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ABSTRACT: Artificial intelligence and machine learning have demonstrated their potential role in predictive chemistry and
synthetic planning of small molecules; there are at least a few reports of companies employing in silico synthetic planning into their
overall approach to accessing target molecules. A data-driven synthesis planning program is one component being developed and
evaluated by the Machine Learning for Pharmaceutical Discovery and Synthesis (MLPDS) consortium, comprising MIT and 13
chemical and pharmaceutical company members. Together, we wrote this perspective to share how we think predictive models can
be integrated into medicinal chemistry synthesis workflows, how they are currently used within MLPDS member companies, and the
outlook for this field.

■ SECTION 1: WHERE CAN COMPUTER AIDED
SYNTHESIS PLANNING AID MEDICINAL
CHEMISTRY DISCOVERY?

Introduction. Current estimates of the cost to bring a
single drug to market are in excess of 2−3 billion dollars.1−3 A
significant portion of this cost may be attributed to two factors:
the historically high attrition of candidate molecules going
through clinical trials (an attrition rate of over 85%4) and the
complexity of the preceding discovery phase, which requires
considerable investments in time and resources. A stronger
pipeline of preclinical candidates will have beneficial down-
stream effects in terms of total approvals. Advances in both
computer hardware and in silico methods aim to expedite as
well as improve various aspects of the medicinal chemistry’s
quintessential design-make-test-analyze (DMTA) drug discov-
ery cycle (Figure 1). One area of increasing interest is the use
of data-driven synthetic prediction tools for the make phase to
accelerate and reduce failures in the synthesis of new molecular
entities.

Computer aided synthesis planning (CASP) has a rich
history that dates back to the 1960s when the Corey group first
disclosed LHASA,5 a rule-based approach to retrosynthetic
planning. This seminal publication was key in defining the
heuristics of chemical synthesis that might be necessary for a
synthesis planning software. Many groups disclosed advances
in computer-assisted synthesis planning between the 1960s and
1990s but were largely limited by computational resources and
primarily relied on human-encoded reaction rules.6−9

These early progenitors serve as the inspiration for some of
the commercial software packages, such as Synthia (formerly
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Chematica) and ICSynth, where hand-coded reaction rules are
used in conjunction with guiding heuristics to navigate
synthetic pathways.10,11 Only in the past two decades have
more automated methods for synthesis planning, such as those
that use a subset of AI methods called machine learning (ML)
to infer patterns of reactivity from published reaction data,
emerged as viable alternatives to “expert” rule-based
algorithms.12 Both expert encoded rules and ML methods
can be considered AI approaches: the former as an example of
the so-called “first wave of AI” using crafted knowledge and the
latter as an example of the “second wave” using statistical
learning. Each brings its own distinct advantages to synthesis
planning software. Expert-encoded rules have the opportunity
to excel in low-data regimes where only 1−4 reactions might
be recorded for a particular transformation. Although there is
active research on using machine learning for low data, this has
not yet been successfully applied to synthesis planning.
However, machine learning methods can be easily extended
to incorporate new reactions, as they are published due to the
automation of extraction/training pipelines, which reduces the
burden on experts (Ph.D.-level chemists). As more reactions
are run within a company, the automated pipeline allows for

predictions to be more robust. Ref 13 provides detailed
descriptions of and comparisons between available software
tools.13

Both machine learning and rule-based approaches have
demonstrated successes in planning synthetic routes that have
been executed in the lab or evaluated by chemists as worth
attempting. For example, Synthia has been used to find routes
to medicinally relevant compounds and has even improved the
overall yields compared to expert-developed routes;14 Segler et
al. found that chemists expressed no preference for literature-
validated routes over their algorithmically proposed routes in a
double-blind evaluation.15 Automated platforms have been
coupled to synthesis planning tools, with albeit varying levels
of human intervention.16,17 Although the field is still in the
early stages of using CASP for fully automated synthesis
planning, these initial successes demonstrate the utility of the
tools in a DMTA cycle.
Starting in May 2018, a team of researchers from MIT has

been working closely with 13 pharmaceutical and chemical
companies within the context of the Machine Learning for
Pharmaceutical Discovery and Synthesis (MLPDS) Consor-
tium.18,19 Among the many goals of the consortium is the

Figure 1. Some opportunities for informatics and AI techniques in the design-make-test-analyze drug discovery cycle.

Figure 2. Three primary tasks for computer-aided synthesis planning. (1) Retrosynthesis can be broken into subproblems of (a) the generation of
retrosynthetic suggestions one step at a time and (b) the recursive use of the singe step suggestions to identify full, multistep routes. (2) Reaction
conditions that will lead to a successful forward reaction must be recommended in order for suggestions to be actionable. (3) Reaction prediction,
predicting the possible products from a set of starting materials and conditions, is used to validate the proposed synthetic steps.
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development of machine-learning-based algorithms and tools
to accelerate the make phase of the DMTA cycle (Figure 1).
This article will encompass the topic of machine learning for
synthesis planning through the lens of the activities of the
consortium and the open-source tools18,20 being developed at
MIT and adopted by member companies.
More specifically, this perspective will describe the many

roles of artificial intelligence in medicinal chemistry synthesis,
including those that (1) can be integrated within a medicinal
chemistry workflow, (2) are already integrated in certain
pharmaceutical companies, and (3) require further develop-
ment to accomplish even more ambitious tasks. We focus on
the three primary tasks of computer-aided synthesis planning
(CASP) in Figure 2: retrosynthetic planning, condition
recommendation, and forward-reaction prediction.
Use of ML-Based CASP in Retrosynthetic Planning.

Identification of Synthesizable Targets and Route Planning.
The traditional approach for synthesizing new small molecules
in DMTA iterations involves manual planning and manual
execution. Expert chemists are tasked with assessing the
synthesizability of proposed targets, resulting in a slowdown
when evaluating hundreds or possibly thousands of molecules.
A particular series of lead compounds might be preferred over
another due to synthetic accessibility (SA), as financial
resources and time constraints limit the number of compounds
that can be pursued or designed in parallel. Retrosynthesis
software mitigates the bottleneck of manual synthesis assess-
ment by generating hypothetical synthetic routes that can be
used to rapidly prioritize compounds by ease of synthesis,
thereby providing chemists a more focused set of compounds
as a starting point for expert route planning. Finally, the use of
a retrosynthetic planning platform can be beneficial for team
members that do not have years of training in synthetic
chemistry by providing these individuals with synthetic
suggestions that may not have come to mind.
Two categories of methods for scoring compounds by

synthesizability are the use of simplified structure-based
heuristics21−23 or full retrosynthetic tree expansions. Heuristics
aim to capture broad trends in SA from molecular structures
and have traditionally been using expert-defined functions of
molecular attributes. Nonlinear regression (e.g., using
machine-learning techniques) can instead recapitulate sub-
jective scores assigned by expert chemists24 or be used in a
semisupervised setting to learn from examples of chemical
reactions.25 In reality, however, the ability to synthesize a
target is highly dependent on the availability of specific buyable
building blocks and is not a smooth function of molecular
structure. Since the availability of building blocks depends on
the setting (e.g., organization, budget, and discovery versus
process development), a more generalizable method for
assessing synthesizability is to use retrosynthetic expansion
with a custom database of buyable compounds that is tailored
to the application. The benefit of an explicit retrosynthetic
expansion is the knowledge that transformations to access a
target of interest do exist and suitable starting materials are
available; however, it comes at a higher computational cost.
With access to a retrosynthetic planning tool and enough time
and training, however, neural network models can begin to
approximate this highly nonlinear function.26

