oy = 1_gl:)z(sx+ll ey)
o = = (ey +puex) . (5)

Txy = (i) T

<

Substituting Equation (3) into Equations (4) and (5), for 0 < z < t;, we have

+_ __Efz (2w +Pw
x = 1_(H+)2(ax2 tu ay?
+_ __EYz (2w, +Pw
Uy - 1*(V+)2 <8y2 +u ox2 4 (6)
= _ Etz dw
Xy = 14ut dxdy
and for —t, <z <0,
- — __Ez (Pw ,—Pw
Oy = 1_(V,)2(3x2 tu ayz)
- E z w - a2w)
g, = ——————=\| > = . 7
y 1—(u)? <8y2 T @
= = — E z d*w
xy = T Typ- oxoy

The bending moment per unit length on the section normal to x and y axes is M and
My, respectively. These values may be computed by integrating the segments of the tensile
and compressive thicknesses, as follows:

My = [ ofzdz + ff’tz oy zdz

= (B By) - LA (P - ) ®)
3[1—(p+)* \ 92 W) T Bi—(u ]\ o2 32
and
M, = JIU;ZdZ+fEtZUJZdZ
:_Lﬁ(aiw_k +@)_L@(@+ ,@) 9)
si—a\a? T e ) T \a TH e
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Additionally, the torsion moment per unit length on the section normal to x axis,

My, is
t 0 1( ET8 E 8 \ *w
o + — _ = 1 2
M.y _/O Txyzdz~|—/_t2 Tyyzdz = 3<1+y+ 1 | avay (10)

In the small-deflection bending problem of thin plates under the action of the uniformly-
distributed load, p, the equation of equilibrium expressed in terms of the bending moments,
My and My, and the torsion moment, My, gives

9> My +2a My 9*M,

dx? dxdy dy?

+p=0. (11)

Substituting Equations (8) to (10) into Equation (11), we have
ETH E- 8
{ ot — }V‘*w:r» (12)
3= ()] 31— (p)]

where 74 is the biharmonic operator. If we let D be the bending stiffness of a bimodular
plate, then

E*H E~8
D= L+ 2 . (13)
31— ()] 31— ()]
A familiar form may be obtained, such as Dy/* w = p.
The strain potential energy U in a two-dimensional thin plate with bimodular effect
may be written, by neglecting the effects of strain components ¢z, 7. and 7.y, as

1 1 _ _ _
= 5/ / / (05 ex + 0y ey + Ty Yay ) dxdydz + 5./ // (0 &x + 0y €y + Ty Yay)dxdydz. (14)

Substituting Equation (3) as well as Equations (6) and (7) into Equation (14), and also
integrating z, in which 0 < z < t; for the first tensile term and —t, <z < 0 for the second
compressive term, we obtain

2 2 2 2 2 2
= el 2ol 1 | (Be) 4 (5) 2w e 20 -0 ()| asa

<

2d 2w z—awaw 2(1 _ 2w de . (15)
*mﬁtzz 2 1 (58) + (%) +2n Sa5g +20-w) (F5) | avey
Lastly, we have
2., 2 2 2
]S () S () e
PO () (20) o By o) (2) | dxay
2 92 a? 1 3:2 32 M 90 Y
where i L
D+ = EitlZI D™ = E7t22 (17)
31— ()] 31— ()]

In fact, the total bending stiffness of the bimodular plate is D = D* +D~. Upon return-
ing to the uniform modulus problem, we have E¥* =E~ =E, y* =y~ =p,and t; = tp = t/2;
thus, D* + D~ = Ef3/[24(1 — u®)] + E3/[24(1 — u?)] = E3/[12(1 — u?)], which satisfies the
regression of the solution.

Note that up to now, the tensile section thickness and the compressive one have not
been determined. To address this, we use the condition that the normal forces per unit
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length on the section normal to x and y axes, Ny and Ny, are zero in order to determine the
location of the unknown neutral layer, that is,

t 0
N, = /lajdz+/ ordz =0 (18)
Jo )
and
ho, 0o
Nyz/o (Tydz—i—/_tzaydz:o. (19)

Substituting o, o, and 0, 0 from Equations (6) and (7) into Equations (18) and (19),
respectively, we have

E*t% ?w %w E—#2 2w %w
-—1 (== + +>+2<+ >:0 20
21— (t)7] <8x2 Hor) Tan -y \a TF o 20
and
E*t% 2w *w E—#2 %w *w
-1 (=5 + +>+2(+ >=0. 21
211 — ()] (ay2 Hoxr) Mo ey \ar TF e D

By adding the left end and right end of Equations (20) and (21), we obtain the following
relation after simplification

E*+#? E~ 13
L = 2z (22)
1—put 1—u
Combining the relation ¢; + ¢, = t, we have
t E-(1—ut t ET(1—u—

v EA-p ) +VEA-p) t VEA-p)+VE Q-p")

which determines the location of the unknown neutral layer. Obviously, when E* = E~ =E,
" =y~ =, the relation t; = t; = t/2, may be easily obtained. Finally, we obtain the
expressions of the strain potential energy and the neutral layer of a bimodular plate.

