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The tumour microenvironment (TME) of clear cell renal cell carcinoma (ccRCC) comprises
multiple cell types, which promote tumour progression and modulate drug resistance and
immune cell infiltrations via ligand-receptor (LR) interactions. However, the interactions,
expression patterns, and clinical relevance of LR in the TME in ccRCC are insufficiently
characterised. This study characterises the complex composition of the TME in ccRCC by
analysing the single-cell sequencing (scRNA-seq) data of patients with ccRCC from the
Gene expression omnibus database. On analysing the scRNA-seq data combined with
the cancer genome atlas kidney renal clear cell carcinoma (TCGA-KIRC) dataset, 46 LR-
pairs were identified that were significantly correlated and had prognostic values.
Furthermore, a new molecular subtyping model was proposed based on these 46 LR-
pairs. Molecular subtyping was performed in two ccRCC cohorts, revealing significant
differences in prognosis between the subtypes of the two ccRCC cohorts. Different
molecular subtypes exhibited different clinicopathological features, mutational, pathway,
and immune signatures. Finally, the LR.score model that was constructed using ten
essential LR-pairs that were identified based on LASSO Cox regression analysis revealed
that the model could accurately predict the prognosis of patients with ccRCC. In addition,
the differential expression of ten LR-pairs in tumour and normal cell lines was identified.
Further functional experiments showed that CX3CL1 can exert anti-tumorigenic role in
ccRCC cell line. Altogether, the effects of immunotherapy were connected to LR.scores,
indicating that potential medications targeting these LR-pairs could contribute to the
clinical benefit of immunotherapy. Therefore, this study identifies LR-pairs that could be
effective biomarkers and predictors for molecular subtyping and immunotherapy effects in
ccRCC. Targeting LR-pairs provides a new direction for immunotherapy regimens and
prognostic evaluations in ccRCC.
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INTRODUCTION

Clear cell renal cell carcinoma (ccRCC) is the most common (70%–
80%) histological subtype of kidney cancer with the worst prognosis
(1). ccRCC exhibits a broad range of metastatic phenotypes, and
patients with ccRCC displaying metastases have a 5-year survival
rate between 10% and 20% (2). Various clinical trials using
immune-based combinations for the treatment of metastatic
ccRCC have shown long-term benefits (3). However, a
comprehensive analysis of the effect of clinicopathological features
on survival in patients treated with first-line immune checkpoint
inhibitors and tyrosine kinase inhibitors for ccRCC can aid in
clinical decision-making (4) as their efficacy remains limited (5–7).
Few patients treated with immune-based combinations displayed
unresponsive reactions and intrinsic or acquired resistance (8). A
recent study showed that tumour and tumour-infiltrating cells are
involved in drug resistance or unresponsiveness to cancer treatment
strategies (9). However, the mechanisms underlying these
phenomena remain unclear. Therefore, studying the intra-tumoral
heterogeneity of cancer is vital to cancer research. ccRCC is highly
heterogeneous, and varying patients show significant differences in
the composition of the tumour and other cells within the tumour
microenvironment (TME), affecting tumour progression and
treatment resistance (10). Furthermore, intra-tumoral
heterogeneity hinders accurate prognosis prediction and
appropriate treatment development. Although the application of
genetic signatures from the bulk RNA-seq data shows promise in
identifying patient subgroups who respond to treatment, it provides
a limited mechanistic understanding of the cell types responsible for
regulating clinical benefit (11).

Conversely, single-cell RNA sequencing (scRNA-seq) enables
a more comprehensive characterisation of cellular composition
and transcriptional state, thereby providing insights into the
transcriptional state of different cells and cell-cell interactions in
the TME (12) and the impact of these events on disease
progression and treatment (10). The TME consists of multiple
cell types, including malignant, stromal, and immune cells (13).
The heterogeneity of each cell type further increases the
complexity and heterogeneity of the tumours, which eventually
creates tumour cell or immune cell subpopulations (14). The
different cell types in the TME communicate via ligand-receptor
(LR) interactions, and this communication is associated with
tumorigenesis, tumour progression, therapeutic resistance,
immune cells infiltration and inflammation (15, 16). Therefore,
it is crucial to understand the cell-cell interactions occurring
within the TME and their effect on clinical outcomes to
accurately determine risk stratification.
Abbreviations: ccRCC, clear cell renal cell carcinoma; DEGs, differentially
expressed genes; EGFR, epidermal growth factor receptor; GEO, Gene
Expression Omnibus; HLA, human leukocyte antigen; GESA, gene set
enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; KIRC,
Kidney Renal Clear Cell Carcinoma; LR, ligand-receptor; MIF, macrophage
migration inhibitory factor; PCs, principal components; RECA-EU, Research
Concept and Research Activities- European Project; scRNA-seq, single-cell RNA
sequencing; TCGA, The Cancer Genome Atlas; TGFb, Transforming growth
factor-beta; TME, tumour microenvironment; vSMC: vascular smooth muscle
cells; WNT, wingless.
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In this study, by combining the analysis of the single-cell dataset
of ccRCC and high-throughput large scale sequencing data from
TCGA-KIRC, the complex cell types in the TME of ccRCC are
described. Additionally, a cellular regulatory network is constructed
based on cell-cell communication analysis, and the potential clinical
implications of cell-cell interactions in ccRCC are described. On
further analysing LR-pairs in different cell types, two LR-pairs
associated with molecular subtyping models were established. The
molecular subtyping models were significantly associated with
survival in both cohorts. Patients grouped using molecular
subtyping showed different clinical-pathological characteristics,
mutation characteristics, route characteristics, immunological
characteristics, and immunotherapy response degrees.
METHODS AND MATERIALS

Datasets
scRNA-seq data (GSE159115) of ccRCC was obtained from the
Gene Expression Omnibus (GEO) database, which comprises 14
samples from nine patients with kidney cancer, including seven
‘ccRCC’ tumour samples, one ‘Chromophobe RCC’ tumour
sample, and six adjacent normal samples. The seven ‘ccRCC’
tumour samples were included in subsequent analyses. The cell
count of the GSE159115 primary tumour sample was obtained
from gse159115.raw_cellCount.txt. 526 samples of ccRCC RNA-
Seq data downloaded from the TCGA-KIRC portal were used as
the training cohort. Additionally, the Research Concept and
Research Activities- European Project (RECA-EU) dataset,
comprising 91 ccRCC samples downloaded from the
International Cancer Genome Consortium (ICGC) database,
was used as an independent validation cohort.

