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Abstract: A G-quadruplex (G4) is a well-known nucleic acid secondary structure comprising
guanine-rich sequences, and has profound implications for various pharmacological and biological
events, including cancers. Therefore, ligands interacting with G4s have attracted great attention
as potential anticancer therapies or in molecular probe applications. To date, a large variety of
DNA/RNA G4 ligands have been developed by a number of laboratories. As protein-targeting drugs
face similar situations, G-quadruplex-interacting drugs displayed low selectivity to the targeted
G-quadruplex structure. This low selectivity could cause unexpected effects that are usually reasons
to halt the drug development process. In this review, we address the recent research on synthetic G4
DNA-interacting ligands that allow targeting of selected G4s as an approach toward the discovery of
highly effective anticancer drugs.
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1. Introduction

A G-quadruplex (G4) is an alternative form of DNA or RNA comprising several planar layers
of four guanines (G-tetrads) held together via Hoogsteen hydrogen bonding (Figure 1) [1–5]. The
G4 DNA has long been studied from various aspects and is now considered to be an important
player in biological and biomedical events, including the control of promoter activity [6–9], genome
instability [10–13], benchmarks for specified chromatin remodeling and replication [14,15], and
epigenetic alterations [16,17]. The sequences, 5′-G≥3N1–7G≥3N1–7G≥3N1–7G≥3-3′, are advocated
as consensus sequences that have the ability to form intramolecular G4s [18,19], although several
exceptions have been reported at the present time [20–24]. Extensive physical characterizations of
the G4 structure by means of a series of assays based on UV and CD spectroscopy have clearly
demonstrated that the structure has extremely high stability when possessing one or two nucleotide(s)
between the G-tracts (Tm = ca. 70 ~ 90 ◦C) [25]. In parallel, a large number of defined G4 structures
were elucidated at the atomic level using nuclear magnetic resonance (NMR) spectroscopy and X-ray
crystallography, opening a new avenue for the rational design of G4 ligands [26–34]. Such high thermal
stability and availability of defined structures allow us to develop applications in the field of DNA
nanotechnology [35], as well as biological and biomedical studies.

In particular, given the characteristic human genome sequence of telomere (TTAGGG)n that is
located at the end of chromosomes and in a single-stranded context, the formation of G4 structures
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in this region is first assumed in the human genome [36,37]. Abundant evidence has accumulated
during the past two decades that the G4 structure is truly formed in the telomere region and has an
important role in telomere-end processing in cells [38]. More importantly, stabilization of telomere G4s
and blockage of telomerase activities by small molecules, exemplified by telomestatin, has been shown
to be a new strategy for antitumor therapy [39,40].
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solution structure of hybrid type telomere G4 (PDB code: 2gku). The figures were adapted with 
permission from Reference 56. PDB; Protein Data Bank. 

G4-forming sequences observed in the promoter of cancer-related genes have also received a 
great deal of attention as potential biomedical targets for antitumor therapy [8]. Quarfloxin, a ligand 
that interacts with G4, had completed Phase II trials as a candidate therapeutic agent against several 
tumors, including neuroendocrine tumors, carcinoid tumors, and lymphoma [41]. It is considered 
that quarfloxin disrupts the G4–nucleolin complexes of ribosomal DNA in the nucleolus, which in 
turn redistributes nucleolin into the nucleoplasm, where it binds to a G4 in the promoter region of 
the c-MYC proto-oncogene to inhibit its gene expression [8]. The Phase III trials for quarfloxin are 
currently not proceeding due to high albumin binding [42]. In addition to this report, other tumor-
related genes, including hTERT [43], c-kit [44], KRAS [45,46], BCL2 [47], and VEGF [48], were 
identified as genes in which the formation of a G4 was involved in transcriptional regulation, and its 
stabilization by small molecules attenuated promoter activity, eventually inducing tumor apoptosis. 

Relatively recent studies revealed that G4 also had an impact on differentiation- and neuron-
related genes [20]. For instance, OCT4 expression may be governed, to some degree, by G4 formation 
at the proximal promoter in human embryonic stem cells (CCTL14) [49], whereas the excessive 
formation of repetitive G4 structures on an expandable (GGGGCC)n in C9orf72 gene or (CGG)n in 
FMR1 gene accounts for some neurogenetic disorders [50]. On the contrary, G4 can act positively in 
neurons, where G4 structures at the CpG island located in xl3b are recognized by ATRX, contributing 
to appropriate synaptic function [51]. 

