
Citation: Gong, S.; Gautam, S.;

Coneglio, J.D.; Scinto, H.B.; Ruprecht,

R.M. Antibody Light Chains: Key to

Increased Monoclonal Antibody

Yields in Expi293 Cells? Antibodies

2022, 11, 37. https://doi.org/

10.3390/antib11020037

Academic Editors: Amita Datta-

Mannan and Brooke Rock

Received: 19 March 2022

Accepted: 10 May 2022

Published: 18 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antibodies

Communication

Antibody Light Chains: Key to Increased Monoclonal Antibody
Yields in Expi293 Cells?
Siqi Gong 1,2,3, Seijal Gautam 1,4, Joshua D. Coneglio 1, Hanna B. Scinto 2,3,† and Ruth M. Ruprecht 1,2,3,4,*

1 New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA;
siqi.gong@louisiana.edu or siqi.gongs@gmail.com (S.G.); seijal.gautam1@louisiana.edu (S.G.);
joshua.coneglio1@louisiana.edu (J.D.C.)

2 Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center
at San Antonio, San Antonio, TX 78229, USA; hanna.scinto@nih.gov

3 Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
4 Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
* Correspondence: ruth.ruprecht@louisiana.edu
† Current address: Vaccine Branch, Center for Cancer Research, National Cancer Institute,

Bethesda, MD 20892, USA.

Abstract: When constructing isogenic recombinant IgM–IgG pairs, we discovered that µ heavy
chains strongly prefer partnering with λ light chains for optimal IgM expression in transiently
cotransfected Expi293 cells. When µ chains were paired with κ light chains, IgM yields were low but
increased by logs—up to 20,000 X—by using λ chains instead. Switching light chains did not alter
epitope specificity. For dimeric IgA2, optimal expression involved pairing with λ chains, whereas
light-chain preference varied for other immunoglobulin classes. In summary, recombinant IgM
production can be drastically increased by using λ chains, an important finding in the use of IgM for
mucosal immunoprophylaxis.

Keywords: monoclonal antibody; recombinant IgM; recombinant dIgA; recombinant IgG; lambda
light-chain preference; mAb yield

1. Introduction

The Food and Drug Administration (FDA) approved the first monoclonal antibody
(mAb) for human use, muromonab-CD3 (Orthoclone OKT3), in 1986 [1]; currently,
>100 mAb-based therapeutics have been FDA-approved [2], and many more are in the late
stages of clinical trials [3]. Antibody-based therapeutics are the fastest growing class of
drugs on the market and account for nearly a fifth of new drug approvals each year.

Antibody molecules contain multiple identical heavy and light chains through inter-
chain disulfide bonds. Each of the heavy and light chains is composed of one variable
and one constant region. Together, the heavy- and light-chain variable regions, termed
antigen-binding fragments (Fabs), are responsible for the specific binding to a molecular
target and differ from antibody to antibody. However, the remainder of the amino acid
sequences remains constant for antibodies of a given subclass.

Antibodies are divided into distinct classes based on their heavy chains. There are five
types of heavy chains—α, γ, δ, ε, and µ—corresponding to five classes of immunoglobulins
(Igs): IgA, IgG, IgD, IgE, and IgM, respectively. In humans, IgAs are further divided into
two isotypes—IgA1 and IgA2. Likewise, IgG has four isotypes—namely, IgG1, IgG2, IgG3,
and IgG4. Igs of different classes contain different numbers of subunits, e.g., IgG contains
two pairs of heavy and light chains, while IgM molecules are composed of 10 or 12 pairs
given that IgMs exist as pentamers or hexamers.