scRNA-seq Data Analysis
R (version 3.6.0) and the Seurat R package (version 3.6.3) were
used for the analyses. Using the Seurat R package, Seurat objects
were created for each sample with the cell-by-gene count matrix
using CreateSeuratObject (arguments: min. cells = 5). Cells with
high mitochondrial content (25% for tumour libraries) and low
gene number detection (<300) were considered low-quality cells
and discarded. Potential doublets identified via scrublet were also
removed from further analyses. Subsequently, 20851 high-quality
cells were obtained after quality checks. The relationship between
the percentage of mitochondrial genes and mRNA reads was
detected and visualised as the relationship between the number of
mRNAs and reads of mRNA. Furthermore, all highly variable
genes in single cells were identified after controlling for the average
expression and dispersion relationship. Subsequently, principal
component analysis with variable genes was used as the input to
identify significant principal components (PCs) based on the
jackStraw function. When different samples were pooled, highly
variable genes were identified, and batch correction using
canonical correlation analysis via Seurat was applied based on
the highly variable genes to remove the batch effect before
clustering. Cells were projected into a 2-D map with t-
distributed stochastic neighbour embedding for visualisation.
With a resolution of 0.2, cells were clustered using the
June 2022 | Volume 13 | Article 874056
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‘FindClusters’ function into 14 different cell types (clusters 0-13).
The ‘FindAllMarkers’ function was used to identify differentially
expressed genes (DEGs) in each cluster. Moreover, a few classical
markers of cell subset definition were obtained from previous
studies (17) and manually annotated according to
marker expression.

Cell-Cell Communication Analysis
Cell communication analysis was performed using CellPhoneDB
(18). A permutation test calculated the significant mean and
significance of cell communication based on cell interactions and
the normalised cell matrix. LP-pairs were obtained for each cell
pair with nominal p < 0.05. Moreover, LR interactions are based
on the annotations from the database included in the current
study. At least one gene in the LR-pairs is the receptor.
Additionally, receptor-receptor and other receptor-not-defined
interactions were excluded.

Correlation of LR-Pairs
The co-expression of a ligand and its corresponding receptor is
essential for cell-cell communication. Therefore, Pearson’s
correlation coefficients for the significant LR-pairs were
calculated in the cell communication analysis using the TCGA-
KIRC dataset. LR-pairs with Pearson’s correlation coefficient
greater than 0.4 (p < 0.01) were used for consensus clustering
analysis to identify molecular subtypes.

Molecular Subtyping Based on LR-Pairs
Using the significantly relevant LP-pairs, the molecular subtypes
of the samples were identified using consensus clustering in both
the TCGA-KIRC and RECA-EU cohorts. ‘euclidean’ was chosen
as the distance metric for the PAM algorithm, and 500 bootstrap
replicates were performed, each of which included 80% of the
training set. The number of clusters (k) was set from 2 to 10, and
the best classification was determined by computing the
consensus matrix and cumulative distribution function.

Gene Set Enrichment Analysis and
Functional Annotation
To study the biological pathways in different molecular subtypes,
GSEA was used. The ‘hallmark’ gene set collection from the
molecular signature database was used for pathway enrichment
analysis. The clusterProfiler (19) package was used for
functional annotation.

Cell Culture and Transfection
Human ccRCC cell line 786-O (KCB200815YJ, Kunming, China)
and renal epithelial cell HK-2 (KCB200941YJ, Kunming, China)
were obtained from the Chinese Academy of Sciences. All cell
lines were cultured in a DMEM medium containing 10% FBS.
786-O cells were infected with CX3CL1 lentivirus (Ubi-MCS-
CBh-gcGFP-IRES-Puro-CX3CL1) (Shanghai Gene Chem Co.,
Ltd.) to against the CX3CL1 gene.

RNA Analysis
Total RNA was extracted from 786-O and HK-2 cells using
the TRIzol Reagent (Cowin Biosciences, Beijing, China) and
Frontiers in Immunology | www.frontiersin.org 3
converted into cDNA using Reverse Transcription Kit
(Thermo Fisher Scientific, Waltham, USA). RT-qPCR
was performed based on SYBR Green (Cowin Biosciences,
Beijing, China) and an ABI 7500 instrument (Thermo Fisher
Scientific, Inc.). The sequences of the primer pairs are listed
in Table S1 . RT-qPCR exper iment was performed
in triplicate.

Cells Clone, Transwell Migration, Invasion,
Western Blot and Immunofluorescence
Assay
786-O cells were plated onto the upper 8mm transwell chamber
(corning, USA) per-coated with Matrigel (Corning, USA). Cells
were fixed with paraformaldehyde and stained with 0.1% crystal
violet solution to perform Transwell Assay. For Colony Assay,
786-O cells were re-seeded onto 24-well plates at a density of 100
cells per well and stained with 0.1% crystal violet solutions after
4% paraformaldehyde solution was fixed. For Western Blot and
Immunofluorescence, cells were incubated with anti-CX3CL1
(Cat# DF12376, Affinity Biosciences), anti-b-Tubulin
(Cat#T0023, Affinity Biosciences) and anti-GAPDH (Cat#
T0004, Affinity Biosciences) as described by previous study (20).

Analysis of Immune Infiltration in ccRCC
The 22 immune-cell proportions for each sample and immune
cell subsets were inferred using the CIBERSORT algorithm (21)
with the LM22 gene set. Meanwhile, the scores for stromal cells
and immune cell infiltration levels in ccRCC tumour tissues were
calculated using the ESTIMATE algorithm.

Risk Model
The risk score for each patient was calculated using the following
formula: LR.Score = ∑betai × Expi, where i indicates the
expression level of LR-pairs and beta indicates the coefficient
of the LR-pairs of multivariate Cox regression. Based on the
threshold of 0, patients were divided into high and low-score
groups, and the survival curve was plotted using Kaplan–
Meier analysis.