3.2. Work Done by External Loads

Next, let us derive the work done by external loads, W. From Figure 2, it is easy to see
that the external loads are uniformly-distributed, q. Supposing the uniformly-distributed
loads are acting on the top of the plate, that is y = /i, the work done by external loads,
W, may be given as

1
W= /O gAy (x)dx, (24)

where Ay(x) is the displacement of the action point of load g when the plate undergoes
lateral bending. To calculate A, (x), we may refer to Figure 4.

In Figure 4, any cross section of the plate represents a derivation along the z axis,
that is, the plate thickness direction from AO to MN, where the tangent at point M intersects
the y axis at point C, and 6 is the angle between lines AC and MC. Note that 6 is a small
quantity, and thus, we have the relations AC = MC, 0 = (dw/dy)p and MB = wy,, in which
subscript M denotes the quantity which will take the coordinate value of point M. Based on
the above relations, A, may be computed as

1
Ay = AB = AC — BC = MC — BC = MC(1 — cos ) ~ MC -592. (25)
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Figure 4. Scheme of differential body and computation of Ay (x).

Also noting that MC = wy, /sinf= wy/(dw/dy)p, by substituting it into Equation (25),

we have )
wm 1, wy 1 <8w> 1 (8w>
A, — 292 = (= == — ] . 26
V= Gwiany 2 ey z\ay )y 2\ ay )y 29
Lastly, W may be computed as
1 /1 ow

4. Application of Variational Method

In this section, we will derive the critical loads for the four stability problems with
bimodular effect shown in Figure 2.
The whole procedure may be described as follows:

1.  The first step is to select a deflection function with two unknown parameters.
The deflection function should satisfy all boundary conditions of displacement.

2. Substituting the deflection function into Equations (16) and (27), the potential energy
of strain, U, and the potential energy of external forces, W, may be computed.

3.  Using Equations (1) and (2), the total potential energy of the system and its variation
may be determined, resulting in two homogeneous linear equations with respect to
the previously selected two parameters.

4.  Letting the two linear equations have a nonzero solution, the coefficient determinant
of the two equations must be zero; thus, another quadratic equation with respect to q
may be obtained;

5. Finally, by solving the quadratic equation of g, its minimum real root will give the
formulas of the corresponding critical load.

4.1. Bimodular Rectangular Plate with Top and Bottom Loaded

In Figure 5, the length, height and thickness of the plate are [, i and ¢, respectively;
points A and B stand for the bottom and top corners of the right free side of the plate. Note
that, as indicated in Section 3.1, due to the introduction of the bimodular effect, the neutral
layer of the plate under bending is not located at the geometrical middle plane, and thus,
the y axis deviates from the middle plane, as shown in Figure 5.

The following deflection function is selected [19]

w= [f1+(f2—f1)%} (1—C°S%)f (28)

where f1 and f; are the z-direction deflection of points A and B of the plate, respectively,
and are unknown parameters. Note that a difference remains between Equation (28) in
this study and the deflection function in [19] due to the different establishment modes
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of the coordinate system. From Equation (28), it is easy to see that when x = 0, we have
w =0 and dw/dx = 0, which satisfies the boundary conditions of the entire fixed side; at the
same time, when x = [, we have w = f1 + (fo — f1) y/h, which also satisfies the displacement
conditions of corner points A and B, that is, for point A, when y = 0, we have w = f;. For
point B, when y = h, w = f, may be obtained. Therefore, Equation (28) is rational and may
be used to obtain the solution.

Jy Y
- - -q - n
L i bt iidils
Z
= /)
y A
z< b L % ‘ - X
Pk FRRREREY

L

1

Figure 5. Bimodular rectangular plate with top and bottom loaded.

Substituting Equation (28) into Equation (16) and integrating with respect toy, 0 to I,
and with respect to x, 0 to /, we have

u =%§Pﬂﬂﬁ+ﬁ+ﬁbwewu—wwﬁ—ﬁﬂ

29
+ a5 [ TR (fF + f3 + fifa) + 242 (1 — w7 ) (fu —fz)z] )

The work done by the external loads is divided into two parts: one is the uniformly-
distributed load acting on the top of the plate, and the other is that acting on the bottom
of the plate. For the work done by the former load, W;, by substituting Equation (28) into
Equation (27), we obtain

17l [ow (371 8)
- — d — 30
2/0 Q(ay w>y=h x=-——"=ffr— f1) (30)
For the work done by the bottom load, Wp,
1 /’ <aw > (37t 8)
== —w dx = 2 — f1). (31)
2o 1\ 5y - ——filh-fi
The total work done by the external loads is
3t —8)q
w=wrw, = S0 f). (2)

Substituting Equations (29) and (32) into Equation (1), we determine the total potential
energy of the system