The two major categories of retrosynthetic planning
software are those that use expert-encoded rules or heuristics
to generate recommendations and those that learn (or infer)
how to generate recommendations. Many retrosynthetic

methods rely on the use of reaction templates, which are
reaction rules that can be stored in a SMARTS or SMIRKS
format. A general procedure for the algorithmic extraction of
templates from a reaction data set is to (1) identify the
reaction center or changing atoms, (2) identify atoms adjacent
to the reaction center, and (3) add generalized functional
groups that are involved in the reaction.27,28 This approach
captures the local reaction environments but, in most
algorithmic implementations, does not capture the global
features of molecules that contribute to reactivity. Expert-
encoded methods11 may better describe functional group
requirements but cannot be tailored to an individual
organization’s capabilities. Automated pipelines for extracting
reaction templates allow for facile (re)training on propriety
data sets but are also inconsistent with the expert approach.
For the actual application of reaction templates to generate

reactant molecules from an input product molecule, several
machine-learning-based approaches have focused on learning
which templates provide the most strategic disconnections,
with varying degrees of sophistication.29,30 An alternative
approach is the use of sequence-to-sequence models that treat
the one-step retrosynthetic task as a translation between
products and reactants.31−33 A single-step retrosynthetic
recommender is sufficient for a chemist to construct routes
manually, one step at a time.34

The single-step retrosynthetic capabilities can be extended
to full route design by using a tree search. Each step can
produce thousands of precursors, which requires a guided
search strategy to prevent combinatorial explosion. Candidate
precursors can be filtered by SA heuristics11 or by a learned
expansion policy15 to have a more tractable list of chemicals to
transform in the next cycle. Full pathways can be constructed
by recursively suggesting single-step retrosynthetic precursors
that become progressively simpler until a stop criterion is met.
Different implementations of tree searches have been
investigated including depth-first, best-first, and proof-number
search and Monte Carlo tree search algorithms;15,35 a direct
comparison of methods is difficult because quantitative scoring
remains a challenge. Generally, a retrosynthetic search is
terminated once precursors are found that can be purchased.
This complicates benchmarking retrosynthesis algorithms
because a larger, more diverse database of buyable chemicals
will have a higher probability of termination and naturally
appear more successful. Other stop criteria such as the number
of occurrences in the literature or chemical logic (defining the
allowable number of carbon, nitrogen, and oxygen atoms) can
be used, the latter of which can provide greater standardization
but is less relevant to actual applications. Moreover, the ability
to identify a pathway does not guarantee its chemical
feasibility. Since there are multiple routes that can synthesize
the same target, the best method of validation would be to
perform the chemistry in the lab; this is obviously prohibitively
expensive to undertake for every route generated, time-
intensive, and not a scalable approach to validating new
methods in retrosynthesis planning.

Recommendation and Evaluation of Reaction Condi-
tions. Planning a retrosynthetic route is arguably only one
aspect of a full CASP system. To be an actionable suggestion
that a chemist can take into the laboratory, we must propose a
set of reaction conditions that are able to achieve the desired
transformation. Finding the optimal or acceptable set of
conditions for a reaction can require time-consuming empirical
screening to determine what works best; often, a chemist will
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employ “typical” conditions for that family of reactions without
tailoring their choice to the particular substrate of interest.
Biases for choosing reaction conditions can result from
individual experience or immediate availability of reagents. In
principle, machine-learning models for condition recommen-
dation can more objectively infer suitable conditions if
appropriately trained on historical condition data.
In practice, such models are difficult to develop due to a lack

of high-quality data. The main data issues that hamper progress
are inadequate disclosure of the (1) amounts, volumes, or
concentrations; (2) reaction times or kinetics; and (3) order of
the addition of reagents and catalysts. Despite these issues,
data-driven approaches have demonstrated the ability to
suggest conditions for specific reaction classes36,37 and for
more diverse reaction sets.38,39 These models provide a strong
basis for empirical optimization of reaction conditions but still
lack the full details necessary for execution. Condition
recommendation models would likely be developed to suit
the needs of a particular area of chemistry such as medicinal
chemistry or process chemistry. The objective of the reaction is
different in many cases, such as the importance of yields and
side-product formation. One objective might be the prediction
of the “best” conditions for a set of reactions that we would like
to run in parallel in a single well-plate. More specific
predictions may be required for finding the optimal conditions
for a single reaction where a new combination of conditions or
new catalysts or reagents are designed.
Even though it is hard to escape empirical optimization of

reaction conditions, particularly for complex substrates or in
tandem catalysis, opportunities for techniques in artificial
intelligence to accelerate this process also exist. Reaction
optimization is a well-established field,40−42 and there exist
many statistical techniques for selecting experimental con-
ditions to iteratively improve performance (e.g., in terms of
yield, turnover number, or throughput) exist. In machine
learning parlance, these are active learning frameworks. The
most popular methods are model-based techniques, which
construct a surrogate model of reaction performance as a
function of reaction conditions. Various search strategies (e.g.,
Bayesian optimization) can be layered on top of these models
to help select the next set of conditions to try and refine the
model. While these concepts are not new, machine-learning-
based models have the potential to provide better estimates of
performance and uncertainty to accelerate the search.43−45