Statistical Analysis
GraphPad Prism 8.0 software was used for data analysis. All data
were computed as the means ± standard (SD) deviation under
three independent experiments. The significance of two group
differences was analyzed with Student’s t-test. P<0.05 was
statistically significant.
RESULT

Single-Cell Transcriptome Landscape
of ccRCC
Before quality control, correlations between unique molecular
identifier (UMI) numbers, mitochondrial genes and mRNA
numbers were analysed (Figure S1A, B), which revealed that
UMI number was not significantly correlated with mitochondrial
gene percentage (Figure S1A) but was positively correlated with
June 2022 | Volume 13 | Article 874056
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mRNA number (Figure S1B). Additionally, the number of
mRNAs, the readings of mRNA and the distribution of
mitochondrial and nuclear chromosome genes were also
analysed (Figure S1C). Most gene numbers showed a
distribution around 0–8000 while the mitochondrial
percentage was below 25%. Further, cells with more than 25%
mitochondrial genes and fewer than 300 genes were deleted.
Potential doublets were also predicted via ‘scrublets,’ which were
removed in subsequent analyses. The gene expression profile of
20851 cells was obtained, and the number of cells in each sample
was counted (Table 1). The number of filtered mRNAs, the
readings of mRNA and the distribution of mitochondrial and
nuclear chromosome genes are shown in Figure S1D. Highly
variable genes (the first 3000) were shortlisted after quality
control for further downstream analysis (Figure S1E). Cell
features were extracted using principal component analysis,
identifying 14 clusters (Figure 1A, B, cell_cluster.txt), with
cluster 0 being derived from patient SCS_2023 and cluster 10
from patient SCS_2026 (Figure 1C). The identification of DEGs
in each cluster was conducted using Wilcoxon rank and testing,
and the top 3 DEGs in each cluster were labelled using a heat
map (Figure 1D). Finally, 14 clusters were annotated to eight cell
types based on classical markers (Table 2). Further, the Kyoto
Encyclopedia of Genes and Genomes pathway enrichment
analysis of marker genes for different cellular subsets was
performed (Figure 1F), revealing that different cellular subsets
share common pathways, such as Antigen processing and
presentation, Fluid shear stress and atherosclerosis pathways.

Complex Intercellular Communication
Networks in ccRCC
The single-cell analysis identified eight cell types in the TME. To
further investigate the potential interactions between different
cell types in the TME of ccRCC, cell-to-cell interactions were
analysed using cellphoneDB, wherein ccRCC was revealed to
have many interactions with other cell subsets, showing the
highest interaction strength with endothelial and macrophage
cells. Additionally, endothelial cells had a strong interaction with
vascular smooth muscle cells(vSMC) (Figure 2A). The
interaction network between the eight cell subsets aids in
visualising the many interactions within and between the cell
subsets (Figure 2B), with thicker lines and larger nodes
indicating more significant LR between the cell subsets.
Moreover, the cell subsets of ccRCC, macrophages and vSMC
Frontiers in Immunology | www.frontiersin.org 4
showed the most cell-to-cell interactions within and between the
cell subsets (Figure 2C). Genes in the Hedgehog, Notch, TGFb,
WNT signalling and EGFR signalling that are related to tumour
proliferation, metastasis and progression were selected to further
determine the presence of a significant interaction between the
cell subsets. The result shows many interactions between the
receptor HLA−DPA1 and its corresponding ligand TNFSF9 in
the cell subset of macrophage and ccRCC while EGFR and MIF
have strong interactions between different cell subsets
(endothelia, ccRCC, vSMC) (Figure 2D).

Construction of Molecular Subtypes
Based on LR-Pairs
LR interactions between different cell types in the TME play a vital
role in the occurrence and development of tumours. Thus, LR-pairs
that interact significantly in different cell types were extracted based
on Pearson’s correlation coefficient between ligand and receptor
expressions. A total of 126 LR-pairs that were significantly
correlated in TCGA-KIRC were identified (tcga.LR.cor.res.txt).
Furthermore, the expression level of LR-pairs was determined by
the sum of the expression values of the receptor and ligand genes in
TCGA-KIRC. A total of 46 LR-pairs that were significantly
associated with patient prognosis in TCGA-KIRC (p < 0.01)
(tcga.LR.HR.res.txt) were used in molecular subtyping analysis. A
total of 526 ccRCC samples in the TCGA-KIRC cohort were
clustered using ConsensusClusterPlus. The optimal number of
clusters is determined by the cumulative distribution function and
delta area curve (Figures 3A, B), and k = 3 was selected to obtain
three molecular subtypes (Figure 3C; tcga.subtype.txt) which
showed significant differences in prognosis (p < 0.0001)
(Figure 3D). On comparing the three subtypes, the C3 subtype
had a better prognosis, while the C1 subtype had a worse prognosis.
Similarly, patients with ccRCC in the RECA-EU cohort were typed
(icgc.subtype.txt). The results showed that there were significant
differences in prognosis among the three molecular subtypes (p =
0.0093) (Figure 3E), which was consistent with the training set.

Comparison of Different Molecular
Subgroups With Clinical Features
The distribution of clinical features in the three molecular
subtypes was compared using the TCGA-KIRC cohort. The
results showed that patients with poor prognosis in the C1
subtype had higher TNM stages, with significant differences
between the C1 and C3 subtypes in terms of T and M stage
distribution (p < 0.05) (Figures 4A–C). In the C1 and C2
subtypes, patients with Stage III and Stage IV ccRCC were
higher in number than those in the C3 subtype (p < 0.05)
(Figure 4D). A significant difference was also observed in
Grade between different subtypes (p < 0.05) (Figure 4E).
Additionally, significant differences in age and gender were
observed among different subtypes (Figures 4F, G) (p < 0.05).

Mutational Characteristics of Different
Molecular Subtypes
The differences in genomic alterations of these three molecular
subtypes in the TCGA cohort were further explored. The C1
TABLE 1 | Statistical analysis of cell numbers for seven clear cell renal cell
carcinoma (ccRCC) samples.