M=u-w =29 h 4 f)(f - f)
+DI 2R (2 + B+ fufo) + 2421 — u ) (fi — fo)? (33)
+ D 22 (2 4 f2 4 fifo) + 242(1 — ) (fi — f2)°




Materials 2021, 14, 6129

12 of 25

Variations of the two parameters f1 and f, give the following two homogeneous linear
equations for f1 and fo

D (W2 42417 —24p 12)

D~ (m?h? 4241724~ 1%) | (371-8)q!
IED + IR + ]f 1 (34)
i D 72 (m2h2 — 481248yt 12) i D~ (2 h?—481% 448y~ 12) fr=0
96131 961%H 2=
and +2( 27,2 2 +72 2(-21,2 2 2
Dt e (m*h*—481°+48u*1%) | D~ m*(mh=—481°+48u " I*)
9613h + 961%h fit (35)
D+ 2 (W2 42412 —24p+ 1?) n D~ (m?h?+2412—24u"1%)  (37—8)q! fr=
4881 48130 mh -

To allow the system of Equations (34) and (35) to yield a nonzero solution, the coeffi-
cient determinant must be zero. Thus, we have
(B3n-8)%2 , n%(D*+D)
2 1 307216

Al o

212 2
h _
(” + 961 DY +D-

) =0, (36)

which gives the minimum real root, that is, the critical load for a bimodular rectangular
plate with its top and bottom loaded

_2n 7*(DT+D)
It =37-8" ap

21,2 tut L Dy
ﬁnh\/nh Dt + Dy -

4 1\ 9 12 D+ +D-

4.2. Bimodular Rectangular Plate with Top Loaded

In this case, Equation (28) is still selected as the deflection function, in which the
meanings of f1 and f, remain unchanged, as shown in Figure 6. Note that here, the work
done by the external load is W; in Equation (30).

R R

b L /

£

A

Figure 6. Bimodular rectangular plate with top loaded.
The total potential energy of the system is
—8)ql
M=u-w, =g p)

+ 2

g |7 4 2+ fif) + 242 (1= ) (fi = fo) (38)
-2 — 2

+1D92173Th 772h2(f12 +f22 +f1f2) +2412(1 —H )(fl - fZ)
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Similarly, the variations in f; and f; give the following two homogeneous linear
equations for f1 and fo

Dt 2 (m2h? 2412 24yt 12 D~ 2 (2 h? 42412 24y~ 2

2(-2 22413h2 2 2(+2 22413h2 2 (39)
DT (m®h?+4812—48u*1%) | D™ m?(m?h?+4812—48u~1%2) | (3m—8)ql _
[ 181%h + 18P%h R }fZ =
and
D 2 (72h?2 — 4812448+ 12) n D’7r2(7r2h274812+48y’12) (371-8) ql] I
9613 96137 | f1 (40)
DY rm?(n?h?+2412—24p*1?) | D™ r?(mPhP42417—24p 1) 37'[ 8 )ql
48130 + 480 fo=
The coefficient determinant of Equations (39) and (40) must be zero; thus
(3n—8)*12 5 | m3(3n—8)(Dt+D")
A @)
78(Dt+D") 212 2 _ gDt DTum\ _ 67
which will give the critical load for a bimodular rectangular plate with its top loaded,
as follows
27 72(Dt + D~ wh? V2 h | m2h? Dtut +D-u—
G = (D £D7) [ ol V2o h [T DI DT g
3t —8 4] 8 I 2 1\ 241 Dt +D

4.3. Bimodular Rectangular Plate with Bottom Loaded

Equation (28) may still be used, and all other parameters remain the same as those
shown in Figure 7. Note that the work done by the external load is W}, in Equation (31);
thus, we have

Mnm=u-w, =& quf (fi—f)
+m TR (f+ 2+ fifa) + 2821 —ph) (- f2)P] . (49)
+D N2 (2 4 B+ fifa) + 2420 — p)(fi — fo)?

AR
ARV R R TR o
L / |

Figure 7. Bimodular rectangular plate with bottom loaded.

Similarly, the variations of f; and f; give the following two homogeneous linear
equations for f1 and f5:

Dt 72 (21?2412 —24u* 12) D’ﬂz(ﬂ2h2+24l2—24;4’12) I (31—8)ql I
485 485 N

+ 2 (12H2 — 4812 +2 — 20212 _ 4812 -2 _ (44)
[D (r*h* —481°+48u l)+D 7% (r*h* —481%+48u l)_(agnz)ql]ﬁ:o

9613h 9613h
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and

Dt 2 (7?h? 4812 +48ut12) | D~ m?(m?h?—4812+48u~1%)  (3m—8)ql
800 + 1800 T } fit
Dt 2 (m?h? 4241224+ 12) | D™ m?(m?h? 42412 —24p~ 12) —0
{ 24131 + 24131 }f 2=

The coefficient determinant of Equations (44) and (45) must be zero; thus

(37—8)%2 5 m3(3m—8)(DT+D")
2h2 - 812 (46)

(D 4D (242 2 2Dt D g

which will give the critical load for a bimodular rectangular plate with its bottom loaded
as follows:

sE T2 (47)