Extensive studies of G4s and ligands that interact with them lead investigators to believe in the 
notion that G4s are able to widely form in guanine-rich regions of the genome [52], in the context of 
cellular dynamics as exemplified by transcription, duplication, and DNA repair processes, in which 
DNA strands are transiently dissociated to generate flexible DNA single strands. Although numerous 
investigators have made tremendous efforts to obtain highly active G4 ligands, and some of them 
have attained great success in the development of drugs in vivo [53–56]; however, these drugs are 
still only midway towards approval for clinical use. 

One conceivable obstacle impeding the clinical application of G4-interacting molecules seems to 
rest with selectivity, although the global or multiple G4 targeting approaches may be effective [57–
61], and in fact, CX-5461, a DNA G4 stabilizer, is currently at advanced phase I clinical trials for 
patients with BRCA1/2 deficient tumors [57,58]. Bioinformatics and next-generation sequencing 
(NGS) analysis estimated that 376,000 or more putative G4-forming sequences exist in the human 
genome [18,62]. A growing number of G4-driven genes have also been reported, suggesting the high 
importance of the expanded variety of G4-interacting ligands that possess differential binding 

Figure 1. (a) Structure and schematic illustration of a G-tetrad. (b) Schematic illustrations of typical
intramolecular G-quadruplex (G4) structures: (left) crystal structure of parallel type telomere G4 (PDB
code: 1kf1); (center) solution structure of antiparallel type telomere G4 (PDB code: 143d); (right)
solution structure of hybrid type telomere G4 (PDB code: 2gku). The figures were adapted with
permission from Reference 56. PDB; Protein Data Bank.

G4-forming sequences observed in the promoter of cancer-related genes have also received a
great deal of attention as potential biomedical targets for antitumor therapy [8]. Quarfloxin, a ligand
that interacts with G4, had completed Phase II trials as a candidate therapeutic agent against several
tumors, including neuroendocrine tumors, carcinoid tumors, and lymphoma [41]. It is considered
that quarfloxin disrupts the G4–nucleolin complexes of ribosomal DNA in the nucleolus, which in
turn redistributes nucleolin into the nucleoplasm, where it binds to a G4 in the promoter region of the
c-MYC proto-oncogene to inhibit its gene expression [8]. The Phase III trials for quarfloxin are currently
not proceeding due to high albumin binding [42]. In addition to this report, other tumor-related genes,
including hTERT [43], c-kit [44], KRAS [45,46], BCL2 [47], and VEGF [48], were identified as genes in
which the formation of a G4 was involved in transcriptional regulation, and its stabilization by small
molecules attenuated promoter activity, eventually inducing tumor apoptosis.

Relatively recent studies revealed that G4 also had an impact on differentiation- and
neuron-related genes [20]. For instance, OCT4 expression may be governed, to some degree, by
G4 formation at the proximal promoter in human embryonic stem cells (CCTL14) [49], whereas the
excessive formation of repetitive G4 structures on an expandable (GGGGCC)n in C9orf72 gene or
(CGG)n in FMR1 gene accounts for some neurogenetic disorders [50]. On the contrary, G4 can act
positively in neurons, where G4 structures at the CpG island located in xl3b are recognized by ATRX,
contributing to appropriate synaptic function [51].

Extensive studies of G4s and ligands that interact with them lead investigators to believe in the
notion that G4s are able to widely form in guanine-rich regions of the genome [52], in the context of
cellular dynamics as exemplified by transcription, duplication, and DNA repair processes, in which
DNA strands are transiently dissociated to generate flexible DNA single strands. Although numerous
investigators have made tremendous efforts to obtain highly active G4 ligands, and some of them have
attained great success in the development of drugs in vivo [53–56]; however, these drugs are still only
midway towards approval for clinical use.