Forward-Reaction Prediction. The third key task of CASP
is to ensure that recommendations obtained through
algorithmic synthesis design are robust and actionable by
anticipating, at least qualitatively, reaction products. A chemist
might assess the feasibility of a reaction by searching for similar
transformations, reading the literature, and determining if the
synthetic method will generalize to the substrates of interest.
Data-driven techniques can learn to perform the same
generalization when trained on a broad set of reactions.
Machine learning methods for reaction prediction include
attempting to infer reaction rules from a predefined list of rules
or templates,29,46,47 graph convolutional neural networks that
predict atom and bond changes from starting materials to
products,48,49 and sequence-to-sequence models which predict
product SMILES.50−52 Compared to the evaluation of
retrosynthesis models, forward synthesis models are more
straightforward to evaluate quantitatively, as there is, in
principle, only one true answer. In practice, however, the

absence of precise concentration, time, and temperature data
make reaction prediction an ill-posed problem.
These forward-reaction predictors can also be used for side-

product prediction. Knowledge of the most probable products
helps identify reactions that would produce potentially harmful
or difficult-to-separate intermediates. Many reactions can lead
to multiple regio- or stereoisomeric compounds. Information
about a reaction’s selectivity and possible side products is a
crucial aspect of prioritizing syntheses, and can potentially
assist with structure assignment. Once these models are able to
make quantitative predictions, they will be indispensable for the
consideration and design of purification strategies.
In addition to use in CASP, there are other applications for

reaction prediction. Many make-on-demand virtual libraries
are enumerated based on expert-defined reaction templates
that focus on a limited set of chemistries intended to be as
robust as possible.53 Reportedly, successful delivery of
compounds in make-on-demand libraries within 4 weeks is
around 85% and within 6 weeks is 93%.54 This high success
rate demonstrates the robustness of rule-based methods using
well-established chemistry. Either using heuristically extracted
templates or template-free methods, new reaction space (e.g.,
novel synthetic methods described in new publications) can be
included in an automated pipeline in real-time. If targets have
been identified and retrosynthetic plans are in place, a search
can be performed for all the combinations of available starting
materials that could be substituted. For example, if the first
reaction is a Suzuki coupling reaction, all the combinations of
available boronic acids and aryl halides can be enumerated. A
forward predictor is then useful for scoring which combina-
tions will likely lead to successful reactions. By further ranking
this set in terms of compounds’ properties of interest, a rapid
assessment of the accessible chemical space surrounding the
target can be made, e.g., for hit expansion in drug discovery.
This capability is closely related to integrating the goals of
diversity-oriented synthesis into CASP.

■ SECTION 2: HOW IS CASP CURRENTLY USED IN
THE PHARMACEUTICAL AND CHEMICAL
INDUSTRY?

There are many ways to envision integration of AI-based CASP
tools into the medicinal chemistry workflow, and adoption
appears to be on the rise. The discussion below will largely
focus on the use of tools within the open source ASKCOS
software suite.20 However, the applications are general. We will
break the use cases into multistep route planning, forward-
reaction prediction, and condition recommendation, as
outlined in the introduction. Finally, we will briefly discuss
how the incorporation of programmatic interfaces can aid
DMTA workflow and the general feedback from MLPDS
member companies on ASKCOS functionality and its adoption
in their organizations.

Multistep Route Planning. Many of the available
commercial and academic synthetic route planning software
provide a stand-alone graphical user interface (GUI) or web-
based interface where users can interact with the suggested
routes and predictions. The target users of the software range
from nonchemists, without much knowledge of chemical
reactivity, to highly trained expert chemists who want to
streamline their synthesis workflow. The MLPDS consortium
member companies report that the primary users of the
software are expert, Ph.D.-level chemists, and adoption is
reported to vary from indifference up to enthusiastic and
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everyday use. At Janssen, many chemists use synthesis planning
tools in parallel with traditional database lookups of known
reactions to generate ideas more quickly. Other users are
computational chemists and chemical engineers who may not
have as much practice at retrosynthetic planning but are
involved with molecular design or process development. Most
companies pilot small rollouts to select expert chemists, who
are in the strongest positions to evaluate the capabilities of
machine learning CASP tools and identify key limitations. At
BASF, experts from different stages in product development
(e.g., early phase and process development) provided under-
standing of the different expectations across business areas.
These small rollouts are necessary to understand the obstacles
to wider adoption and further integration into synthesis
pipelines. A close contact is necessary between the company’s
beta testers and the developers of retrosynthesis algorithms
since the true assessment of performance must be carried out
by trained experts who can validate the model(s) suggestions.
The proof of principle for full pathway planning has been

established, but further refinement will require the input of
chemists who can objectively evaluate retrosynthetic predic-
tions. Input from the MLPDS member companies has
identified some general trends in which the machine learning
algorithms perform well and poorly. Generally, target
molecules that are in a similar chemical space to product
molecules found in Reaxys or USPTO tend to perform well
using the ASKCOS suite of tools. These target molecules can
be accessed using well-established chemistries and the models
can perform adequately within their domains of applicability.
For example, input of the structure of branebrutinib (BMS-

986195, 1, Figure 3) resulted in an ASKCOS proposed
synthesis. While the synthetic route was first reported in
2016,55,56 the training data for ASKCOS stops before the initial

disclosure of this molecule, which demonstrates the ability of
the machine-learning models to generalize to new target
compounds. The ASKCOS-proposed synthesis begins from
commercially available starting materials that are similar to
those in the reported route and uses several types of reactions
(C−N cross-coupling, heterocycle formation, diazotization/
reduction) to arrive at the final product. While the overall
synthesis appears plausible, the selective Boc deprotection of 6
to 5 is likely problematic and could be easily substituted with
an orthogonal protecting group when deciding on the final
route. As previously noted, one area for improvement is better
prediction of regioselectivity of reactions where there are two
pendant reactive groups. For the proposed CN-bond-forming
reaction, ASKCOS suggests Boc protection of the N−H of the
alkynamide intermediate (3) while the second coupling
partner (4) contains a free carboxamide. In the literature
synthesis of 1, the authors note that a carboxamide
unexpectedly prevents the Buchwald (C−N) coupling from
proceeding. Thus, this team performs the reaction with the
nitrile substituted for the carboxamide of 4. While the exact
ASKCOS C−N coupling has never been tried, the fact that
chemists attempted the C−N coupling with a free carboxamide
demonstrates that the ASKCOS prediction is reasonable (i.e.,
worth trying), but the carboxamide would likely need to be
converted to a nitrile. This example is just one small piece of
evidence that ASKCOS can reasonably disconnect modern
drug-like molecules and how nuanced experimental results
(including failures), not captured in large reaction databases,
can negatively impact algorithm performance.
Many different aspects play into the “success” of machine-

learning-based path-planning tools. One of the simplest factors
in whether these programs are able to find pathways is the
coverage of the database of compounds considered to be