_ 2x A*(DY4+D7)[n*K V2 _h [m*R? . Dtut 4D u-
93 =378 ap 24 12 DF+D-

4.4. Bimodular Triangular Plate with Bottom Loaded
In this case, the following deflection function is selected

w = {f1+(f2f1)2hy} (17COS?>, (48)

where f1 and f; are the deflection of middle point A of the right angular edge and middle
point B at oblique edge of the plate, respectively, as shown in Figure 8. Other quantities are
the same as those for the rectangular plate. Note that there is a slight difference between
Equation (48) and Equation (28) due to the change of the locations of points A and B.
It is easy to verify that Equation (48) also satisfies all boundary conditions of displacement.
Specifically, when x = 0, we have w = 0 and dw/dx = 0, which satisfies the boundary
conditions of the whole fixed side. When x = I, we have w = f1 + 2y/h (f, — f1); this also
satisfies the displacement conditions of points A and B, that is, for point A, when y =0,
w = f1, and for point B, wheny =h/2, w = f5.

Yy Yy
o
= B
|
N
|
= ’
Z X
PR R RN
2 7

Figure 8. Bimodular triangular plate with bottom loaded.
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Substituting Equation (48) into Equation (16) (noting that the integration area is
triangular), and thus integrating with respect to y, 0 to h, and with respect to x, 0 to
I(1 — y/h), we have

u =5 fray | (2) 20 - ) ()| o
+%f0hdyfol(l_%) (%)24_2(1_#7)(6;%)2 dx . (49)
= D0 [P (fF +213) + 242(L— i) (1 — o)} — 602 (fufo — £3))
+ 550 [ (7 2f) + 2421 = i) (- £)F - 6o~ )]

Qv
<

Substituting Equation (48) into Equation (27), the work done by the external load is

3ql
W:%fl(fZ*fl)- (50)
Substituting Equations (49) and (50) into Equation (1), the total potential energy of the
system is
IIT =u-w

= Dt [+ 2£3) + 242(1— i) (1~ ) — 62 (fif2 — f3)]
205 [P+ 2) + 24200 ) (fi - ) — 61 (fufo — )]
~SA-f)

The variations of f1 and f, give the following two homogeneous linear equations for

(51)

fl andf2 2(-21,2 2 2 2(+21,2 2 2
Dt (m?h?* 42417 =24t 1?) | D (mPh* 42412 —24u"1%) | 341
125k . + L, P +50 At (52)
Dt r?(—h?—8124+8u*1?) | D™ m?(—h>—812+8u~1 3ql _
[ 431 + 4131 ) — 7| f2=0
and + 2 2 2 +12 -2 2 2 +12
Dn(—h—381+8;41)+Dﬂ(—h—381+8yl)_3ilf1+
213h 213h h (53)
Dt 2 (?h? 4302+ 1212 12t 12) I D~ r?(m?h? 4302 +1212— 12t 17) —0
3%k 330 f=
The coefficient determinant of Equations (52) and (53) must be zero; thus
912 o m2(2m?43)(Dt+D")
” 4 : 2 " o+ (54)
n*(DT+D™ 2 4 2 212 D +D u~ . n’
— TP 122t + 6m2 — 9) + 727?12 (1 - 2p AP )| = 0

giving the critical load for a bimodular triangular plate with its bottom loaded, as follows

_ (D +DT)[(4n?  2\M 4V2 h (7> A\K | Diut+Du-
Gers = 42 9 "3 2 4)nr DY +D-

(55)

Z T3

5. Results and Discussions
5.1. Comparision of Four Critical Loads without Bimodular Effect

First, let us compare the critical loads of four stability problems without the bimodular
effect, which are denoted by g¢r1%, Ger2*, ger3™ and gera*. For this purpose, let DY =D~ =D/2
and p* = u~ = p in Equations (37), (42), (47) and (55). Thus, for a rectangular plate with its
top and bottom loaded, we have

. 2r 7D (V2 _h [m?h?
= 3§ 4 (mv 9612“‘”) 6
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For the rectangular plate with its top loaded, we have

. 27 2D mwh V2 h [m2h?
fer2 _371—8412<_812+2”1\/ up T ©7)

For the rectangular plate with its bottom loaded, we have

. 2r D (m?h* N2 h [ h?
103 = 3n—g 4l (812+2”1\/ up TR )

For the triangular plate with its bottom loaded, we have

., mD[[/4n® 2\K* 4V2 h |[(n2 1\h?
o =2 (53 ey (B ra)e e @

For the sake of comparison, we take y = 0.25 and I = I, thus obtaining the following
figure (see Figure 9) in which there is no need to describe the coordinate system, as the
solution depends only on D and h.

RN SRR

. D . D
4 =1116-> Qo =12.62-7

(@) (b)

(0) (d)

Figure 9. Four stability problems and their corresponding critical loads without bimodular effect.
(a) Rectangular plate with its top and bottom loaded; (b) Rectangular plate with its top loaded;
(c) Rectangular plate with its bottom loaded; and (d) Triangular plate with its bottom loaded.