There are two types of light chains, κ and λ chains, which are shared among all classes
of antibodies. In humans, κ light chains predominate, and two-thirds of antibodies contain
κ light chains [4].
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We have focused on the biological activity of antibodies, especially multimeric Igs
in mucosal fluids. Using nonhuman primate (NHP) models, our group was the first to
demonstrate that when given mucosally, recombinant monoclonal dimeric IgAs (dIgAs) and
IgM protect against mucosal simian–human immunodeficiency virus (SHIV) challenge [5,6].
We directly instilled purified isogenic neutralizing anti-HIV envelope (Env) dIgA1, dIgA2,
IgM, and IgG1 mAbs into the rectal cavity 30 min before a single high-dose SHIV intrarectal
(i.r.) challenge; control animals only received the i.r. SHIV challenge. IgM and dIgA1
provided high levels of protection.

During the preparation of IgM for the NHP studies, we noticed that IgM yields in
the supernatants of transfected cells were significantly higher when λ light chains were
involved instead of κ light chains. Therefore, we hypothesized that pairing µ heavy chains
with λ light chains improves yields in transiently transfected Expi293 cells. To test this
hypothesis, we constructed multiple IgM molecules based on parental monoclonal IgGs.
After expressing IgMs with either λ or κ light chains in Expi293 cells, we found that yields
of IgM were significantly higher when the λ light chains were used compared to κ light
chains regardless of the original light-chain usage of the parental IgG mAbs.

To assess whether this observation was restricted to IgM, we also cloned and expressed
isogenic IgG1, dIgA1, and dIgA2 mAbs similarly. We found that dIgA2 also preferred
λ light chains when expressed transiently in Expi293 cells. In contrast, the light chain
preference for IgG1 and dIgA1 mAbs varied.

This is the first study demonstrating that light-chain usage strongly impacts the yield
of recombinant IgM and, to a somewhat lesser degree, that of dIgA2, irrespective of epitope
specificity. Our report also provides practical guidance to optimize recombinant mAb
production and may assist in the development of antibody therapies.

2. Materials and Methods
2.1. Construction of Expression Plasmids

IgM, IgG1, dIgA1, and dIgA2 mAb expression plasmids were prepared as follows:
First, heavy- and light-chain variable gene fragments of each mAb were synthesized based
on the gene sequences from GenBank (For human mAb VRC01 [7], the accession numbers
are GU980702 and GU980703; for human mAb PGT121 [8], the accession numbers are
JN201894 and JN201911; for human mAb PGT145 [8], the accession numbers are JN201927
and JN201910; for human mAb PGT151 [9], the accession numbers are KJ700290 and
KJ700282; for human mAb N49P7 [10], the accession numbers are MG819638 and MG819643;
and for human mAb 10E8v4 [11], the accession numbers are KU951247 and KU951251). We
also synthesized other heavy- and light-chain variable gene fragments based on published
sequences from the literature (human mAb Fm-6 [12] and rhesus monkey mAb 33C6 [13]),
and sequencing results of antibody genes of L243 mouse hybridoma cells using primers
described by Tiller et al. [14]. Then, these heavy- and light-chain variable gene fragments
were cloned in-frame downstream of a leader sequence (MGWSCIILFLVATATGVHS) and
upstream of human µ, γ1, α1, or α2 heavy and κ/λ light-chain constant regions (UniProtKB
number: human Ig heavy constant µ P01871; human Ig heavy constant γ1 P01857; human
Ig heavy constant α1 P01876; human Ig heavy constant α2 P01877; human Ig light constant
κ P01834; human Ig light constant λ P0DOY2), respectively. The resulting plasmids carried
either heavy- or light-chain genes of each class of mAbs.

Heavy and light chains without variable regions, termed “variableless” constructs, were
prepared similarly. The exception was that the leader sequence was cloned directly upstream
of and in-frame with human µ, γ1, α1, α2, κ, or λ chain-constant regions, respectively.