One conceivable obstacle impeding the clinical application of G4-interacting molecules seems to
rest with selectivity, although the global or multiple G4 targeting approaches may be effective [57–61],



Molecules 2019, 24, 429 3 of 29

and in fact, CX-5461, a DNA G4 stabilizer, is currently at advanced phase I clinical trials for patients
with BRCA1/2 deficient tumors [57,58]. Bioinformatics and next-generation sequencing (NGS) analysis
estimated that 376,000 or more putative G4-forming sequences exist in the human genome [18,62].
A growing number of G4-driven genes have also been reported, suggesting the high importance of
the expanded variety of G4-interacting ligands that possess differential binding profiles [8,53–56].
However, poor ligand designability arising from the topological similarity of the skeleton of diverse G4s
has remained a bottleneck for obtaining specificity toward individual G4s. Very recently, investigators
have entered a new phase of the development of next-generation ligands that interact with G4, in
which they consider the ligand selectivity to a particular G4 to be targeted, potentially leading to
the development of molecules with high antitumor activity and bioactivity with minimal antitumor
therapy side effects [56]. In this review, we address the recent research progress toward developing
G4-interacting molecules that exhibit antitumor activities by affecting a particular cancer-related gene
with reduced off-target effects that likely rely on a clear selectivity for targeted G4s.

2. Global G-Quadruplex-Selective Ligands

Since G4-interacting molecules were developed based on duplex DNA-binding molecules,
investigators have initially endeavored to develop G4 ligands that have a clear selectivity for
G4 structures over the duplex DNA [63–65]. Molecules interacting with telomere G4s, the
2,6-diamidoanthraquinone derivatives, were first found to act as telomerase inhibitors by Neidle
and Hurley and their group [36]. The cationic porphyrin, TMPyP4, whose planar skeleton and cationic
propensity would facilitate G4 binding, was also identified as a G4 binder [66]. Telomestatin, a
macrocycle naturally occurring in Streptomyces annulatus, was found to exhibit telomerase-inhibiting
activity by binding to telomeric G4 structures, causing telomere dysfunction, including telomere
length shortening and delocalization of telomere-related proteins [39,40]. That discovery was
noteworthy in that it suggested the existence of G4s in vivo. These pioneering works accelerated
the development of G4-selective synthetic molecules, along with the advance in rigid methods and
techniques to characterize the binding profiles of such G4 ligands [21b]. In fact, several commercially
available G4 ligands, such as BRACO19 [67], pyridostatin [68], Phen-DC3 [69], L2H2-6OTD [70], and
L1H1-7OTD [71], all of which have negligible binding affinities to duplex DNAs, are indispensable to
biochemical, biophysical, and chemical biology studies of G4s.

3. Cancer-Related G-Quadruplexes and Their Interacting Molecules

3.1. Telomere

A telomere is a structure of the ends of a chromosome, in which a repeated microsatellite sequence
and its various related proteins (called a shelterin complex), including POT1 and TRF2, which are
necessary for telomere maintenance, protect the telomeric DNA from DNA repair mechanisms, and
also regulates telomerase activity in mammals [72]. The human telomere region comprises a single
microsatellite repeat sequence, (GGGTTA)n, with a 3′ overhang at its terminus (200 ± 75 nucleotides).
The length of the telomere sequence gradually shortens along with DNA replication, which limits cell
growth and proliferation. The G4 structures observed in this region initially received great attention
because a single-stranded background offers a greater likelihood of G4 formation. Interestingly, ATRX,
POT1, TPP1, and other G4-binding proteins function in the telomere processing-like recruitment of
a specific protein in a G4-involved manner, whereas varied G4 helicases, including Pif1 and BLM,
act to unwind the telomere G4 structures to maintain the shelterin complex [54,73]. Furthermore,
because telomerase, a protein complex for elongating the telomere sequences, is highly expressed in
many tumor cells, and the abnormal processing of the telomere 3′ overhang region may confer cellular
immortality, a telomere G4 could be thought of as a potential biomedical target for small molecules
that inhibit telomerase activity in telomerase-positive tumor cells [36,37,39,40,74].
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The 2,6-diamidoanthraquinone derivatives and Telomestatin were found to be telomerase
inhibitors through their binding to telomere G4s at an early stage of G4-interacting ligand
studies [36,39,40]. RHPS4 was also shown to induce telomere dysfunction by disturbing the integrity
of the shelterin complex in mammalian cancer cells [38]. Later relevant studies found that a large
variety of alternative higher-order structures derived from the canonical telomere G4 might be adopted
at the 3′ overhang region [20,21,75,76]. Those structures and their specific motifs are amenable to a
gain of specificity for telomere G4s [56] (Figure 2a).Molecules 2019, 23, x FOR PEER REVIEW  5 of 29 
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Figure 2. Selective telomere G4 targeting by ligands. (a) Telomere G-stretch sequences potentially adopt
non-canonical G4s that offer specific binding motifs. (b) Several telomere G4-preferred binders based
on the specific-motif recognition. It is worth noting that the by Ni-M and IZNP1 exhibit differential
antitumor activities, likely based on the specific-motif recognition of telomere G4s. (c) EPI and the
solution structure of the EPI-wtTel26 complex (PDB code: 6ccw). The bases that do not participate in
the interaction event with EPI are omitted for clarity. Figure 2a,c were adapted with permission from
References 56 and 86, respectively.