Due to the fact that the magnitude of the critical load is closely related to tendency of
the plate to buckle, the following conclusions may be drawn from Figure 9: (1) Among the
four cases, the order is, by the degree of ease of buckling, g¢r1* < ger2* < Gera™ < ger3™; (2) For
the rectangular plates, case (a) with top and bottom loaded is most likely to buckle, followed
by case (b) with top loaded, and then case (c) with bottom loaded; (3) By comparing (c)
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chz =

with (d), it is easy to see that, under the same load, the triangular plate is more prone to
buckling than the rectangular plate.

Cheng [19] also determined the critical load of a cantilever vertical plate with its top
loaded without considering the bimodular effect. His solution was as follows

a2 2 a(nzaz y)l/Z]

(d0)., = 2 72D
0)er = 3708 ap2

T2t plaap ]

24 12 (€0)

where (go).r is the critical load, a and b are the height and length of the cantilever verti-
cal plate, respectively, and D is the bending stiffness of the plate. Equation (57) in this
study and Equation (60) in [19] are the same. This verifies, to some extent, the correctness
of the analytical solutions derived in this study; however, in our study, the bimodu-
lar effect is introduced and other loading types and plate shapes are also considered.
Of course, a demonstration of validity should include a numerical simulation based on
FEM, in which a real material model may be incorporated. Nonetheless, as indicated in the
Introduction, for a bimodular problem, it is difficult and time-consuming to use the finite
element method (FEM) based on an iterative technique. In addition, there is no bimodular
materials model in existing commercial FEM software, e.g., ABAQUS. New material types
may be introduced through the use of external modules, for example, by applying the
user materials subroutine, UMAT, to evaluate the mechanical behavior of a given type of
material. Given that the main aim of this study is to use the variation method to determine
the critical loads of various components, more accurate numerical simulations will be
considered in future.

5.2. Bimodular Effect on Four Critical Loads

For the investigation of the bimodular effect on the critical loads, let us introduce the
following relations [39]

E=E3E, p={=f, E'=(+pE E =(1-pE
_ W e +— - = ’ (61)
p=r=— B=imme W =0+ o =0-pp

where E is the average value of the tensile and compressive moduli, and y is the average
value of the tensile and compressive Poisson ratio. § is an important parameter which may
be positive or negative. In addition, we introduce the following dimensionless quantities

Tl:tTl/TZ_*/\h—l/ I’QCV:%
K+ =Dt AT fzgz(lﬁ)f : (62)
EF T 3[-(ut)]’ EF T 3[1-(u)’]

Using the relations in Equations (61) and (62), we may obtain the dimensionless forms
of Equations (37), (42), (47) and (55). For the rectangular plate with its top and bottom
loaded, we have

chl -

27r m2A2(KY +K7) (V2 5 Ktpt +K-p~
-8 4 G

For the rectangular plate with its top loaded, we have

T—38 4

24 K+t 4+ K~

2)02(KT + K~ 2 N o
2” AKT +KT) —H—AZ—i—im\h A2+1_KV+KV). (64)
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For the rectangular plate with its bottom loaded, we have

ch3 =

2 AFKT +K) [ 2 V2 72 Ktut + K-~
P VY S v VIE I A i o L
37-8 n R Yo e K+ + K- (65)

For the triangular plate with its bottom loaded, we have

222 (+ — 2 44 L
QC,4—7””(K+K)K4”+3) 3+ 22 /\h\/ 2 g Kotk

4 9 K+t 4+ K~ (66)

Up to now, we have determined the dimensionless critical loads which may be numer-
ical determined via known parameters such as Ay, Ay, u*, =, K* and K~, in which the Ty
and T, contained in K* and K™ are, based on Equation (23)

- A0 ) . (R
1= T = : (67)
VA+B A —p)+/A-p) 1 —puT) VA+B A —p )+ /A =B)(1—puh)

Table 1 lists the value of  taken from Equation (61), ranging from 0.3 to —0.3, with
an interval of 0.05. Thus, there are, in total, thirteen data groups. Table 1 also lists the
corresponding computational value of related physical quantities including y* and u~
from Equation (61), in which the average modulus, y, is first set to 0.25, and also includes
T1 and T, from Equation (67), as well as K* and K~ from Equation (62). § = 0 indicates that
the tensile modulus is equal to the compressive one, and also that, in this case, we have
w"=wu", Ty =Tpand K* = K~. From the data of Table 1, it is easy to observe a regular
pattern, indicating that when the abstract values of § remain unchanged, only a change of
positive or negative sign occurs for y* and y—, T1 and Ty, and K* and K~, which exchange
their values. Specifically, if § changes from 0.05 to —0.05, y* = 0.2625 when = 0.05 is
exactly p~ =0.2625 when 8 = —0.05, while at the same time, y~ = 0.2375 when = 0.05 is
exactly y* = 0.2375 when = —0.05. A similar pattern may be found for T and T, and K*
and K~. This fact reminds us that if these quantities are symmetrically distributed in the
expressions for the critical load (the so-called symmetry may be found in Equations (61) to
(66)), as long as the abstract value of § remains unchanged, whether this value is positive
or negative, the final calculated value of the critical loads remains unchanged, that is,
the relation of Q.,; (i = 1,2,3,4) and B satisfies

chi(_ﬁ) = chi(ﬁ)/ (i=1234). (68)
Table 1. Values of B and the corresponding computational values.