Sample raw_cellCount clean_cellCount percent

SCS_2005 1704 1673 0.981807512
SCS_2006 1660 1374 0.827710843
SS_2007 3674 3345 0.910451824
SS_2017 2872 2817 0.980849582
SS_2022 1953 1942 0.99436764
SS_2023 6453 6140 0.951495428
SS_2026 3635 3560 0.979367263
June 2022 | Volume 13 | Article 874056
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and C2 subtypes showed higher levels of aneuploidy (p = 5.2e-
15), homologous recombination defects (p = 0.019), fraction
altered genome (p = 1.4e-20), segment numbers (p = 0.00015)
and tumour mutation burdens (p = 0.0093) (Figure 5A).
Additionally, information on the immune molecular subtypes
of TCGA-KIRC was obtained from a previous study (22). The
relationship between the six immune subtypes and three
molecular subtypes defined in this study was compared.
Between the C3 subtypes, the C3 immune subtype accounted
for a more significant proportion. Among the C1 subtypes, the
C1, C2, C4 and C6 immune subtypes accounted for a more
significant proportion (Figure 5B). Furthermore, four
Frontiers in Immunology | www.frontiersin.org 5
additional subtypes (KIRC-C1, C2, C3, C4), which were
obtained from a previous study (23), were compared with the
three molecular subtypes defined in this study. The results
showed that KIRC-C4 accounted for more significant
proportion in the C1 molecular subtype, while KIRC-C1
accounted for the most proportion in the C3 molecular
subtype (Figure 5C). Finally, the analysis of the correlation
between gene mutations, copy number variants and molecular
subtypes revealed a significant correlation between subtypes and
gene mutations. The mutation frequencies of VHL, PBRM1 and
BAP1 genes vary significantly among subtypes, with more mutation
frequencies observed in the C1 subtype (Figure 5D).
A B

C D

E F

FIGURE 1 | Single-cell atlas of ccRCC tissues. (A) tSNE of 20851 cells of seven clear cell renal cell carcinoma (ccRCC) samples. (B) Distribution of cells from
different samples; (C) Stacked bar plots showing the frequencies of 14 cell types in seven samples. (D) Heatmap of the top three marker genes for different clusters.
(E) tSNE demonstrating different cell types in ccRCC. (F) Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of cell subset marker genes.
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Pathway Analysis of Different
Molecular Subtypes
Pathways that are differentiated in different molecular subtypes were
analysed using GSEA. The results showed the significant
enrichment of 26 pathways in the C1 subtype compared with the
C3 subtype in the TCGA cohort and 40 pathways in the RECA-EU
Frontiers in Immunology | www.frontiersin.org 6
cohort (Figures 6A, B). Overall, the inhibition pathways contain
few immune marker pathways, such as INTERFERON_GAMM
A_RESPONSE, COMPLEMENT, INTERFERON_ALP
HA_RESPONSE and INFLAMMATORY_RESPONSE.
(Figure 6A). Additionally, abnormal pathways between the C1
and C3 subtypes in different ccRCC cohorts are shown in
Figure 6B. The pathways for TCGA-KIRC cohorts between C1
and C2 subtypes, C1 and C3 subtypes and C2 and C3 subtypes are
shown in Figure 6C. Overall, immunomodulatory pathways in
patients with the C1 subtype are inhibited.

Immune Characteristics of Different
Molecular Subtypes
To further elucidate the differences in the immune
microenvironment of patients in different molecular subtypes,
the degree of infiltration of 22 immune cells in the two ccRCC
cohorts was assessed using the CIBERSORT algorithm. In both
cohorts, resting mast cells, M1 macrophages and activated/
memory CD4+ T cells showed significant differences in
different molecular subtypes (Figures 7A, C). ESTIMATE
algorithm was also used to assess immune cell infiltration in
each sample. The ‘ImmuneScore’ of the C3 subtype in the TCGA
and RECA-EU cohorts was higher than the C1 subtype,
TABLE 2 | Annotation of cell types for 14 cell clusters.

Cell Type Cluster Number of Cells

clear cell renal cell carcinoma (ccRCC) 0 8819
Macrophage 1 3382
Endothelial 2 2584
vascular smooth muscle cells (vSMC) 3 2169
T cell 4 1176
ccRCC 5 573
Endothelial 6 534
Macrophage 7 502
Endothelial 8 498
Monocyte 9 248
Plasma cell 10 122
ccRCC 11 87
ccRCC 12 85
B cell 13 72
A

B

C

D

FIGURE 2 | Communication and networking between cells in ccRCC. (A) Network of the number of significant interaction events between different cellular subsets.
(B) Overview of selected statistically significant interactions between clear cell renal cell carcinoma, macrophages and other cell types. (C) Detailed network of cell-
cell interactions among eight cell subsets. (D) tp Intensity and specificity of ligand-receptor pairs in different cell types.
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D E

FIGURE 3 | Molecular subclassification of ccRCC in different cohorts. (A) CDF curves for k = 2–10 in the TCGA-KIRC cohort. (B) CDF delta area curve in the TCGA-KIRC
cohort. (C) Heatmap clustering of TCGA-KIRC datasets when consensus (k) = 3. (D) The difference in survival among different molecular subtypes in the TCGA-KIRC cohort.
(E) The difference in survival among different molecular subtypes in the Research Concept and Research Activities- European Project cohort.

A B C D

E F G

FIGURE 4 | Comparison of different molecular subgroups with clinical information. (A–G) The distribution of samples in different groups in the TCGA-KIRC cohort.
The horizontal axis represents the different groupings of samples while the vertical axis represents the percentage of clinical information in the corresponding grouped
sample. Different colours represent different clinical information. The table above represents a certain clinical feature distribution in any two groups and analyses the p
value using the chi-square test.
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indicating that the C3 subtype has a high immune cell infiltration
degree (Figure 7B, D).

Model Construction Based on the
LR-Pairs Score
The above analyses show that the LR-pair molecular subtypes
have different mutation landscapes, pathway characteristics and
immune infiltration degrees. A total of 46 LR-pairs were
significantly associated with patient prognosis, with 37 of them
significantly different in both the TCGA-KIRC and RECA-EU
datasets (all.LR.genes.diff.kruskal.res.txt) (FDR < 0.001). The 37
LR-pairs with significant differences were further compressed
using LASSO cox regression in the TCGA-KIRC cohort to
reduce the number of genes in the risk model. The trajectory
of each independent variable is shown in Figure S2A, wherein
Frontiers in Immunology | www.frontiersin.org 8
with the gradual increase of lambda, the number of independent
coefficients tending to 0 also gradually increases. Model
performance was evaluated using 10-fold cross-validation.