Dimeric G4 ligands target dimeric G4s. Tandemly aligned G4 ligands permit the favorable
discrimination of a dimeric G4 from one that is monomeric. The dinickel salophen dimer [77], berberine
dimer [78], and telomestatin derivative tetramer [79] are examples of such ligands that discriminate G4s
successfully (Figure 2b). Binding to the side faces of dimeric G4s confers a preference for multimeric
G4s over one that is monomeric, as exemplified by m-TMPipEOPP (Figure 2b) [80]. By contrast,
chiral helical supramolecules, Ni-M, exhibit a binding preference for dimers over monomers, with a
200-fold selectivity, probably because two consecutive G4s offer a preferred binding site (Figure 2b) [81].
Conversely, another enantiomer, Ni-P, is capable of converting a monomeric antiparallel form to a
monomeric hybrid form [82]. It is noteworthy that these two enantiomers display different abilities
to affect telomere dysfunction in vivo; NiP, rather than NiM, preferentially inhibits cell growth in
breast CSCs compared with bulk cancer cells. This inhibition relies on telomere uncapping with the
delocalization of TRF2 and POT1 from telomeres, telomere DNA damage, and degradation of the
3′-overhang by G4-mediated binding of NiP [83].

The junction pocket between two G4 units also serves as a target for specific recognition. In
early studies of selective G4-interacting ligands, our group proposed the possibility that a chiral
helical molecule, helicene M1, allowed for the targeting of the junction cavity between two G4 units
(Figure 2b) [84]. A triaryl-substituted imidazole molecule, IZNP1, was shown to be correctly positioned
into the junction by molecular modeling and to exhibit a reduced binding affinity for TERRA multimeric
RNA G4s (Figure 2b) [85]. Notably, this structure specificity was biologically validated, where IZNP1
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caused telomeric DNA damage and telomere dysfunction without affecting several well-studied
oncogenes that have monomeric G4s in their promoter regions.

Most recently, Yang and colleagues reported that a berberine derivative, EPI, discriminates a
hybrid type 2 telomere G4 structure formed by a wtTel26 sequence 5′-(TTAGGG)4TT-3′ from the
other adoptable topologies and promoter G4s (c-MYC, BCL2, and PDGFR), as elucidated by an NMR
structural analysis (Figure 2c) [86]. In addition, EPI has the ability to convert the other conformations
of the telomere G4 hybrid type 1, and antiparallel (basket type) G4s into the type 2 hybrid. Such an
unprecedented propensity and selectivity relies on the stacking onto the terminal G-quartet hydrogen
bonding formation with the flanking base, and the creation of a binding pocket by adaptively forming
a TTA triad above the ligand. In this study, the biological impact of EPI on telomere function, including
telomerase inhibition and delocalization of telomere-related proteins in cells, was not examined.
However, it is conceived as that a 5′-flanking element observed in the genome context would likely
serve as an adaptive and selective binding site of EPI to the telomere region, resulting in highly
disruptive activity to telomere function with minimal side effects.

A long-loop DNA sequence arranged by a monomeric G4 was also amenable to molecular
recognition by hybridization of the complementary strand, which was demonstrated by an atomic-level
NMR analysis [20]. In particular, hybrid molecules constructed with a complementary sequence and a
G4-interacting ligand would in future be added as candidates for selective recognition of telomere G4s.