2.2. Expression of Recombinant mAbs

Antibodies were expressed transiently in Expi293F cells (A14527, ThermoFisher Sci-
entific, Waltham, MA, USA) through cotransfection of heavy (γ1/µ/α1/α2) and light-
chain expression plasmids (κ/λ) using ExpiFectamine 293 Transfection Kit (A14525, Ther-
moFisher Scientific) at a heavy chain (HC):light chain (LC) ratio of 1:1. In the case of
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IgM and dIgAs, an expression plasmid encoding the human J chain precursor (UniProtKB
number:human J chain P01591, Geneva, Switzerland) [5] was also included in the cotrans-
fections at HC:LC:J chain ratios of 5:5:1. Cells were maintained in Expi293 expression
medium (A1435102, ThermoFisher Scientific) for four to five days at 37 ◦C, 8% CO2 with
continuous shaking at 135 rpm. The culture supernatants were harvested and clarified via
centrifugation at 4000× g for 30 min and filtered through a 0.22 µm pore size hydrophilic
polyethersulfone (PES) membrane.

2.3. ELISA

Antibody concentrations were measured by ELISA. Briefly, Nunc MaxiSorp 96-well
ELISA plates were coated with 1 µg/mL capture antibody (goat anti-human Fcγ (109-005-170,
Jackson ImmunoResearch, West Grove, PA, USA) for IgG; goat anti-human Fcµ (109-005-129,
Jackson ImmunoResearch) for IgM; goat anti-human Fcα (109-005-011, Jackson ImmunoRe-
search) for dIgAs) in 100 µL 0.05 M carbonate–bicarbonate buffer, pH 9.6 overnight at
4 ◦C, washed 3× with 0.05% Tween 20 in phosphate-buffered saline (0.05% PBS/T), and
blocked with 1× casein reagent in PBS (ab171532, Abcam, Cambridge, UK) for 1 h at 37 ◦C.
Then, 100 µL of transfection supernatants diluted serially in 1× casein reagent in PBS were
added to duplicate wells and incubated for 1 h at 37 ◦C. Plates were washed 4x in 0.05%
PBS/T, and binding was detected with 100 µL of 0.25 µg/mL of horseradish peroxidase
(HRP)-conjugated detection antibody (HRP-goat anti-human Fcγ (109-035-170, Jackson Im-
munoResearch) for IgG; HRP-goat anti-human Fcµ (109-035-129, Jackson ImmunoResearch)
for IgM; HRP-goat anti-human Fcα (2050-05, SouthernBiotech, Birmingham, AL, USA)
for dIgAs). After 1 h of incubation at 37 ◦C, 3,3′,5,5′-tetramethylbenzidine (TMB) single
solution (ThermoFisher Scientific) was added, and the addition of 1 N H2SO4 terminated
the reaction. Plates were read at 450 nm (630 nm as reference) by an 800TS Absorbance
Reader (BioTek, Winooski, VT, USA). Antibody concentration was determined with the
corresponding standard (VRC01-IgG1 for IgG1; human serum IgM (I8260, Sigma-Aldrich,
Saint Louis, MO, USA) for IgM; HGN194-dIgA1 (Humabs BioMed, Bellinzona, Switzerland)
for dIgAs).

Antigen-specific mAb concentrations were measured similarly, only instead of capture
antibody we coated 100 µL of 1 µg/mL gp120 (SHIV-1157ipd3N4) or SARS spike protein
(40150-V08B1, SinoBiological, Beijing, China). Antigen-specific mAb concentration was
determined with the corresponding standard using available purified antibodies targeting
the same antigen.

In competitive ELISA, a fixed amount of the base antibody supernatant that gave
~1 OD in antigen ELISA by itself was mixed with serially increased amounts of the com-
petitor antibody supernatant. The detection antibody was specific to the base antibody (for
IgG1 κ vs. λ, either HRP-goat anti-κ (2060-05, SouthernBiotech) or HRP-goat anti-λ chain
(AP506P, Millipore, Burlington, MA, USA) antibodies were used depending on the base
antibody; for λ-chain IgM competing with κ-chain IgG1, the HRP-goat anti-human Fcγ
was used). The interaction of the base antibody and the target antigen was inhibited by
the competitor.