On analysing the confidence interval under each lambda
(Figure S2B), the model was found to be optimal when
lambda = 0.0137, and 12 LR-pairs at lambda = 0.0137 were
selected for further analysis. Furthermore, the model was
optimized using stepwise multivariate regression analysis.
F ina l l y , 10 LR-pa i r s , i n c lud ing ‘APLNR_APLN ’ ,
‘CSF1R_CSF1 ’ , ‘CX3CR1_CX3CL1 ’ , ‘EPHA4_EFNB3 ’ ,
‘FGFR3_EPHA4’, ‘HGF_CD44’, ‘KDR_VEGFC’ ‘NGF_NGFR,’
‘TEK_ANGPT1’ and ‘TEK_ANGPT4’ were identified as crucial
LR-pairs. The multivariate Cox regression coefficient results for
these 10 LR-pairs are shown in Figure S2C. Furthermore, the
LR-pairs scoring model was constructed using the 10 LR-pairs to
A

B C

D

FIGURE 5 | Mutation characteristics of different molecular subtypes. (A): Difference analysis of homologous recombination defects, aneuploidy score, fraction altered
genome, segment numbers and tumour mutation burden in the TCGA-KIRC cohort; (C): Comparison of somatic mutation variation analysis in three molecular
subtypes. nsp ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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facilitate the quantitative analysis of LR-pair scores in patients
with ccRCC. The results showed that the LR.score in the C1
subtypes was significantly higher than that in the C2 and C3
subtypes (Figure 8A). To further assess the clinical relevance of
LR-pair scores, patients were defined as high LR.score group if
the LR.score > 0 and low LR.score group otherwise. Patients with
low LR.score in the TCGA-KIRC cohort had a better prognosis
than patients with high LR.score (p < 0.0001) (Figure 8B).
Frontiers in Immunology | www.frontiersin.org 9
The area under the curve (AUC) of the time-dependent
receiver operating characteristic (ROC) curves of the LR.score
was 0.79, 0.78 and 0.78 at 1, 3 and 5 years, respectively
(Figure 8C). Univariate and multivariate cox regression
analyses were also used in analysing the TCGA-KIRC cohort,
which showed that LR.score is a reliable and independent
prognostic biomarker for assessing the prognosis of patients
with ccRCC (Figures 8G, H). Furthermore, the reliability of the
A B C

FIGURE 6 | Pathway analysis of different molecular subtypes. (A) Analysis of signalling pathways for differentially expressed genes in the C1 vs. C3 subtypes of the
TCGA-KIRC cohort. (B) Pathway analysis of the differentially expressed genes in the C1 vs. C3 subtypes in two clear cell renal cell carcinoma cohorts. (C) Gene set
enrichment analysis of the comparison between different molecular subtypes.
A B

C D

FIGURE 7 | Immune characteristics of different molecular subtypes. (A, B) Difference analysis of immune cell scores in the TCGA-KIRC cohort calculated using the
CIBERSORT and ESTIMATE algorithms. (C, D) Difference analysis of immune cell scores in the Research Concept and Research Activities- European Project cohort
calculated using the CIBERSORT and ESTIMATE algorithms. nsp ≥ 0.05; *p < 0.05; **p<0.01; ***p<0.001; ****p<0.0001.
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LR.score was validated using 91 samples from the RECA-EU
cohort. A study about LR.score in different molecular subtypes
reported similar conclusions using the RECA-EU cohort
(Figure 8D). Patients with low LR.score in the RECA-EU
dataset showed a significant survival benefit (p = 0.001)
(Figure 8E). The AUC of the time-dependent ROC curves of
the LR.score was 0.61, 0.68 and 0.79 at 1, 3 and 5 years,
respectively (Figure 8F).

Differences in LR.score in Different
Clinical Subgroups
To examine the relationship between LR.score and clinical
features of ccRCC, the differences in LR.score between
subgroups of different clinical features in the TCGA-KIRC
dataset were compared. Patients showed significant differences
Frontiers in Immunology | www.frontiersin.org 10
in TNM stages, pathological stages and histological grades when
compared with LR.score. LR.score varied significantly between
different clinical feature subgroups, with high malignancy degree
correlating to high LR.score (Figure 9A). Additionally, the
relationship between the LR.score and clinical-pathological
features in RECA-EU was analysed. The results showed that
the differences in the different subgroups of LR.score were not
apparent, possibly due to the insufficient sample size in the
RECA-EU cohort (Figure 9B).

Correlation Between LR.score and
Immune-Related Features
The distribution of 22 immune cells in the TCGA-KIRC cohort
and the differences between the LR.score groups were analysed.
Significant differences in immune cell infiltration levels were
A B C

D E F

G H

FIGURE 8 | Construction of LR.score model. (A) The difference in LR.score between the different molecular subtype groups in the TCGA-KIRC cohort. (B) Survival
benefit of LR.score in the high and low LR.score groups in the TCGA-KIRC cohort. (C) The predictive value of LR.score in patients among the TCGA-KIRC cohort.
(D) The difference of LR.score between the different molecular subtype groups in the Research Concept and Research Activities- European Project (RECA-EU)
cohort. (E) Survival benefit of LR.score in the high and low LR.score groups in the RECA-EU cohort. (F) The predictive value of LR.score in patients among the
RECA-EU cohort. (G) Univariate cox regression analysis of LR.score, age, gender, TNM stage and grade for overall survival (OS) in the TCGA-KIRC cohort.
(H) Multivariate cox regression analysis of LR.score, age, gender, TNM stage and grade for OS in the TCGA-KIRC cohort; ns, p≥ 0.05; ***p<0.001; ****p<0.0001.
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observed between patients (Figure 10A). Additionally, immune
cell infiltration levels showed significant differences between
different LR.score groups. Further, CD8+ T cells exhibited a
high level of infiltration, with the high LR.score group showing
significantly higher infiltration levels than the low LR.score
group (Figure 10B). Additionally, immune infiltration levels
were also compared for different LR.score groups using the
ESTIMATE algorithm, wherein the Immune score and
ESTIMATE score in the high LR.score group were significantly
higher than those in the low LR.score group (Figure 10C).
Further, the correlation between LR.score and 22 immune cell
scores in the TCGA-KIRC cohort was analysed using Pearson’s
correlation coefficient. The result shows that LR.score was
significantly positively correlated with activated/memory CD4+

T cells, follicular helper T cells and regulatory T cells but
negatively correlated with resting mast cells (Figure 10D).