3.2. c-MYC

c-MYC encodes a multifunctional transcription factor that can act as a transcription activator
of some genes involved in cell proliferation, while acting as a transcription repressor of other genes
involved in growth arrest [87,88]. There are a broad variety of c-MYC-responsive genes that engage
in important cellular functions in concert, such as cell proliferation, metabolic transformation, and
metastatic capacity [89]. In tumor cells, c-MYC protein function is almost always activated primarily
through upstream oncogenic pathways. As the overexpression of the c-MYC is served in various
human malignancies (particularly in 80% of solid tumors), downregulation of the gene is an effective
approach to cancer therapy [87,88]. However, the c-MYC protein is generally considered to be an
undruggable target by small molecules owing to its short half-life, large dimension, and unstructured
nature [8].

The c-MYC promoter region contains the nuclease hypersensitive element (NHE) III1, which
is located −142 to −115 base pairs upstream of the P1 promoter (Figure 3a). There is one putative
G4-forming sequence (PQS) in this element, which is capable of forming a nonduplex species, possibly
accompanied by local unwinding or melting of the duplex structure under the influence of negative
supercoiling stress [90–92]. Structural dynamics in this region have also been considered to be a possible
key mechanism in certain carcinomas, largely to govern c-MYC transcription, and the formation of a
G4 is likely to act as a downregulator. Hence, G4-interacting ligands may contribute to suppression
of downstream c-MYC expression by ligand-mediated G4 stabilization [7]. In this context, c-MYC
targeting G4-interacting ligands have been studied during the past two decades with an aim toward
drug applications for antitumor therapy.

An exon-specific RT-qPCR assay using two pairs of Burkitt’s lymphoma cell lines (CA46 and
RAJI), devised by Brooks group, allowed us to evaluate whether G4 ligands directly act for c-MYC
G4 or not in cells [93,94]. This assay relies on the unique reciprocal translocation of c-MYC gene locus
in the two cell lines by the translocation in CA46, where exon 1 is separated from exons 2 and 3; the
G4-driven transcriptional activity was only maintained for exon 1, whereas these three exons and the
PQS remained in tandem after the translocation in RAJI. That is why the use of primers specific for the
exons 1 and 2 in a qPCR permits the demonstration of the c-MYC G4-mediated control by G4 ligands
in the cellular context. In fact, a G4-interacting ligand, GQC-05 (NSC338258), was shown to directly
suppress gene expression in a c-MYC G4-mediated manner using this assay [93]. This system is now a
standard method for studying the intracellular activities of the c-MYC G4 targeting small molecules.
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Recently, G4-interacting ligands that have a clear selectivity for c-MYC G4 were reported, and
some of these proved to have effective antitumor activities, probably by reducing off-target effects as
seen in biological experiments.

Sequence-selective recognition of duplex DNAs adjacent to an intended G4 serves to gain
specificity in the genomic context. Our group has developed hybrid molecules, where a cIKP
as a G4-binding motif is covalently linked to a sequence-selective duplex-binding molecule,
pyrrole-imidazole polyamide (PIP) [95]. These hybrid molecules display simultaneous and synergistic
recognition of both the c-MYC G4 and its proximal duplex (Figure 3b). Among these, hybrid 3 exhibits
a 4.6-fold selectivity for a G4/duplex substrate that was predicted to be the most likely off target
(KD = 3.7 × 10−9 versus 17 × 10−9 M) [95]. The PIP part of the hybrid molecules accounts for their
selectivity—PIPs are able to recognize a G/C base pair by antiparallel pairing of an imidazole/pyrrole
moiety and an A/T or a T/A base pair by antiparallel pairing of a P/P pair. A β-alanine/β-alanine pair
reads an A/T or a T/A base pair in a way similar to a P/P pair [96]. This ligand-design methodology
is, in theory, applicable to the selective targeting of a broad variety of designated G4s in the genome.