B ut u- Ty T, K* K-
0.3 0.325 0.175 0.3989 0.6011 0.0308 0.0523
0.25 0.3125 0.1875 0.4161 0.5839 0.0333 0.0516
0.2 0.3 0.2 0.4330 0.5670 0.0357 0.0506
0.15 0.2875 0.2125 0.4499 0.5501 0.0380 0.0494
0.1 0.275 0.225 0.4666 0.5334 0.0403 0.0479
0.05 0.2625 0.2375 0.4833 0.5167 0.0424 0.0463
0 0.25 0.25 0.5 0.5 0.0444 0.0444
—0.05 0.2375 0.2625 0.5167 0.4833 0.0463 0.0424
—0.1 0.225 0.275 0.5334 0.4666 0.0479 0.0403
-0.15 0.2125 0.2875 0.5501 0.4499 0.0494 0.0380
-0.2 0.2 0.3 0.5670 0.4330 0.0506 0.0357
—0.25 0.1875 0.3125 0.5839 0.4161 0.0516 0.0333
-0.3 0.175 0.325 0.6011 0.3989 0.0523 0.0308

It is easy to see from Table 1 that the dimensionless bending stiffness, K= K* + K7,
also forms a regular pattern, that is

K(=p) = K(B)- (69)
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These results may be helpful to the following analysis and discussions.

Tables 2-8 list four critical loads under different A;, and A; when 8 =0, £0.05, £0.1,
£0.15, £0.2, £0.25 and £0.3, and A, ranges from 0.9 to 1.1 and A; from 0.02 to 0.04, both
according to real conditions in the cantilever vertical plates used for the design of balconies.
Specifically, one designer may refer to the dimensionless value of critical loads to determine
the real critical loads without much effort via the expression q.r = EtQ.r, where E is the
average modulus and t is the thickness of the plate.

From Tables 2-8, it is easy to find the influences of parameters A;, and A on the critical
loads. As indicated in Equation (62), A;, = 1/l, ranging from 0.9 to 1.1. When A is 0.9,
1.0 and 1.1, this corresponds to the cases of h < I, h = I (square plate) and k > I. It may
be observed that, according to the magnitudes of the critical loads, & < I is most likely to
buckle, followed by the square plate, while / > ] is least likely to buckle. For the thickness
variation of A; = t/l, it is obvious that the increase in thickness improves instability; thus,
At = 0.02 is most likely to buckle, followed by A; = 0.03, while A; = 0.04 is the least likely
to buckle.

From Tables 2-8, we can find the basic tendency is still, according to the degree of
buckling, Qcr1 > Qera > Qcra > Qers, indicating that regardless of the values of 8, A, and A4,
a rectangular plate with its top and bottom loaded is most likely to buckle, followed by
the rectangular plate only with its top loaded, the triangular plate with its bottom loaded,
and finally, the rectangular plate only with its bottom loaded. The difference magnitudes
among the critical loads of four groups are also different. From Tables 2-8, it is easy to
see that there are smaller differences between Q.1 and Qcr2, as well as slightly bigger
differences between Q3 and Qcr4, while larger differences may be observed between Q.rq

(or Qcr2) and Qg3 (or Qcra).

Table 2. Four critical loads under different Aj, and A (B = 0).

An At chl(X1074) chZ(X1074) ch$(><1074) QCr4(><1074)
0.9 0.02 3.530 4.183 11.91 9.541
1.0 0.02 3.968 4.488 14.03 11.44
1.1 0.02 4.420 4.784 16.33 13.54
0.9 0.03 7.943 9.413 26.81 21.46
1.0 0.03 8.928 10.09 31.57 25.76
1.1 0.03 9.945 10.76 36.75 30.47
0.9 0.04 14.12 16.73 47.66 38.16
1.0 0.04 15.87 17.95 56.13 45.79
1.1 0.04 17.68 19.13 65.33 54.17

Table 3. Four critical loads under different A;, and A (B = 1:0.05).

An At Qer1(x 10—4) Qera(x 10—4) Qcr3(x 10-%) Qcra(x 10—4)
0.9 0.02 3.524 4.176 11.89 9.524
1.0 0.02 3.961 4.480 14.00 11.42
1.1 0.02 4412 4.775 16.30 13.52
0.9 0.03 7.929 9.396 26.76 21.43
1.0 0.03 8.912 10.08 31.52 25.71
1.1 0.03 9.927 10.74 36.68 30.42
0.9 0.04 14.09 16.70 47.57 38.09
1.0 0.04 15.84 17.92 56.03 45.71

1.1 0.04 17.64 19.10 65.22 54.08
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Table 4. Four critical loads under different A;, and A; (B = £0.1).