Figure 3. Retrosynthetic analysis of branebrutinib performed by ASKCOS. The route is similar to that in ref 56, with the difference that the authors
found a nitrile analogue of 4 to be optimal for the C−N-bond-coupling step.
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commercially available; simply put, a larger starting material
database increases the odds that a search will terminate
successfully. In an effort to better understand how the database
of buyable chemicals affects tree search outcomes, GlaxoS-
mithKline compared the stock ASKCOS database of buyable
compounds (138k) and a larger set that was augmented with
their internal compounds/vendors (8M). On an internal set of
69 target molecules, using the most liberal path-planner
settings, a route was found by ASKCOS for 54% of compounds
with the stock database and 67% of compounds with their
internal database. These results highlight the dependency of
path-planning algorithms on the database used for a stop
criterion. The dependence on a buyable database, however,
complicates the comparison of CASP tools since every
software package uses a different (typically undisclosed)
buyable database. This problem may be alleviated by the
implementation of straightforward utilities to load and use
custom building-block sets in every CASP tool. This
requirement is generally useful since all MLPDS corporate
members maintain internally large collections of building
blocks.
How the availability of starting materials affects the SA can

be seen by enumerating methylated variants of compound A57

followed by an evaluation using ASKCOS’s retrosynthesis tree
search. While an expert chemist can easily infer that compound
A is disconnected by amide formation and C−C cross-
coupling, the general knowledge of the commercial availability
of the methylated starting materials is less likely. The input of
methyl analogues of A results in the expected bond
disconnections (Figure 4, representative ASKCOS results
shown). Since the stop criteria for the tree search is
commercial availability, the algorithm will assess at each
disconnection whether the suggested starting materials are

purchasable. In this example, the starting material for
compound 8 can be purchased after only a few retrosynthetic
steps. Compounds 9 and 10 require an extra step compared to
8. Finally, access to indole 11 would necessitate further steps
to synthesize, which draws the step count to almost double
that of the synthesis of compound 8. Notably, the information
is obtained using ASKCOS with one search per compound.
This assessment now provides chemists with the information
on which analogues are most synthetically accessible and can
factor into the decision-making process for prioritization of
target molecules.
An expected feature of machine-learning methods for

predictive chemistry is that retraining models on proprietary
data ought to allow companies to achieve better predictive
ability on chemistries that are used in-house.58 These in-house
chemistries may not be well represented in public or published
data sets, which most of the CASP systems are trained on.
Researchers from AstraZeneca and the University of Bern
applied a workflow for retrosynthetic template extraction28 and
training/application29 to several public and proprietary data
sets and compared the performance of the different models.59

They found that Reaxys has the most unique reaction
templates, of which 2% are shared between all the data sets
used in the study, and only 0.6% are shared between Reaxys
and a subset of their proprietary ELN data. Eli Lilly identified a
subset of 6k target compounds from approved, experimental,
and investigational drugs to represent the chemical space of
interest to the company. Using the Lilly database of building
blocks and ChemoPrint, an in-house synthetic planning
platform, retrosynthetic expansion was performed using a
template set from (1) only Lilly eLN data (13297 templates)
and (2) Lilly eLN data plus patent data (13297 + 50275
templates). Routes could be found for 40.1% of the 6k

Figure 4. Retrosynthetic analysis of methylated analogues of compound A. ASKCOS proposes different length of routes which is dependent on the
availability of starting materials, where the tree search stop criteria is commercial availability (<$100/g). Compound 8 can be accessed from
commercially available starting materials in 3 steps, compounds 9 and 10 require one extra step, and compound 11 requires 2 extra steps.
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compounds with the first template set. Supplementing the
template set with additional patent templates only provided a
5.8% increase in the ability to successfully furnish a route,
corresponding to a success rate of 46.9%.60 For full-pathway
planning, these results demonstrate the necessity of further
testing on internal and proprietary data sets and the influence
that company data may have on multistep path planning.
There are still many molecular structures for which

retrosynthesis planning fails to find any route. The MLPDS
consortium members have identified lack of coverage for
several company-specific target molecules or reactions in full-
path planning. Commonly identified substructures that are not
successful in full-path planning are small, densely function-
alized carbon cores with or without many contiguous
stereocenters, caged structures where 3D geometry is crucial
for selectivity, newly discovered heterocycles, and complicated
polycyclics. Some of these substructures, such as densely
functionalized carbon cores, require chemistry that is specific
to each core’s substructural environment (perhaps with <5
precedents in the literature). Using the conventional template
extraction procedures, the model will not be able to generalize
due to the high specificity of the template. Conversely, path
planning of some target molecules will find numerous
pathways but include many poor retrosynthetic suggestions
where regio- or stereoselectivity may not be predicted
appropriately. To correct the issues of selectivity, further
filtering using an accurate forward-prediction model will
provide richer route suggestions. Another set of failures are
due to the limitation of the search methods for navigating a
synthetic tree. Since recursive retrosynthetic expansion has to
restrict the search to avoid combinatorial explosion, most
implementations cannot yet navigate a search path deeper than
15 synthetic steps. If chemists are using CASP tools for the
ideation of routes and pathway planning cannot successfully

navigate a synthetic graph to produce a route, another solution
is necessary.
When full-path planning fails, a chemist may resort to using

single-step retrosynthetic predictions to manually construct a
route. Figure 5 is an example where a path to branebrutinib is
manually explored. Interestingly, the suggestion of using a
nitrile, which was found to be ideal in practice, is in the
precursors lists but is ranked #37, so a chemist would have to
sort through many higher-ranked suggestions. Manually
constructing a route from tens to thousands of disconnections
is a time-consuming task. A synthesis planning feature that was
born from discussions between MLPDS member companies
and MIT was the implementation of an interactive path
planner using single-step retrosynthetic predictions. The
interactive planner addresses the issue of displaying diverse
suggestions and having more control over a synthetic plan.
When chemists are initially developing a route, the precise
choice of leaving groups matters less, and as the routes are
refined, specific leaving groups are chosen based on the desired
reactivity. Machine-learning models for retrosynthesis generally
handle all possible reactants as distinct options. For example,
the chloride, bromide, and iodide form of a halogenated
precursor are not normally lumped into a single category. It is
inconvenient for chemists to sort through numerous
suggestions that have the same fundamental disconnection
but different leaving groups. Thus, a clustering algorithm was
developed to group similar suggestions (based on a k-means
clustering using a reaction fingerprint61) and expedite the
exploration of distinct disconnections. Several routes are
displayed using one visualization, which can be download
and shared. Although none of the underlying machine-learning
models were changed, expert users are much happier with
exploring pathways interactively when an automated path-
planning job fails. This success demonstrates the that tight
collaboration between end users and the developers of