Dash and colleagues reported that a crescent-shaped thiazole peptide, TH3, preferentially
stabilized c-MYC G4 over G4s in other promoters (c-kit 1, c-kit 2, and BCL2) and duplex DNA
(Figure 3b) [97]. The binding preference was confirmed by KD values calculated using fluorimetric
titration assays, in which TH3 showed four- to fivefold higher binding affinity to c-MYC G4
(KD ~ 0.3 µM). Importantly, the preference in vitro was confirmed biologically. Western blotting,
qRT-PCR, and luciferase reporter assays using cancer cell lines (HeLa and A549) revealed that TH3
is able to repress the transcription of c-MYC at a protein level without affecting BCL2 expression,
suggesting the preferential recognition and stabilization of the c-MYC G4 by TH3. Such preferential
targeting by TH3 might result in selective antiproliferative effects against the cancer cells over normal
human cells (NKE). Molecular insight from an NMR analysis suggested that TH3 interacted with an
AT-rich capping structure at both 5′ and 3′ ends that was unique to the c-MYC G4 structure.

Tan and colleagues developed a new four-leaf-clover-like molecule, IZCZ-3, that preferentially
binds to, and stabilizes, c-MYC G4 (Figure 3b) [98]. This compound is a conjugate of diaryl-substituted
imidazole with a carbazole moiety. Previously, a triaryl-substituted imidazole unit was shown to be
a G4-selective ligand, and its derivatives were shown to be distinct probes that were able to discern
different G4s, while the carbazole moiety and its derivatives showed significant binding affinities
toward the c-MYC G4 [98–101]. By combining these features, these investigators expected that the
conjugation of a triaryl-substituted imidazole scaffold with a carbazole moiety might be a suitable
way to create c-MYC G4 ligands with high affinity and selectivity. Among the conjugates designed,
IZCZ-3 was found to have about eightfold preference for the c-MYC G4 (KD ~ 0.1 µM) over the G4s
in the promoters for other genes (VEGF, BCL2, c-kit1, and KRAS), as demonstrated by fluorescence
titration experiments. They further confirmed its biological activities extensively using western
blotting, exon-specific RT-qPCR [93,94], and a luciferase reporter assay, demonstrating that IZCZ-3
was able to repress the expression of c-MYC at the protein level in a c-MYC G4-mediated manner. More
importantly, this ligand showed cytotoxicity against cancer cell lines overexpressing c-MYC but not
against human normal cells or primary mouse cells, suggesting reduced side effects based on the G4
selectivity. The investigators confirmed that the cytotoxicity induced by IZCZ-3 likely originated from
the downregulation of c-MYC expression by checking the expression of certain cell cycles and apoptosis
regulators associated with c-MYC. Moreover, the antitumor activity of this molecule was demonstrated
in vivo using xenograft mouse models, showing an inhibition of the tumor growth similar to an
anticancer drug, doxorubicin. Collectively, IZCZ-3 showed a high affinity and discriminating capability
for c-MYC distinct from other parallel G4s, as well as antiparallel or hybrid G4s, whose differential
binding profile conferred a selective inhibitory ability against c-MYC-driven tumors.

A new approach, using a small molecule microarray screen of 20,000 compounds using
fluorescently labeled c-MYC G4 DNA, successfully identified a c-MYC G4-selective ligand
(Figure 3b) [102]. The direct interaction between c-MYC G4 and its G4-meditated influence over
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DNA replication was validated by an SPR-binding assay and a PCR stop assay. Importantly, the ligand
inhibited c-MYC transcription and reduced cell viability in a panel of myeloma cell lines, whereas
it exhibited minimal effects for a cell that harbors a c-MYC translocation, deleting the G4-forming
element in the promoter and normal blood mononucleocytes. Furthermore, gene expression analysis
and RT-qPCR demonstrated that the ligand did not change other G4-driven gene expression, including
genes for BCL2, KRAS, HIFA, VEGF, and, Rb1, indicative of excellent selectivity. Similarly, another
screening approach permitted the selection of a c-MYC-G4-interacting ligand [103]. Although the
detailed selectivity to c-MYC G4 over the others was not mentioned in the report, the identified
compound (Tz 1) allowed for an excellent repression of c-MYC at low micromolar concentrations in
cultures of colorectal carcinoma (HCT116) cells, and the G4-mediated action was biologically validated
by an exon-specific RT-qPCR assay [93,94] in Burkitt’s lymphoma (CA46) cells (Figure 3b).
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and N-methylimidazole is highlighted in red. Antitumor activities of TH3, IZCZ-3, benzofuran
derivative, and Tz 1 are summarized in Table 1.