The Relationship Between LR.score and
Immunotherapy
To identify the relationship between LR.score and immunotherapy,
the value of LR.score to predict a patient’s response to immune
checkpoint blockade(ICB) treatment was examined. In the anti-PD-
L1 cohort (IMvigor210 cohort), 348 patients exhibited varying
degrees of response to anti-PD-L1 receptor blockers, including
complete response (CR), partial response (PR), stable disease (SD)
and progressive disease (PD). Patients with SD/PD had a higher
LR.score than patients with CR/PR (Figure 11A). Percentage
statistics between the high and low LR.score groups showed
significantly better treatment outcomes in patients with low
LR.score (Figure 11B). Survival analyses further showed that
LR.score was associated with overall survival in patients receiving
immunotherapy (p < 0.0001) (Figure 11C). In early-stage patients
receiving immunotherapy, LR.score was associated with overall
survival (p = 0.000051) (Figure 11D) while in advanced patients
it was also associated with overall survival (p = 0097) (Figure 11E).

Additionally, in another cohort of anti-PD1 (GSE78220),
patients with SD/PD patients showed higher LR.score than
those with CR/PR (Figure 11F). Moreover, percentage
statistics between the high and low LR.score groups also
showed that patients with low LR.score had significantly better
treatment outcomes (Figure 11G), clinical benefit and prolonged
overall survival (p = 0.036) (Figure 11H).

CX3CL1 Knockdown Accelerates
Migration and Invasion of ccRCC Cell
In Vitro
To further confirm the results of databases, 10 LR-pairs,
including ‘APLNR_APLN,’ ‘CSF1R_CSF1’, ‘CX3CR1_CX3CL1’,
‘EPHA4_EFNB3 ’ , ‘FGFR3_EPHA4 ’ , ‘HGF_CD44 ’ ,
‘KDR_VEGFC, ’ ‘NGF_NGFR, ’ ‘TEK_ANGPT1 ’ and
‘TEK_ANGPT4’ were subjected to RT-qPCR assay in ccRCC
cell line. As shown in Figure 12A, the mRNA levels of APLNR,
APLN, CSF1R, CSF1, CX3CR1, CX3CL1, CD44, KDR, VEGFC,
NGF, NGFR, ANGPT1 in the 786-O cell were up-regulated
compared with normal renal epithelial cell HK-2, whereas the
mRNA levels of EPHA4, EFNB3, FGFR3, HGF, ANGPT4, TEK
Frontiers in Immunology | www.frontiersin.org 11
in the 786-O cell were down-regulated compared with HK-2 cell.
Recently some research found one such chemokine that plays a
critical role in the anti-cancer procession is CX3C chemokine
ligand 1 (CX3CL1) and its receptor CX3C chemokine receptor 1
(CX3CR1). In Figure 12B, we found that the protein expression
of CX3CL1 was increased in the 786-O cell compared with the
HK-2 cell. To demonstrate the specific role of CX3CL1, we
knocked down the CX3CL1 gene in the 786-O cell (Figures 12C,
D). We found that the numbers of clone formation
(Figure 12D), as well as the migration (Figure 12E) and
invasion capacities (Figure 12F), were notably increased in
786-O cells with CX3CL1 knockdown.
DISCUSSION

scRNA-seq approaches are rapidly being employed to describe the
quantity and functional status of tumour-associated cell types in
the TME, revealing previously unknown data about cellular
heterogeneity (24). However, in addition to characterising the
cellular makeup of tumours, it is crucial to understand how
different cell types in the TME interact to initiate tumour
progression (25). Although there exist studies examining cell-to-
cell communication using bulk-seq and scRNA-seq data,
investigations relating these features to biological outcomes and
studies elucidating the significance of these interactions with
specific clinical outcomes remain scarce. This study integrated
bulk-Seq and scRNA-Seq data of ccRCC for analyses. After
examining cell-to-cell communication, few critical LR-pairs were
obtained, revealing cell complexity in the TME. Additionally, two
molecular subtyping models were constructed based on these LR-
pairs, and the prognostic evaluation and immunotherapy utility of
different molecular subtyping was found. These findings aid in
better understanding the role of cell-cell communication in the
TME of ccRCC and developing novel therapy options for ccRCC.

Accumulating evidence shows that immune cell dysfunction
within KIRC-TME induces immunosuppression and plays a
critical role in tumour growth and treatment (25). In this
study, eight different cell types were identified in the ccRCC’s
TME, indicating its compositional complexity. Malignant solid
tumour tissues contain not only tumour cells but also normal
epithelial, stromal, immune and vascular cells, with stromal and
immune cells as the most prominent components (26). Stromal
cells play an essential role in tumorigenesis and drug resistance
(27), while infiltrating immune cells are specific to certain
environments (28). For example, T cell that infiltrates tumours
has been demonstrated to have an anti-cancer effect in ovarian
cancer, whereas it is associated with tumour growth, invasion
and metastasis in colorectal cancer (28). These cells can impact
the results of genomic analysis of tumour samples (such as
expression profiles or copy numbers), thus, understanding the
TME and the interactions between tumours and other cells could
provide important insights into tumour biology and help build
reliable prognostic, predictive models.

Therefore, to further study the interaction between different
cell types in the TME of ccRCC, a comprehensive and systematic
June 2022 | Volume 13 | Article 874056
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analysis of cell communication in the TME of ccRCC was
conducted. Previous studies have shown that the interaction of
ligands and receptors differs significantly in different types of
tumours. These differences can lead to the activation or
Frontiers in Immunology | www.frontiersin.org 12
inhibition of different pathways, resulting in tumour
development and drug resistance. Therefore, based on the
significantly different LR-pairs obtained in this study, a new
molecular subtyping model was constructed. According to the
A

B

FIGURE 9 | Clinical features of LR.score. (A) Differences in LR.score in different clinical subgroups in the TCGA-KIRC cohort. (B) Differences in LR.score in different
clinical subgroups in the Research Concept and Research Activities- European Project cohort. nsp≥0.05; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.
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LR-pairs model, patients in different KIRC cohorts can be
effectively divided into three subtypes, and the prognosis of
patients with different molecular subtypes is significantly
different. Additionally, varying clinical-pathological features,
mutation features, pathways and immune features showed
significant differences in different molecular subtypes.