Figure 5. Screenshot of the ASKCOS interactive path planner. (Left) Visualization of a full synthetic graph constructed by the user. Boxes are
color-coded green if they are purchasable and blue for the root target compound (branebrutinib). (Right) The selected molecule is displayed on
top for which a single-step retrosynthesis prediction has been performed and on the bottom are all of the predicted precursors.
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synthetic planning software is helpful for adoption, particularly
when it comes to the user interface.
An advantage of many synthesis planning packages is that

reaction templates, or rules, are associated with a specific set of
literature precedents. MLPDS member companies report that
CASP tools are used more often when literature examples,
upon which predictions are based, are easily accessible. For
example, ASKCOS provides a mechanism to use reaction IDs
tied to reaction examples in the training data and can direct
users to literature lookups or in-house reaction entries.
Forward-Reaction Prediction. The purpose of a

machine-learning-based forward prediction is to validate routes
that are furnished from full-path planning. In our implementa-
tion, forward prediction is not carried out automatically during
the tree search via the GUI but can be performed on reactions
after expansion. In practice, forward-reaction prediction tools
are currently used mainly to identify potential side products
and impurities rather than for confirming routes. Similar to
retrosynthetic planning, the use of company data should
improve the quality of predictions for in-house use by aligning
the types of chemicals/reactions used for training and
prospective prediction. A recent study between Pfizer and
the University of Cambridge demonstrates that retraining a
sequence-to-sequence forward prediction model on propriety
data does boost accuracy for company-specific chemistry.58

Condition Recommendation. Of all the MLPDS
modules deployed at the member companies, condition
recommendation is used least often and receives the least
feedback. Previous research has reported recommendations of
very specific conditions limited to a single reaction class.37,62,63

These focused models do not approach the global intuition of
reactivity that expert chemists have but may be useful when
very specific conditions are necessary. A general model for
condition recommendation, such as the one included in
ASKCOS,39 that can provide a good starting point for reaction
execution would be preferable for medicinal chemistry
workflows. However, these generalized models encounter
limitations subject to the training sets’ domain of applicability.
Chemists currently can use ASKCOS to get a good starting
point for planning a reaction, but many reasons may contribute
to the lower adoption of condition recommendation. One is
that the model suggestions are not specific enough
(concentrations, time, order of addition, etc. are missing) to
give conditions that are actionable. The conditions the model
provides can be obtained through a literature search of similar
transformations, which is the mechanism still preferred by
practicing chemists. We find that chemists often use the model
to confirm some set of the conditions they have already

proposed or simply to evaluate the suggestions and give
feedback to the model developers. Long-term, there is an
opportunity to impact automated experimentation once it is
possible to make quantitative recommendations, but currently,
the utility of condition recommendation is limited.
A retrospective analysis was performed of reactions used in

the SAR discovery phase of Novartis’s LSZ102 (compound
12) and its derivatives. ASKCOS path planning identified
routes where LSZ102 can be assembled via two classes of
palladium catalyzed C−C coupling (C−H activation and
Suzuki−Miyaura), as shown in Figure 6. Indeed both coupling
strategies were widely utilized during the SAR discovery phase
toward LSZ102.64

Further retrospective analysis of the top-rated disconnection,
a Pd-catalyzed C−H activation, identified the requirement for
both high temperature and polar aprotic solvents (DMF/
DMA) in the top 3 conditions proposed. In reality, a screening
optimization of the ligand and base was necessary to maximize
the performance for the specific scaffold. The optimized
conditions were applied to a diverse range of substrate starting
materials with yields in the range of 39−97%. The initial
temperature and solvent conditions proposed by ASKCOS
were not far from those actually employed and would have
provided a good starting point for either scouting or screening
efforts.
One appealing application for context recommendation

models is helping chemists and chemical engineers identify
opportunities to leverage specific technologies at the onset of
synthesis design. In doing so, more efficient and sustainable
conditions aligned with green chemistry principles could be
readily identified. One such example of this would be in the
application of surfactant-based technology at Novartis, which
seeks to replace undesirable solvents with a greener micellar-
water surfactant system. Indeed, in the above example of
LSZ102, the Suzuki−Miyaura retrosynthetic analysis identified
by ASKCOS could be realized under such surfactant
conditions.65−68 In comparison with the same reaction
performed in a standard organic solvent, the generation of
the desbromo side product was significantly reduced from 8 to
0.7%.65 By training ASKCOS with relevant internal data, it is
envisaged that context recommendation models will be able to
identify and propose more favorable conditions versus the
historical conditions more prevalent in the existing literature
using flexible user-provided definitions of “favorable”.

Programmatic Interfaces for Incorporation into
Company Platforms. Although a graphical user interface is
the primary method of use by chemists, computational tools
can be straightforwardly integrated with other computational

Figure 6. Single-step retrosynthetic predictions for LSZ102. (i) Palladium catalyzed C−H insertion and (ii) Suzuki cross-coupling. Conditions are
listed for the top-ranked disconnection, and the optimized conditions are listed along with the range of yields for a variety of substrates.

Journal of Medicinal Chemistry pubs.acs.org/jmc Perspective

https://dx.doi.org/10.1021/acs.jmedchem.9b02120
J. Med. Chem. 2020, 63, 8667−8682

8674

https://pubs.acs.org/doi/10.1021/acs.jmedchem.9b02120?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.9b02120?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.9b02120?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.9b02120?fig=fig6&ref=pdf
pubs.acs.org/jmc?ref=pdf
https://dx.doi.org/10.1021/acs.jmedchem.9b02120?ref=pdf


pipelines. A closer integration with in-house tools for
molecular design represents an additional value proposition
for CASP and could lead to greater adoption. For example, a
programmatic interface for sending requests to path-planning
software from in house design modules allows the automation
of running retrosynthetic expansions and the accumulation of
the necessary data for prioritization of target molecules.
Eli Lilly has designed an in-house workflow named Kernel

where target compounds from chemists, or screening hits, are
submitted and prioritized in an automated fashion. Once
Kernel identifies the prioritized compounds, full retrosynthetic
path planning is performed on all of the molecules utilizing the
ChemoPrint API69 and the Lilly building block collection,
which is then added to the compound listing; team members
are informed of the results by e-mail.70 This frees users of the
design software from having to open standalone CASP tools.
In addition, the use of a centralized data repository to store
ideated compounds and their routes facilitates sharing and
collaborative prioritization.
As do many companies, Merck & Co., Inc., Kenilworth, NJ,

US uses Spotfire to organize designed molecules and their
measured or predicted properties. They have initiated
incorporation of the programmatic interface of the ASKCOS
single-step retrosynthesis into a workflow to triage hits from
virtual screening libraries. The results can be presented in
many ways, but they analyze hits by availability and price of
precursors broken down by each step. This rapidly informs
chemists which target molecules may be able to be synthesized
in parallel and, with incorporation of forward scoring, allow for
consideration of which reactions may be most successful.
BASF has developed an integrated platform for linking

literature references and internal electronic lab notebooks to
the synthesis reaction template suggestions and integrated in-
house compound stock databases into the recursive path
planning to optimize usage of internal resources. Molecules
used in a proposed synthetic pathway are connected to an in-
house suite of tools for the prediction of physical and
toxicological properties enabling an in silico assessment of
reaction feasibility and safety before undertaking laboratory
work.
One could envision that programmatic interfacing could be