3. Results
3.1. Recombinant IgMs with λ Light Chains Express Better Than Isogenic IgMs with κ Light
Chains in Expi293 Cells

In an earlier study, we showed that mucosally applied recombinant anti-HIV Env IgM
prevented SHIV infection after mucosal challenge [6]. This was the first proof-of-concept
study to demonstrate the protective role of IgM against mucosal AIDS virus transmission.
To prepare the recombinant IgMs [6], we class-switched a panel of IgG mAbs. Parental IgG
mAbs of interest targeted HIV Env and included rhesus monkey mAb 33C6 [13], human
mAbs VRC01 [7], PGT121 [8], PGT145 [8], PGT151 [9], N49P7 [10], and 10E8v4 [11]. We
also class-switched human IgG1 Fm-6, which recognizes the SARS coronavirus 1 spike
protein [12], and mouse mAb L243, which is directed against HLA-DR, one of the human



Antibodies 2022, 11, 37 4 of 10

major histocompatibility complex (MHC) class II molecules [15]. The heavy and light
variable genes of each mAb were cloned in-frame with the human µ and λ/κ chain constant
regions, respectively. The light-chain usage of each mAb followed that of the original IgG.
We cotransfected the heavy- and light-chain construct pairs with an expression plasmid
encoding the human joining (J) chain precursor into Expi293 cells to express each of the
recombinant IgM mAbs transiently.

Surprisingly, half of the IgMs gave only minimal yields. We observed that all IgMs
with λ light chains expressed highly, while the ones with κ light chains gave poor yields
(Figure 1a). Therefore, we hypothesized that µ-chain pairing with λ light chains results in
better IgM expression.
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Figure 1. ELISA performed to determine κ versus λ light-chain expression of different recombi-
nant human IgMs obtained after transient transfection in Expi293 cells. Heavy-chain, light-chain
(κ or λ), and J-chain constructs were added for the co-transfections: (a) the commonality of high
expression when λ light chains were paired with µ heavy chains to generate different IgMs; (b) the
IgM concentrations in culture supernatants of Expi293 cells were determined 5 days post-transfection
using ELISA. Error bars represent standard errors of the means. Data are representative of two
independent experiments; (c) the fold difference when using λ light chains is summarized.

To test this hypothesis, we transplanted the light-chain variable genes of VRC01 and
Fm-6 from the κ to the λ constant regions. We expressed both versions of each IgM in
Expi293 cells and measured the yield of IgMs in culture supernatants. We found that
switching from κ to the λ constant regions dramatically increased the yields of recombinant
VRC01 and Fm-6 IgMs as well as others (Figure 1b,c, Supplementary Figures S1 and S2).

In addition, we also tested the converse hypothesis: The pairing of µ heavy chains
with κ light chains instead of the original λ chains will significantly diminish the yield
of recombinant IgMs. To test this notion, we switched 33C6 and PGT121 from λ to κ
light chains and expressed both versions of these IgMs in Expi293 cells. As expected, we
found that the κ light-chain versions of 33C6-IgM and PGT121-IgM were barely detectable
in the transfection supernatants (Figure 1b). The yields were decreased by logs when
compared with cotransfections using the λ light chains for these IgM mAbs (Figure 1c).
Taken together, our results confirmed that µ-chain pairing with λ light chains gave higher
yields in Expi293 cells.
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3.2. Pairing γ or α Heavy Chains with λ or κ Light Chains Affects the Expression of IgG and
Dimeric IgA (dIgA) mAbs in Expi293 Cells