Furthermore, to further confirm the effectiveness of our
typing analysis, data on the immune subtypes of TCGA-KIRC
were obtained from a previous pan-cancer study, wherein ccRCC
samples were divided into six molecular subtypes based on 160
different immune gene signatures (22). This study compared the
relationship between these six immune subtypes and the three
LR-pairs subtypes defined in the current study. The results
showed that the C3 immune subtypes obtained from the
previous study accounted for more of the C3 molecular
subtype defined in this study. In previous studies, the C3
immune subtype was described as an ‘inflammatory’ subtype.
Furthermore, the C3 immune subtype was distinguished from
other subtypes by increased Th17 and Th1 gene expression, low
to medium cancer cell proliferation and lower levels of
aneuploidy and total somatic copy number changes.
Additionally, it showed the best prognosis among these six
immune molecular subtypes, which is consistent with the best
Frontiers in Immunology | www.frontiersin.org 13
outcome of the C3 molecular subtype defined in the current
study. Moreover, the immune subtypes C1, C2, C4 and C6 with
worse prognosis accounted for more than the C1 molecular
subtypes defined in this study, which coincides with the poor
prognosis of C1.

Additional molecular subtypes were provided in previous
studies, and four molecular subtypes (KIRC-C1, C2, C3, C4)
were identified via consensus clustering (23). The KIRC-C3
subtype was associated with the worst prognosis while the
KIRC-C1 subtype had the best prognosis. The relationship
between these four molecular subtypes and our three
molecular subtypes was compared, wherein the KIRC-C4
subtype accounted for more than the C1 subtype, while the
KIRC-C1 subtype accounted for the most significant proportion
of the C3 subtype. Consistent with previous studies, the
reliability of the present study is reinforced, providing a base
for further understanding of the interactions between cells in the
TME and developing new molecular typing methods for patients
with ccRCC.

Currently, individualised models based on the specific
biomarkers of tumour subtypes have been established in breast
and colorectal cancers to improve patients’ prognoses (29, 30).
However, clinically efficient individualised models for patients
A
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D

FIGURE 10 | Correlation between LR.score and immune-related characteristics. (A) Distribution and expression of the 22 types of immune cells in the TCGA-KIRC
cohort. (B) Analysis of the immune cell scores between the different LR.score groups using the CIBERSORT algorithm. (C) Analysis of the immune cell scores
between the different LR.score groups using the ESTIMATE algorithm. (D) Correlation between LR.score and immune cell score. ns p≥0.05; *p< 0.05; **p<0.01;
***p<0.001; ****p<0.0001.
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with ccRCC are scarce. Considering the individual heterogeneity
of the TME, it is urgent to quantify the scoring pattern of
individual tumours and establish an effective treatment and
prognosis evaluation model for patients with ccRCC. Although
previous studies have explored the value of different signatures in
the prognostic evaluation of ccRCC, their validity remains
limited (31, 32). Meanwhile, the analysis of cell-cell
communication reveals that the expression of ligands and
receptors and the type of interaction vary in different tumour
types. Therefore, focusing on the communication of different cell
types in the TME and their interactions could aid in diagnoses
and treatment options. In the current study, based on the
previous analysis of LR-pairs with significant differences in
both the TCGA-KIRC and RECA-EU datasets, 10 LR-pairs
were identified as potential ‘subtype biomarkers’. The LR-pairs
scores model was established to quantify different risk scores
among individuals.

CX3CL1 is a chemokine with a unique motif -Cys-X-X-X-
Cys- at the N-terminal end structure and the only member of the
d-chemokine families. CX3CR1 is a specific receptor for the
chemokine CX3CL1. CX3CL1-CX3CR1 plays a critical role in
the anticancer immune response (33). Previous studies found
that an increase in CX3CL1-CX3CR1 in tumor is associated with
the forming of anti-cancer NK cells and CD8+T cells in tumor,
which improves the prognosis for patients with gastric
Frontiers in Immunology | www.frontiersin.org 14
adenocarcinoma and glioma (34, 35). In this study, we
investigated the anti-cancer effects of CX3CL1 in ccRCC. We
found that CX3CL1 knockdown markedly promoted the
migration and invasion of ccRCC cell in vitro. Targeted
CX3CL1 therapy might provide new treatment directions for
ccRCC patients.

Furthermore, molecular subtype analyses showed that the
LR.score of the C3 subtype was low in both cohorts. Conversely,
C1 showed higher scores in both cohorts, which is consistent with
previous analyses and thereby confirms the effectiveness of LR-pairs.
Meanwhile, in different cohorts, the prognostic model established
using LR.score showed high validity and accuracy for the prognostic
evaluation of patients. Furthermore, analysis of the differences in the
LR.score between different clinicopathological features in two
cohorts showed a significant association between the LR.score and
patient’s malignancy grade. Therefore, LR.score can be used as a
reliable biomarker for evaluating the prognosis of patients
with ccRCC.