useful for de novo molecular generation as well. A common
complaint from chemists about de novo methods is that the
molecules are not synthetically accessible. Calculated SA scores
have the benefit of speed, but imposing a bias to generate
molecules using full recursive path planning would ensure that
routes do exist to the generated molecules. Of course, this
limits the chemical space in which the generative model will
operate, but the improvement in synthesizability may be worth
the trade-off.
Automated Synthesis Platforms. Synthesis planning is a

crucial component of a fully automated reaction platform.
Research toward automated synthesis platforms has been
restricted to a relatively small set of reactions and largely
remains in the proof-of-concept phase in both academia and
industry. Current automated platforms still require a significant
amount of human setup and planning but the process may
become more streamlined with the integration of predictive
chemistry tools. One opportunity was demonstrated using
ASKCOS synthesis planning software that was coupled to a
robotic flow synthesis platform.16 This is proof-of-principle
that machine-learning CASP tools can be useful for
recommending routes and conditions for automated execution;

however, the route and conditions suggestions still needed to
be refined (e.g., to specify concentrations and reaction times)
and were optimized offline (e.g., to be amenable for flow
chemistry) before being executed on the robotic platform. In
this case, the requirement for manual intervention is partially
attributable to the dearth of training data for flow chemistry
compared to the prevalence of batch chemistry results but
could have been circumvented by using more traditional batch
methods or parallel plate-based methods. Other options for
automated systems include a closed-loop DMTA cycle using
cyclofluidics,71−73 automated laboratories,74 and ultrahigh
throughput experimentation.75−77

Integration of retrosynthesis planning software into closed-
loop automation is currently underway at some pharmaceutical
companies. At Eli Lilly, ChemoPrint has been successfully
integrated into an automated platform for chemical synthesis.74

Lilly has previously demonstrated as a proof-of-concept that
the whole DMTA cycle can be automated and executed with
minimal intervention from expert chemists.17 At present, these
examples are limited to single-step synthetic plans and in initial
literature reports70 and did not have a large impact on driving
the project. As a proof-of-concept, this experiment demon-
strates the feasibility of coupling CASP and automation to
drive a DMTA cycle. Although closed-loop lead optimization
has not been fully implemented for multistep synthesis, rapid
progress is being made by both academic and industrial
researchers.

Adoption by Users. In 2017, a small group of chemists
surveyed at three pharmaceutical companies were asked to
define the most important features of a synthesis planning
platform to encourage adoption.13 The top 6 important
features to respondents were (1) an easy use and intuitive
interface for interaction with the routes, (2) a method to
explore the literature precedents associated with route
suggestions, (3) the user can define bonds they desire to be
broken to guide the search, (4) routes are terminated in
purchasable starting materials, (5) functional group incom-
patibilities and unstable compounds are identified with
protecting group strategies proposed to bypass these
complications, and (6) a scoring system is implemented for
ranking routes (discussed further in Establishment of Success
Metrics). In our experience, these desired data are shared by
end users at most organizations. Out of all of the important
features, many are implemented, to varying extents, in the
ASKCOS software package and many of the companies’ in-
house tools.
At AstraZeneca, historically, CASP tools have mainly been

used in pharmaceutical development to identify alternative
routes.10 However, during 2019, a customized adaption of the
ASKCOS interface has been rolled out to all medicinal
chemists. The interface includes both the models developed by
the MLPDS consortium and internally developed models
based on integrating internal ELN data with licensed and
public data.78,79 So far, the uptake of the ASKCOS tool at
AstraZeneca has been positive.
As stated previously, the users can range from nonexpert

chemists to practicing chemists. Many of the early evaluators at
companies are computational chemists and informaticians who
are deciding the correct method for integration into workflows.
Evaluation by chemists is tricky without first defining what
success and failure look like. The natural tendency of expert
synthetic chemists is to input a favorite target compound
(often a very complicated natural product) into the full
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pathway search and look for familiar routes. Users may be
dissuaded from future use of the tools if known/published
routes are not displayed or ranked near the top suggestions.
Adoption is anecdotally higher when basic training is provided
for chemists to introduce the theory behind the software and
examples of how to effectively use the different modules in
each package. Importantly, this training should convey that one
goal of data-driven programs such as ASKCOS is to go beyond
lookups of known routes; the proposed routes are predictions
based on generalizing from known reaction data. Instructions
on how the models work, what the goal of the methods are, the
model limitations, and how to change the inputs to obtain
useful information have been noted to greatly increase the
engagement of chemists. At many companies, a 1−2 h tutorial
and interactive session has been seen as sufficient to train new
users and enable them to effectively use CASP tools.

■ SECTION 3: HOW CAN WE, AS A RESEARCH
COMMUNITY, MAKE CASP BETTER?

Integration of CASP into medicinal chemistry workflows is a
work in progress but there remain many challenges to
developing and deploying machine-learning CASP tools in
practice. Adoption of synthesis planning software is gaining
momentum and is beginning to have an impact on the DMTA
cycle by facilitating the “make” portion. Although more
chemists are employing CASP tools, progress and reproduci-
bility is hampered by a number of groups who publish
advances in synthesis planning without making their code
open-source or available upon request. In addition, stand-
ardization of metrics should be agreed upon with publicly
available data sets since propriety data are usually not, or
cannot be, shared.
Establishment of Success Metrics. The most common

metric for assessing single-step retrosynthetic model perform-
ance is top-k accuracy. This metric is evaluated using a test set
of known single-step reactions and is calculated based on an
exact match of the true disconnection being in the top-k of the
predictions. Although top-1 accuracy is informative for the
model development, it is a poor metric since there are always
multiple retrosynthetic disconnections that could be success-
fully executed in the lab. Model evaluation using top-k
accuracy for small k (1−3) implies that the published method
is one of a few “correct answers”, when in reality retrosynthesis
is a fuzzier prediction. While multiple answers are not recorded
in the database, there may be many correct ground truths, so
metrics like top-10 accuracy (or larger k) are more appropriate
but can also inflate the accuracy, which might not correctly
reflect the model performance. A simple example is if a
program chose bromine and chlorine as possible leaving
groups for a simple substitution; either of these might be
successful in an experiment, depending on the attempted
reaction.
Another important but less commonly reported metric is the

diversity of predictions. From most chemists’ point of view, the
top-k accuracy may not always be the most important factor for
choosing a retrosynthesis tool. For route planning, a key
disconnection that has not been thought of yet is just as
important as the feasibility of the suggestions. There is a trade-
off when developing models for retrosynthesis, where the
suggestions have to be feasible, useful, and sometimes
nonobvious for idea generation. An example of a highly
feasible, not useful, but obvious suggestion would simple
functional group interconversions, where the complexity is not