Next, we sought to test whether preference in pairing with λ light chain was restricted
to IgM or shared with IgG and dIgAs. To this end, we made human γ1, α1, and α2 heavy
chain versions of VRC01, Fm-6, 33C6, and PGT121. We then expressed the recombinant
IgG1, dIgA1, dIgA2, and IgM molecules with either λ or κ light chains in Expi293 cells and
measured the antigen-specific mAbs in culture supernatants. We found that, for dIgA2, all
pairings of the α2 heavy chains with λ light chains produced higher yields compared with
pairings with κ light chains (Figure 2, Supplementary Figure S3). The fold differences were
dramatic (Table 1), suggesting that λ light chains were preferred for recombinant dIgA2s
when expressed in Exp293 cells.
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Figure 2. Antigen-specific mAb concentrations of isotypes IgG1, dIgA1, dIgA2, and IgM in culture
supernatants of Expi293 cells were determined 5 days post-transfection using ELISA. Four different
panels to test the preference for κ versus λ light chains with four different heavy chains were generated
for (a) VRC01, an anti-HIV Env CD4 binding site mAb [7]; (b) Fm-6, an anti-SARS spike protein
mAb [12]; (c) 33C6, an anti-HIV Env V3 loop mAb [13]; and (d) PGT121, a broadly neutralizing
anti-HIV Env mAb targeting a complex glycan-dependent epitope [8]. Bars representing IgG1 (grey),
dIgA1 (green), dIgA2 (blue), and IgM (black) are either open bars for the κ or solid bars for the λ
light-chain versions. Error bars represent standard errors of the means. Data are representative of
two independent experiments.

The situation for IgG1 and dIgA1 molecules was not as clear-cut as it was for dIgA2s
and IgMs. Pairing with λ light chains was better for producing recombinant Fm-6-IgG1,
33C6-dIgA1, and PGT121-dIgA1, while pairing with κ light chains gave better yields for
VRC01-IgG1, Fm-6-dIgA1, and 33C6-IgG1 (Figure 2, Table 1). The remaining VRC01-dIgA1
and PGT121-IgG1 did not show any preference for either λ or κ light chains when expressed
in Expi293 cells (Figure 2, Table 1). These data suggested that light-chain usage affected the
expression of some but not all recombinant IgG1 and dIgA1 mAbs.
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Table 1. Fold change in expression levels of antigen-specific mAbs when pairing heavy chains with λ
versus κ light chains.

IgG1 dIgA1 dIgA2 IgM

Yields (µg/mL)
Fold

Differ-
ence

Yields (µg/mL)
Fold

Differ-
ence

Yields (µg/mL)
Fold

Differ-
ence

Yields (µg/mL)
Fold

Differ-
ence

κ λ λ/κ κ λ λ/κ κ λ λ/κ κ λ λ/κ

VRC01 252.11
± 7.09

122.42
± 3.94 −2 182

± 17
198.75
± 17.46 1 2.14

± 0.3
68.37
± 8.77 32 60.81

± 8.29
739.56
± 62.72 12

Fm-6 8.79
± 5.38

33.78
± 13.6 4 17.18

± 4.73
0.53
± 0.37 −33 0.09

± 0.02
1.99
± 2.28 11 0.004

± 0.001
77.56
± 8.67 19,368

33C6 25.1
± 1.73

1.78
± 0.4 −14 21.86

± 11.63
443.96
± 80.59 20 0.22

± 0.01
280.7
± 33.8 1298 0.02

± 0.01
285.83
± 35.12 11,630

PGT121 60.45
± 19.92

56.95
± 21.38 −1 35.26

± 5.86
292.72
± 29.01 8 0.05

± 0.01
179.37
± 39.93 3920 0.11

± 0.01
767.49
± 89.43 7032

3.3. Switching Light-Chain Constant Regions Does Not Change Epitope Specificities

Next, we tested whether switching light-chain constant regions affected the epitope
specificities of the resulting mAbs. To this end, we performed competition ELISAs between
the κ and λ versions of IgG1 (Figure 3a,b); we found that increasing the competitor con-
centrations reduced the binding of the corresponding base mAbs. Furthermore, we also
used λ versions of IgM as competitors with κ IgG1 versions as base mAbs (Figure 3c,d).
The results of this competition ELISA indicate that the same epitopes are recognized by
IgG1 and IgM molecules. We concluded that switching light-chain constant regions did not
change the binding specificities of the resulting mAbs.
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Figure 3. Competition ELISA to assess retention of epitope specificity after switching light chains
(Methods): (a) testing whether VRC01-IgG1(λ) can compete with VRC01-IgG1(κ); (b) testing whether
PGT121-IgG1(κ) can compete with PGT121-IgG1(λ); (c) testing whether PGT121-IgM(λ) can compete
with PGT121-IgG1(κ); (d) testing whether 33C6-IgM(λ) can compete with 33C6-IgG1(κ). A dose–
response curve is indicative of shared epitope specificity. Data are representative of two indepen-
dent experiments.
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3.4. Variable Regions but Not J Chain Also Contribute to Expression Yields