3.3. VEGF

Tumor progression and metastasis render the tumors more mature and malignant than
undeveloped neoplasms, eventually resulting in deterioration and immortality. Overexpressed VEGF
(Vascular Endothelial Growth Factor) proteins, including VEGFA, VEGFB, VEGFC, VEGFD, VEGFE,
and PIGF in tumor cells, are responsible for induced neovascularization. The expression of human
VEGF, which is frequently elevated in many types of cancers, is regulated mainly at the transcriptional
level [104,105]. In a reporter assay system using several cancer cell lines, regulation of VEGF was
regulated basically by a sequence from –85 to –50 relative to the transcription start site containing five
arrays of more than three consecutive G-tracts, which are likely to adopt the G4 form of DNAs [106,107].
VEGF is an attractive target molecule for malignant tumor therapy, and antibody drugs targeting it
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have been approved for solid tumor treatment [108,109]. Interestingly, VEGF has a promoter region,
in which the G4-forming sequences are located [48]. The sequences are also consensus sequences for
transcription factors, such as Egr-1 and Sp1, suggesting that the dynamic equilibrium of DNA forms in
this region regulate VEGF expression (Figure 4a) [106,107]. In addition, hormone response element
(HRE, 5′-ATACGTG-3′), situated 969~975 nucleotides upstream of the transcription start site, also
regulate the transcription of VEGF gene (Figure 4a), and pyrrole-imidazole polyamides (PIPs) targeted
to this element were shown to repress the VEGF gene expression by interfering with the binding of
HRE-binding transcription factor (HIF-α) [110].

Initially, the interaction of TMPyP4 and telomestatin with G4 oligonucleotides was proven to
unwind the duplex DNA oligomer into an ssDNA oligomer and to stabilize the G4 structure [48], and
Se2SAP, a global G4-interacting ligand, efficiently suppressed VEGF expression in two adenocarcinoma
cell lines (HEC1A and MDA-MB-231) [111]. These data offer the possibility that the transcription
regulation of VEGF is controllable by ligand-mediated G4 stabilization and led to the application
of G4-interacting ligands for cancer therapy. Similarly, a perylene monoimide derivative, PM2, was
found to be a VEGF downregulator, likely by direct interaction with the G4 structure [112] (Figure 4b).
A quindoline derivative, SYUIQ-FM05, also demonstrated strong interactions with a VEGF G4 and
exhibited potential antiangiogenic and antitumor activities [113] (Figure 4b). On the basis of these
successful studies, several VEGF G4-preferred ligands have been developed through low-volume
screening by means of docking and spectroscopic approaches [114,115]. Biological activities of these
ligands have not been examined thus far, and therefore we await a future study for their determination.
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3.4. BCL2

BCL2 gene is recognized as an apoptosis-related gene whose translated product resides on
the cytoplasmic face of the mitochondrial outer membrane and acts to suppress the movability of
apoptosis-induced proteins by controlling mitochondrial membrane permeability [116]. Overexpressed
BCL2 is associated with aberrant carcinoma growth in various human diseases, particularly with
solid tumors, such as lymphomas, non-small-cell lung cancer, myeloma, and melanoma, having been
recognized as targets for cancer therapy in the past three decades [117]. Several approaches have
been made to downregulate the BCL2 expression in cancer cells toward cancer therapy, including
using small molecules to disrupt protein–protein interactions [118], antisense oligonucleotides [119],
and peptidomimetics [120]. Overexpression of BCL2 is also indicated to be a principal element of
chemoresistance, particularly for lymphocytic cancers [121,122]. For instance, transfection of BCL2
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into A549 cells induced a resistance to the apoptotic effect triggered by triazine derivative 12459,
a G4-interacting ligand that inhibits telomerase activity [123]. As another approach, the molecular
decay effect by the guanine-rich AS1411 aptamer that can be stably folded into a G4 structure causes
the destabilization of BCL2 mRNA and degradation with RNase by interfering with the binding of
nucleolin to the AU-rich element of BCL2 mRNA, eventually inducing apoptosis [124]. This approach
is reminiscent of the involvement of G4 formation in gene expression.