being built (but is often seen in the historical reaction data).
Conversely, a nonfeasible, very useful, and nonobvious
suggestion would be one that suggests breaking a bond
where no known chemistry has been developed to actually
carry out the reaction. One can envision where this would be
very useful for idea generation but not practical when planning
routes where timelines are of the essence. The holy grail would
be to suggest a feasible, useful, and nonobvious disconnection,
which is a difficult task without true metrics for each of these
categories. Using top-k accuracy to score single-step
predictions allows us to achieve feasible suggestions while
employing heuristics guides the models toward usef ul
disconnections. The trade-off can only be assessed by expert
chemists who can sort through many suggestions; however,
these chemists’ scores are subjective and often biased to the
chemistries they are familiar with. The difficulty in defining
“ideal” metrics for community-wide adoption is to balance the
development of accurate models and ones that provide diverse
suggestions.
Similar to defining metrics for single-step retrosynthesis

predictions, the main obstacle in developing full path-planning
algorithms is the difficulty in assessing the predicted pathways.
Each individual retrosynthetic step can be evaluated as above,
with the efficiency of the path search as an additional criterion.
Simple metrics such as the existence of a route, the length of
the longest linear sequence, or the price of the starting
materials are sometimes are used for assessment of route
planning software but cannot fully capture the complexity of
the many desires from different types of chemists. A question
that one might ask is whether the models are able to suggest a
route that has been previously published. One would not want
only published routes to be suggested because a lookup would
be sufficient. Since there is a combinatorial space of options for
many disconnections (e.g., chloride or iodide instead of
bromide), it is not desirable to penalize route planning based
on only suggestions appearing in the literature. Another
question for path planning is whether the models are able to
suggest routes that are chemically feasible. Since scoring the
feasibility has yet to be addressed quantitatively and would
have its own errors and limitations, the evaluation of different
CASP packages, based on synthetic feasibility, is difficult.
A major requirement for path planning is the diversity of

pathways, but diversity, in terms of full pathways, remains
undefined. Route diversity depends not only on the single-step
suggestions but also on the method for navigating the full
synthetic trees. Diversity could mean the suggestion of many
routes, some of which are very similar, but among all the
pathways, there are some that employ completely different
disconnections. Similar to single-step suggestions, there is no
point to diverse route recommendations if they are not
feasible, and currently, the only true validation available is to
carry out the suggested syntheses.14,70 The final important
factor for path planning is speed. Speed is dependent on what
the stop criteria used for the search is and what one considers
to be buyable chemicals (in addition to what transformations
are allowed, of course). A trade-off between the speed and
quality of routes is often observed, but this could be tuned to
the needs of the user.
The relative importance of each of these desires is subjective

and highly dependent on the area of chemistry in which one is
operating in. Medicinal chemists might like to see routes that
share common intermediates that can be elaborated. This
delivers a common route that leads to the highest diversity of
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target molecules but might not be the optimal route to any
individual compound. On the other hand, process chemists
might want to see highly convergent routes but would like to
visualize many diverse route suggestions for ideation, as they
will have more complex considerations that are not captured
by computational models. Finally, results need to be available
quickly to provide the most value over traditional database
searching and manual path planning. Balancing the scoring of
retrosynthetic algorithms that encompass the accuracy to
assess model performance, the diversity to satisfy the
application to chemistry, and the convergency to a difficult
multiobjective optimization problem.
In their seminal publication, Segler et al. used double blind

A/B testing to evaluate whether chemists preferred published
routes over computer generated routes.15 If the participants of
A/B testing span many organizations and departments (i.e.,
process chemistry, medicinal chemistry, etc.), personal biases
may average out. This evaluation, however, does not represent
a reproducible or scalable approach to obtaining a quantitative
score.
Data, Determining Common Benchmarking, and

Evaluation Methods. Of course, machine-learning models
are thought to benefit from a higher quantity and richer data.
The mechanism that companies and universities use to capture
and report data is vital for the further advancement of data-
driven methods in synthetic planning. An example of data that
are not often recorded in databases is alternate reactions or
conditions that have been tested in route to a new compound
or natural product. A discussion about the evolution of a route
is recorded in the literature reports but does not always get
captured when being translated to database entries. This
information is highly useful for chemists to determine a
strategy in planning routes but is not captured when building
models. Another consideration is that databases that record
literature reports typically only include positive data with
higher yields. Most reaction predictors are trained on
successful reactions (USPTO and Reaxys data sets), and as a
result, they cannot predict whether a reaction will have a low
conversion. Additionally, the full characterization of side or
byproducts in reaction mixtures is not often disclosed, due to
the high time and costs associated with identifying all chemical
species. This limits our ability to construct predictive models
for reactivity. Finally, there are data that are being captured but
not reported such as unpublished catalyst screens or HTE
campaigns. However, data capture is increasingly becoming a
topic of interest at many companies, and their reporting will
hopefully make its way into the public data sets. CASP
approaches using expert-encoded rules are less sensitive to data
availability than ones using statistical learning because humans
can facilitate the generalization of small numbers of reaction
precedents to broader rules. Nevertheless, these methods
would still benefit from the availability of richer data (e.g.,
more complete substrate scope tables and byproduct
identification) because the expert that encodes the rules
would have a better understanding of the reaction.
Retraining machine-learning models on company data has

not been thoroughly investigated by all MLPDS member
companies. As discussed previously, Eli Lilly only found a
modest benefit to including USPTO with their own internal
data when training a retrosynthesis model. These results
indicate that internal reaction data sets may contain enough
representative examples of the main “workhorse” reactions80

most often used in medicinal chemistry programs. This brings

up the question: will retraining models on company data
simply give suggestions that will reinforce81 the chemistries
that are most popular? The answer depends on the chemistry
setting where a CASP tool may be employed.
In a medicinal chemistry program, where accessing a

chemical space dissimilar to current molecules is desired,
new reaction types might be essential to synthesize nontradi-
tional, increasingly complex target molecules. However, if
targets can be synthesized through robust chemistries, it is
appropriate for CASP to recommend a route with well-
established chemistry rather than a creative route with many
unknowns. Identifying routes with common chemistry also
allows medicinal chemist to more accurately predict timelines
to targets by allowing for prioritization of syntheses that can be
outsourced versus ones that will need to be executed in-house.
Nevertheless, users of CASP tools describe wanting to see
more creative recommendations, particularly those working in
process chemistry divisions. This is often because there are
more complex or subjective considerations of pathway
optimality, as discussed above, than the tools can handle. A
skilled process chemist may have already considered the
obvious disconnections from a step-efficiency perspective and
may be looking for a more process-friendly and safer
alternative.
Furthermore, if CASP tools are being used in conjunction

with automated synthesis platforms, the question of reinforcing
reactions81 may not be as important. For automated synthesis,
if a CASP system recommends simple and robust chemistries
that have been used frequently within companies, a large
burden could be taken off the chemists from having to plan or
execute simple chemistry. Even if only a small portion of
reactions in a medicinal chemistry program could be
automated, a large impact could be made on the timelines
for accessing new target molecules. This allows chemists more
time to focus on rare chemistries that are key complexity
building steps, which facilitates the expansion into new
chemical space. As new chemistries are developed, they may
be used to further train and refine the CASP models.
Different approaches to synthesis planning exist, and