Finally, we examined the contributions of variable regions and J chains to the yields
of mAbs with κ or λ light chains. To this end, we made constructs to express secreted
forms of γ1, α1, α2, µ, λ, and κ chains without variable regions, termed “variableless”. We
cotransfected the heavy- and light-chain pairs with the expressing plasmid encoding the
human J-chain precursor into Expi293 cells to express such variableless mAbs. As expected,
there was a preferred light chain for each variableless Ig class. Pairing γ1 and α2 heavy
with κ light chain produced more IgG1 and dIgA2, whereas pairing α1 and µ heavy with
λ light chain gave high yields of dIgA1 and IgM (Figure 4a). However, except for IgM,
the preference of light-chain usage for variableless antibodies was not consistent with that
of the corresponding complete mAbs, suggesting that variable sequences contributed to
mAb yield.
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Figure 4. Expression of recombinant mAbs of different Ig classes without variable heavy and
light regions. Antibody concentrations in Expi293 cell supernatants were determined 5 days post-
transfection using ELISA: (a) recombinant mAb levels in culture supernatants when cotransfected
with κ or λ light chains lacking variable regions; (b) concentrations of recombinant mAbs lacking
variable regions in the presence or absence of a J-chain-expressing plasmid. In the absence of J chains,
IgAs are expressed in multiple forms [16]. Bars representing IgG1 (grey), IgA1 (green), IgA2 (blue),
and IgM (black) are either open bars for the κ or solid bars for the λ light-chain versions. The error bars
represent the standard errors of the means. Data are representative of two independent experiments.

We also compared mAb expression levels with or without J chain cotransfection. As
shown in Figure 4b and Supplementary Figure S4, the amounts of IgA1, IgA2, or IgM
produced with or without the J chain were similar, suggesting that the J chain did not
contribute significantly to mAb yields.

4. Discussion

In this study, we showed that (1) Ig light chains strongly influenced recombinant
monoclonal IgM yields; (2) partnering µ heavy chains with λ light chains increased yields
up to 20,000-fold, compared with partnering with κ light chains; (3) switching light-chain
usage did not affect epitope specificity; (4) preference in light-chain usage was not restricted
to IgM as dIgA2 also preferred λ light chains; (5) for recombinant IgG1 and dIgA1 mAbs,
the preference for κ or λ light chains varied.

The genes encoding κ or λ light chains are located on separate chromosomes. When
rearrangement happens, κ light chains are generally processed first, then λ light chains [17].
Thus, in most animals, κ light chains are dominant [18,19]. The ratio of κ to λ light chains in
murine and human serum are 95:5 and 60:40 [19], respectively. Due to the use of hybridoma
technology to generate therapeutic antibodies, κ light chains are also dominant in the
FDA-approved mAbs.

However, Mole et al. [4] observed that in human secretions such as saliva, nasal fluids,
tears, and fluids produced by glands surrounded by mucosal lymphoid tissues, the κ-to-λ
light-chain ratios were lower than those in serum. Therefore, these authors postulated
the preferential production of λ light chains in human mucosa. In general, IgAs are the
most abundant Ig class in mucosal secretions. IgM, which like dIgAs incorporates the
J chain, is also actively transported into mucosal lumina by the polymeric Ig receptor (pIgR).
Our finding that λ light chains were preferred for dIgA2 and IgM production coincides
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with Mole’s finding, suggesting that there may be a benefit of having λ light chains in the
mucosal antibodies, such as IgM and dIgAs.