Infiltrating immune cells play various roles in different tumours,
hence, the differences in immune score were assessed between
patients in the different LR.score groups using ESTIMATE. The
result showed that patients in the high-risk group showed higher
immune score. A high immune score generally predicts a better
prognosis, but patients in the high LR.score group showed a worse
prognosis. However, the current findings are consistent with
A B C D
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FIGURE 11 | Correlation between LR.score and response to anti-PD-L1 immunotherapy. (A) Differences in LR.score between responders and non-responders in the
IMvigor210 cohort. (B) The proportion of patients responding to immunotherapy in the high and low LR.score groups in the IMvigor210 cohort. (C) Prognostic differences
between the high and low LR.score groups in the IMvigor210 cohort. (D) Prognostic differences between the high and low LR.score groups in early-stage patients in the
IMvigor210 cohort. (E) Prognostic differences between the high and low LR.score groups in advanced patients in the IMvigor210 cohort. (F) LR.score differences between
responders and non-responders in GSE78220. (G) The proportion of patients responding to immunotherapy in the high and low LR.score groups in GSE78220. (H)
Prognostic differences between the high and low LR.score groups in GSE78220. ns p≥0.05; *p< 0.05; **p<0.01.
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previous studies, revealing a significant positive correlation between
immune score andmalignancy degree in patients with ccRCC in the
TCGA-KIRC cohort. High immune score and ESTIMATE scores
have been associated with worse prognosis (36, 37). Additionally,
the high infiltration levels of exhausted CD8+ T cells and
immunosuppressive M2-like macrophages have been reported in
advanced renal disease (8), suggesting that immune scores could
indicate progressive T cell dysfunction in patients with ccRCC. This
suggestion could also be used to explain a worse prognosis in
patients with ccRCC that show a high immune score. Further, to
Frontiers in Immunology | www.frontiersin.org 15
explore the relationship between LR.score and immune cell
infiltration levels, the immune cell infiltration levels of patients
with ccRCC were quantified using CIBERSORT. Subsequently, the
differences in the infiltration of 22 immune cells were compared,
revealing that the CD8+ T cell infiltration level was significantly
higher in the high LR.score group than in the low LR.score group.
Previous studies have confirmed that the infiltration levels of CD8+

T cells are usually associated with a better prognosis in most solid
tumours (38). Interestingly, the infiltration of CD8+ T cells was
associated with a worse prognosis in ccRCC (39), which is
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FIGURE 12 | CX3CL1 Knockdown promoted migration and invasion of ccRCC cell in vitro. (A) Real-time RT-PCR assay of 10 LR-pairs mRNA expression levels in
human ccRCC cell line 786-O and renal epithelial cell HK-2. (B, C) the protein expression of CX3CL1 was performed by Western Blot assay. (D) The subcellular
localization of CX3CL1 was identified by immunostaining assay. Scale bar: 10mm. (E) Cell colonies of 786-O cell in normal control and CX3CL1-KD group. (F, G)
786-O cell migration assay (F) and invasion assay (G) were performed in normal control and CX3CL1-KD group. ns, p≥0.05; *p< 0.05; **p<0.01; ***p<0.001.
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consistent with the current findings. Therefore, the specificity of the
TME of ccRCC can be accurately described using the
LR.score model.

ccRCC is an immune-sensitive malignancy, and cytokine-
based (IL-2 and IFN-a2b) regimens have been accepted for
clinical use. Recent regimens that use immune checkpoints as a
therapeutic modality have changed the treatment paradigm of
ccRCC (40). However, a significant proportion of patients with
kidney cancer do not respond to these therapies and those who
initially respond show eventual tumour progression (41).
Therefore, this study examined the relationship between
immunotherapy and LR.score to assess the benefit of LR.score
in different immunotherapy cohorts. The results showed that
patients who responded to immunotherapy had significantly
lower LR.score than those who responded less. Furthermore,
the patients with higher LR.scores showed less favourable
responses to immunotherapy. This suggests that single-agent
immunotherapy could benefit patients with a lower LR.score.
Additionally, the significant differences in survival between the
high and low LR.score groups in both immunotherapy cohorts
illustrate its association with immunotherapy.

Advances in high-throughput sequencing can lead to
personalised therapeutics, wherein each patient’s cancer can
be treated based on their genomic profile. Although high-
throughput sequencing provides a large amount of genomic
information, it requires professional bioinformatics analysis
and interpretation. Moreover, linking key phenotypes or
molecular reactions together remains challenging for most of
the data. This study provides concise analysis and novel
insights and directions for the personalized treatment of
patients with ccRCC. Although high-throughput sequencing
could provide a more refined research direction for disease
treatment, the current cost of treatment remains high.
Reducing treatment costs while maintaining treatment
efficacy remains a challenge. Currently, there exists a large
amount of research data that require accurate and effective
analyses for better clinical application. Although the current
study provides a clear view of cell types in the TME of ccRCC
and increases our understanding of the importance of LR and
cell-to-cell interactions in the microenvironment, there exist a
few limitations. While multiple cohorts of patients with ccRCC
were used as validation, clinical trial-based validation in larger
ccRCC cohorts could better validate the current findings.
Additionally, the current high-throughput sequencing data
are based on transcriptome data. However, transcription
levels are not necessarily associated with protein expression
(42)since essential cellular functions are performed and
regulated by the proteome, which is also worth considering.
The interactions between adjacent cells are the basis of many
biological processes, including signalling between cell ligand
receptors. Current single-cell genome techniques analyse each
cell individually after tissue dissociation, thus losing data on the
location between cells. The LR interactions identified by the
study may not occur when different cell types do not undergo
spatial co-localization in the tumour, thus, spatial
transcriptome analysis will help us further understand our
Frontiers in Immunology | www.frontiersin.org 16
findings. Various bioinformatics methods were used to
simulate the cellular composition of TME in patients, and
some conclusions are consistent with previous studies.
However, in silico cell composition inevitably has limitations;
for example, the cellular composition of TME cannot be fully
displayed. Therefore, using multiple algorithms to simulate the
composition of the patient’s TME simultaneously and
conducting a more comprehensive analysis could better
address the limitations of bioinformatic analyses.

I n c on c l u s i o n , t h e c u r r e n t s t u d y e l u c i d a t e s
themicroenvironmental landscape of ccRCC, providing a
comprehensive view of the cellular composition of TME in
patients with ccRCC. The interaction and communication of
LR-pairs between different cell types are evaluated while studying
their cellular complexity in the TME. Two valuable LR-pairs
models for the molecular subtyping of patients with ccRCC were
identified based on LR-pairs in various cell types. Notably, this
study provides new insights into cancer immunotherapy, where
the expression patterns of LR-pairs effectively evaluate the
prognosis of patients with ccRCC and are associated with the
efficacy of immunotherapy. Therefore, the development of
potential drugs targeting these LR-pairs could contribute to the
clinical benefits of immunotherapy. This study provides a new
direction in understanding TME and its clinical applications. It
also provides novel ideas for identifying different tumour
molecular subtypes and developing accurate and personalised
tumour immunotherapy.
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