comparisons between different models are not currently
standardized. Although current metrics for scoring full
synthetic pathways are imperfect, an open access shared
benchmarking platform or data set(s) need to be developed so
researchers can compare retrosynthetic software and algo-
rithms. Providing a common test set for investigators to
benchmark their systems is a nontrivial task. As the field
progresses, molecules provided for a test set will have to
evolve, because over time, they will be included in databases
for training. The underlying distribution of training data
evolves with time as well, so it would be likely that the metrics
for a common test set on newer models look better due to a
higher representation of new reactions and structures in the
training data. Additionally, it would be even better to also
provide an open data set for training such that the training and
test set will be common for every data-driven model that is
published. Benchmarking retrosynthetic software is also
complicated by the fact that some systems incorporate
expert-encoded rules in their algorithms. This means that
there is likely an overlap between these coded rules with a test
set, whereas pure data-driven methods have a clear separation
between the training and test data.82 Even with better or more
standardized metrics, chemists ultimately will use a program
that fits their definition of useful within the scope of chemistry
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that they are operating and proves its utility by suggesting
routes that are successful in the lab.
Additional Opportunities for CASP. Although discus-

sion has focused on the difficulty of evaluating and
benchmarking current synthesis planning tools, advances in
many other predictive tasks may have a large impact on
medicinal chemistry synthesis workflows. For instance,
condition recommendation systems generally focus on
predicting known reagent(s) in known or possibly unique
combinations. Data for catalytic reactions are very limited in
that there are often a lower number of distinct catalysts/ligands
proven to be successful. Improvement in machine-learning
models will be necessary to handle the many low-data
environments that exist in drug discovery. One can envision
principles similar to de novo molecular design being applied to
the generation of unique catalysts/ligands structures, which
might raise the probability of success for a given trans-
formation. Advances for the design of large catalytic systems in
materials science83−85 have already been reported but less have
been disclosed in catalysis for the synthesis of small molecule
organic compounds. The chemical space of catalytic reactions
is often very constrained (in terms of starting materials and
reagents), which poses a problem for the generation of data
sets that are useful for molecular generation. As with many
prediction tasks in medicinal chemistry, the further develop-
ment of models that can learn from small, constrained data sets
is crucial and will likely require new input representations to
capture a richer description of the molecular structure.
Additional opportunities exist for the prediction of ligands in
stereoselective reactions but will require the development of
new 3D representations. The final complicating factor to de
novo design of catalysts/ligands is that often the synthesis and
characterization of new catalysts/ligands can consume a
significant amount of time. The addition of a multistep
synthesis simply for a catalyst/ligand would be prohibitive in
most medicinal chemistry programs but may be of interest to
academic chemists or process chemists who are highly focused
on optimizing each step of the reaction sequence.
A time-consuming step for all synthetic organic research is

the characterization of products and side products and the
unequivocal assignment of final target molecule structure.
Incorrect assignment of target structures can lead to incorrect
data for further structure/activity optimization and can even
result in patent disputes.86 A naiv̈e approach for structural
assignment would be to use forward-prediction models to
identify possible side products in a reaction. These predictions
could be verified with mass spectrometry (MS) or IR to
confirm side products in a reaction mixture. However, this
method would not be able to distinguish between constitu-
tional isomeric or diastereomeric compounds, which limits its
use to reactions that give well-defined isomeric products.
Standardized data that are required to elucidate small molecule
organic structures and are required for publication include MS,
1H NMR, and 13C NMR and can often require further
experiments using 2-dimentional NMR experiments or other
NMR active nuclei. When all these data are combined, the
structural features can be determined, and it is feasible to train
models to predict structures from their spectra. Learning
complex nonlinear patterns between the different pieces of
data is a perfect application for machine learning. However,
data sets containing all these experiments are rare. The less
common analytical methods (e.g., 2D NMR) tend to be more
useful for structural determination. Models could conceivably

be trained on data sets where each compound does not have
every data point necessary, and the model could learn to use
the higher quality data when needed.
Finally, this discussion of outlooks, standardization of data

and models, and dissemination of code can have a large impact
on the full pipeline working toward fully autonomous
synthesis. A recent review points out many areas where
improvement is needed to realize autonomous chemical
synthesis both in terms of data/software and hardware.87

Among these, the development of data-efficient and interpret-
able models are discussed. Interpretability of models is
important to many users because they want to understand
why a machine-learning model makes certain predictions. With
the multitude of data that could be generated by automated
experimentation, the ability to use that data to build predictive
models with a low computational overhead and a short time to
produce results will enable constructing rounds of experiments
that most efficiently reach the goal. Another consideration that
is important for machine learning in synthesis planning and
automated experimentation is the improvement of uncertainty
estimation, particularly in the low-data regime. Improved
uncertainty estimates in active learning will produce richer
experiments that will reduce time and cost. Finally, evaluation
metrics that are specific to the goals of automated synthesis
need to be established and standardized, which can focus on
molecular targets that test the ability of the models and
hardware to reach a new chemical space.

■ CONCLUSION

The integration of machine-learning models for predictive
chemistry into the DMTA cycle is currently underway at
companies within and beyond the MLPDS consortium.
Companies have begun integration of ASKCOS (and
independently developed CASP platforms) in workflows, and
computational developers are working closely with synthetic
chemists to find the emerging areas where new research will
have the greatest impact. For the pace of machine-learning-
based CASP research to accelerate, standardized metrics and
shared data sets need to be established with a common
benchmarking scheme. Fundamental advances to representa-
tion, robustness in low-data scenarios, and generalizability will
be important for more robust machine-learning-based
synthetic tools. Further research into hybrid machine learning
and expert-encoded CASP82 tools may be able to leverage the
most useful aspects of each approach. The impact of machine-
learning-based predictive chemistry is already being observed
at some companies, and adoption by chemists is on the rise.
Many of the current CASP tools are developed for planning

routes using robust reproducible chemistry. The aim of these
tools is not to suggest only transformations that an experienced
chemist could not identify. Rather, particularly with the current
machine-learning-based CASP tools, their aim is to enable
chemists to lighten the cognitive burden of synthesis planning.
If chemists within an organization can each offload planning
“easy” routes to computers, even for a relatively small fraction
(e.g., 10%) of targets, there is the potential for significant total
time savings. With the continued development of machine-
learning models for synthesis planning and an increase in
chemists’ acceptance of using CASP to lighten their workload,
the tools will be improved to fit the needs of different fields of
chemistry and to handle synthetic challenges of increasing
complexity.
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