Development and production of therapeutic mAbs are costly, especially for IgM. The
high production cost is part of why IgM thus far is not a mainstream therapeutic antibody,
even though there is much evidence for IgM’s potential [20]. We have previously shown
that 33C6-IgM was more potent than the parental IgG and was highly protective against
the mucosal SHIV challenge [6]. Most recently, Ku et al. [21], using anti-SARS-CoV-2
neutralizing mAbs as IgM-14 and IgG-14 versions, also demonstrated the superiority of the
IgM isoform: IgM-14 was not only >230-fold more potent in vitro than the parental IgG-14
in neutralizing SARS-CoV-2 but was also active against virus rendered resistant by parental
IgG. When administered intranasally to mice as prophylaxis, IgM-14 almost completely
blocked lung infection [21].

By using the λ chain constant region to produce IgM in the Expi293 cell-based transient
expression system, we showed that the yields of IgM can be increased by logs, compared
with the κ-chain versions. This simple change could promote the development of IgM
into the frontline and allow the biomedical industry to fully utilize IgM’s advantages
in preventing and/or treating illnesses beyond infectious diseases, such as cancer and
autoimmune disorders.

In our studies, light-chain preference was not restricted to IgM. We demonstrated that
yields of dIgA2 mAbs also increased when λ-chain constant regions were used, while the
preference varied among IgG1 and dIgA1 mAbs. However, for most of the mAbs, either λ
or κ light-chain constant regions were preferred. Thus, the production of most mAbs can
be optimized by testing yields as a function of λ or κ light-chain constant region preference.

This switching of the light chain did not change the binding specificity of an antibody,
which is consistent with Montano et al. [22]. These authors demonstrated that the light-
chain choice only slightly impacts the structure and functional properties of isogenic IgG.
These findings further strengthen the argument to first identify the preferred light-chain
constant region for a given mAb before large-scale production instead of just using the
original light-chain constant region. As our data indicate, there has been no downside to
date when switching the light-chain constant region.

In summary, we demonstrated that switching the light-chain constant region is a
simple but excellent way to increase mAb yields, thereby reducing production costs. Our
findings could benefit the development of mAbs for prophylactic or therapeutic applica-
tions, including combating mucosal pathogens with IgM and dIgA2 mAbs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antib11020037/s1, Figure S1: The presence of IgM in cotransfection
supernatants of Expi293 cells was determined by western blot analysis. (a) PGT145-IgM and (b) L243-
IgM were transiently expressed in Expi293 cells with either κ (left panels) or λ (right panels) light chains.
The transfection supernatants were harvested on days 4 and 5 post transfection. The presence of IgM
was detected using HRP-goat anti-human Fcµ. The red boxes indicate the migration of polymeric
IgM. Figure S2: Representative standard curve for human IgM ELISA. Serially diluted human serum
IgM (Sigma-Aldrich) was captured with goat-anti human Fcµ onto an ELISA plate. Then the IgM was
detected using HRP-goat-anti human Fcµ. Figure S3. Standard curves for antigen-specific ELISAs.
Representative graphs of standard curves for human (a) IgG1, (b) dIgA1 and dIgA2, and (c) IgM. The
ELISA plates were coated with SHIV-1157ipd3N4 gp120 or SARS S1 protein. The purified IgG1, dIgA or
IgM mAbs recognizing the corresponding target (made in-house) were added at serial dilutions. Then,
the mAbs were detected using HRP-goat anti-human Fcγ for IgG; HRP-goat anti-human Fcα for dIgAs
and HRP-goat anti-human Fcµ for IgM. Figure S4: Molecular weights of IgMs and IgAs in transfection
supernatants of Expi293 cells were determined by western blot. (a) IgMs and (b) IgAs without variable
regions (termed variableless) were cotransfected with or without J chain in the presence of either κ or λ
light chain constant regions. The transfection supernatants were harvested on day 5 post transfection.
The samples were run under denaturing, non-reducing conditions in 4-12% gradient PAGE gels. The
presence of IgM or IgAs was detected using HRP-goat anti-human Fcµ or HRP-goat anti-human Fcα
antibody. Red boxes indicate the migration of polymeric and monomeric forms of IgM and IgA.
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