An At chl(X10_4) chz(><10_4) chS(X10_4) ch4(><10_4)
0.9 0.02 3.514 4.169 11.84 9.481
1.0 0.02 3.949 4.473 13.95 11.37
1.1 0.02 4.399 4.768 16.23 13.45
0.9 0.03 7.906 9.381 26.65 21.33
1.0 0.03 8.887 10.06 31.38 25.59
1.1 0.03 9.898 10.72 36.53 30.27
0.9 0.04 14.05 16.67 47.38 37.92
1.0 0.04 15.79 17.89 55.80 45.50
1.1 0.04 17.59 19.07 64.94 53.82

Table 5. Four critical loads under different A;, and A (B = 1:0.15).

An At Qcr1(x1074) Qcr2(x1074) Qer3(x1074) Qcra(x1074)
0.9 0.02 3.486 4.139 11.74 9.398
1.0 0.02 3.918 4.441 13.83 11.27
1.1 0.02 4.364 4.733 16.09 13.33
0.9 0.03 7.845 9.314 26.43 21.14
1.0 0.03 8.817 9.992 31.12 25.37
1.1 0.03 9.820 10.65 36.21 30.01
0.9 0.04 13.94 16.55 46.98 37.59
1.0 0.04 15.67 17.76 55.33 45.10
1.1 0.04 17.45 18.93 64.38 53.35

Table 6. Four critical loads under different Aj, and A (B = £0.2).

An A Qcr1(x1079) Qer2(x1074) Qcr3(x107%) Qcra(x1074)
09 0.02 3.446 4.093 11.60 9.281
1.0 0.02 3.873 4.392 13.66 11.13
1.1 0.02 4.313 4.681 15.89 13.16
09 0.03 7.753 9.211 26.10 20.88
1.0 0.03 8.714 9.882 30.73 25.05
1.1 0.03 9.705 10.53 35.77 29.63
09 0.04 13.78 16.37 46.41 37.12
1.0 0.04 15.49 17.56 54.64 4453
1.1 0.04 17.25 18.72 63.59 52.67

Table 7. Four critical loads under different A;, and A; (B = £0.25).

An At chl(X10_4) chZ(X10_4) chS(X10_4) ch4(><10_4)
0.9 0.02 3.391 4.031 11.41 9.126
1.0 0.02 3.811 4.325 13.43 10.94
1.1 0.02 4.245 4.610 15.63 12.94
0.9 0.03 7.631 9.071 25.67 20.53
1.0 0.03 8.576 9.732 30.23 24.63
1.1 0.03 9.551 10.37 35.18 29.13
0.9 0.04 13.56 16.12 45.65 36.50
1.0 0.04 15.24 17.30 53.75 43.79

1.1 0.04 16.98 18.44 62.54 51.79
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Table 8. Four critical loads under different A;, and A; (B = £0.3).
An At chl(X10_4) chZ(X10_4) ch3(><10_4) ch4(><10_4)
0.9 0.02 3.323 3.952 11.17 8.935
1.0 0.02 3.734 4.240 13.15 10.71
1.1 0.02 4.159 4.519 15.30 12.67
0.9 0.03 7.477 8.894 25.14 20.10
1.0 0.03 8.403 9.541 29.60 2411
1.1 0.03 9.358 10.16 34.44 28.52
0.9 0.04 13.29 15.81 44.70 35.74
1.0 0.04 14.93 16.96 52.63 42.87
1.1 0.04 16.63 18.07 61.23 50.70

Figure 10 shows the variation curves of four critical loads with B values. Although it
is plotted for a given case, for example, Aj, = 1.0 and A; = 0.03, it is applicable to other cases
of values of A, and A;. It is easy to see from Figure 10 that Qcr1 > Qer2 > Qera > Qcr3, as well
as the relative differences among the four critical loads, that is, Q1 is very close to Qcr2,
Qcr3 is relatively close to Qcr4, but there is larger difference between Q1 (or Qcr2) and Qs
(or Qcrg). In addition, the two curves of Q.3 and Q.4 have obvious arch shapes, indicating
that § has a greater influence on Q.3 and Qcr4, while the two curves of Q¢ and Qg
approach a flat line, indicating a smaller influence of  on Q1 and Q. It may concluded
therefore that the introduction of bimodular effect has a greater influence on rectangular
and triangular cantilever vertical plates with their bottoms loaded, and a smaller influence
on rectangular plates with either their top and bottom loaded or only the top loaded.
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Figure 10. Variation of four critical loads Q. with § (Aj, = 1.0 and A; = 0.03).

Figure 11 shows the variation of dimensionless bending stiffness K with §, suggesting
the same arch shape as the critical loads Q.r, which indicates that the variation of Q. with
B is similar to that of K with 8. From Equations (56)—-(59), it is easy to see that g.,* is directly
proportional to the bending stiffness D in a uniform modulus case, but what happens
if the bimodular effect is introduced? From Equations (63)—(66), it is found that Q. is
not proportional to the bending stiffness K in a bimodular case; in contrast to Equations
(56)—(59), the relation between Q. and K seems to be nonlinear. However, by consid-
ering Equations (63)—(66), it may be seen that if we neglect the difference of u* and u~,
and further take y* = y~ = p, then the last item in the square root will become .
Thus, the resulting Q. is also proportional to the bending stiffness K in a bimodular
problem. This conclusion is rational, since the influence of Poisson ratio y is generally
regarded as secondary, compared with the influence of the modulus of elasticity. It is
for this reason that, at present, most studies do not take into account the influence of
Poisson ratio on stress and deformation; of course, this also includes the critical loads
discussed here.
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Figure 11. Variation of bending stiffness K with B (A;, = 1.0 and A; = 0.03).

6. Concluding Remarks

In this study, a variational method based on bimodular theory is applied to solve the
stability problems of cantilever vertical plates used in balcony structures, in which different
loading types and different plate shapes are considered. The results indicate that these
factors influence the final critical loads. The following four conclusions can be drawn.

1.  Among the four plate cases, the rectangular plate with its top and bottom loaded is
most likely to buckle; next is the rectangular plate with its top loaded, followed by the
triangular plate with its bottom loaded. The rectangular plate with its bottom loaded
is least likely to buckle.

2. Among the four plate cases, the introduction of bimodular effect has a greater influ-
ence on rectangular and triangular plates with their bottoms loaded, but has a smaller
influence on the rectangular plate with its top and bottom loaded, as well as on the
rectangular plate with its top loaded.

3. If the average value of the tensile and compressive moduli, E = (E* + E7)/2,
remains unchanged, the introduction of bimodular effect, either E* > E~, or E¥* <E~,
will weaken the bending stiffness of the plate compared with the original uniform
modulus case. Specifically, the greater the difference between the tensile and compres-
sive moduli, the smaller the resulting bending stiffness, and accordingly, the more
likely that they will buckle.

4. If weneglect the influence of the Poisson ratio, the critical load in a bimodular problem
is also directly proportional to the corresponding bending stiffness of the bimodular
plate, which is the same as the classical problem with a uniform modulus.

This study may serve as a theoretical reference for the analysis and design of concrete
vertical plates, especially those using special concretes whose bimodular effect is relatively
significant and cannot be ignored arbitrarily. In addition, this study successfully applies
the variational method to determine the critical loads of stability problems taking the bi-
modular effect into account. Although there was no substantial change to the method itself,
its implementation requires knowledge of the bending strain energy based on bimodular
theory, which may be seen as an extension of this method. Lastly, the problem and method
proposed in this study may also be used for the analysis and design of other mechanical
components associated with structural engineering.
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Rectangular coordinates

Origin of the rectangular coordinate system (x, y, z)

Height of the cantilever vertical plate

Length of the cantilever vertical plate

Uniformly-distributed loads acting on the top or/and bottom of the
cantilever vertical plate (see Figure 2)

Normal uniformly-distributed loads acting on the upper surface of the
horizontal plate (see Figure 3)

Strain potential energy

Potential energy of external loads

Total potential energy of the system

Variation symbol

Tensile Young’s modulus of elasticity

Compressive Young’s modulus of elasticity

Tensile Poisson ratio

Compressive Poisson ratio

Thickness of the cantilever vertical plate

Tensile thickness of the plate

Compressive thickness of the plate

Deflection of the plate

Normal strains in x, y and z directions

Shearing strains in rectangular coordinates

Tensile stress components in two-dimensional thin plate theory
Compressive stress components in two-dimensional thin plate theory
Bending moments per unit length on the sections normal to x-axis

and y-axis

Torsion moment per unit length on the section normal to x-axis
Biharmonic operator

Bending stiffness of a bimodular plate, D = D* + D™

Tensile part of bending stiffness D

Compressive part of bending stiffness D

Normal forces per unit length on the sections normal to x-axis and y-axis
Displacement of the action point of load q (see Figure 4)

Rotation angle (see Figure 4)

z-direction deflection of bottom corner point A and top corner points B of
the rectangular plate (see Figures 5-7); z-direction deflection of middle
point A of the right angular edge and middle point B at oblique edge of
the triangular plate (see Figure 8)

Work done by the top load

Work done by the bottom load

Pi (the ratio of circumference to diameter)

Critical loads of four stability problems without bimodular effect

(see Figure 9, in which u = 0.25 and I = h)

Average quantity of E* and E~

Average quantity of y+ and p~

Small parameter concerning E*, E~, y+ and ¢~ shown in Equation (61)
Dimensionless quantities of t; and t

Dimensionless quantities of & and ¢

Dimensionless quantities of D* and D~

Dimensionless quantities of q¢1, Ger2, Gors and Gepa
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