Amplification and translocation of BCL2 genes are shown to be equally common mechanisms
that cause its overexpression in human cancer cells [125]. The human gene for BCL2 includes P1
and P2 promoters and has multiple transcription start sites (Figure 5a). The major transcription
regulation is less driven by a TATA-box in promoter 2, while the P1 promoter that is situated 1386–1423
nucleotides upstream of the translation start site has been largely implicated in the control of BCL2
transcription [126,127]. The GC-rich element exists 1490–1451 nucleotides upstream of the P1 promoter,
where multiple transcription factors have been said to be implicated in BCL2 gene expression, including
Sp1 [126], WT1 [128], E2F [129], and NGF [130]. The multiple G4 structures in this region were
well elucidated by Hurley and Yang [47,131,132]. The regulatory effect of the G4s was suggested
by luciferase reporter assays, in which mutation or deletion of this region resulted in an increase
in promoter activity in B lymphocytes (DHL-4) [127] or human promyelocytic leukemia (HL-60)
cells [133]. More recently, Onel, Yang, and coworkers demonstrated by a luciferase reporter assay using
BCL2 promoter and mutated sequences that the formation of another G4 situated almost on the upper
region of the P1 promoter attenuated the promoter activity (Figure 5a) [134]. Based on these studies,
an approach to stabilizing the G4s formed in the regulatory element and attenuating the promoter
activity by ligands has also been studied for cancer therapy, similar to the small molecule targeting of
c-MYC G4.

Proof-of-concept studies were performed by Huang, Gu, and colleagues, in which SYUIQ-FM05,
as mentioned in the last section, was able to repress BCL2 transcription with a negligible influence
on the case, using a promoter mutated to abolish its ability to form G4 in a reporter assay [133].
Moreover, these investigators demonstrated that the ligands induced apoptosis of HL-60 cells. Very
recently, furo[2,3-d]pyridazin-4(5H)-one derivatives were screened as a new class of G4-interacting
ligands for BCL2-targeted therapeutics, and two hit compounds identified were found to bind to
BCL2 G4 structures with clear preferences over c-kit, c-MYC, and telomere G4s, as well as dsDNA
(Figure 5b) [135]. Importantly, one of the two compounds repressed BCL2 expression, showing a
remarkable cytotoxicity to Jurkat (human acute T cell leukemia) cell lines. Additionally, we introduce
a probe preferentially targeting BCL2 G4, carbazole TO, whose fluorescence intensity is more greatly
enhanced in the presence of BCL2 G4 than it is in the presence of G4s of other promoters, telomere
G4, ssDNA, and dsDNA (by approximately 2.6–19 fold) (Figure 5b) [136]. Such a ligand having
excellent selectivity to a particular G4 may be applicable to a potent facile light-up probe for BCL2 G4
in admixture contexts, such as cellular environments in diagnostics, therapeutics, and biosensors.

In a different way, invading PNA to directly hybridize the cytosine-rich strand and to indirectly
stabilize the BCL2 G4 facilitates G4 formation [137]. This would be a versatile way to target and
stabilize a particular G4.

In addition to the G4s, the i-motif, another form of DNA that forms in cytosine-rich sequences, is
involved in transcriptional regulation, in which the binding of hnRNP LL to the i-motif structure likely
activates BCL2 gene expression [138,139]. Moreover, a molecule interacting with the i-motif, IM-48,
was identified modulating BCL2 gene expression by affecting the dynamic equilibrium of the i-motif
and the flexible hairpin form [138,139], opening a new avenue to modulate the expression of BCL2
more precisely. Targeting such canonical DNAs formed in the regulatory element of the promoter may
be an effective way to target a particular target to combat the tumor.
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3.5. c-Kit

The c-kit proto-oncogene encodes a receptor tyrosine kinase that is bridged and activated by the
binding of dimerized stem cell factors (SCF), and in turn stimulates proliferation, differentiation, and
survival in hemopoietic precursor cells [140–142]. Malfunctions of Kit acquired by overexpression
or mutations have been associated with several diseases, including gastrointestinal stromal tumors
(GIST), mastocytosis, and acute myelogenous leukemia (AML) [143–145], and although the kinase
inhibitor Imatinib (Glivec) has been successfully developed as an FDA-approved drug for GIST,
long-term exposure often causes secondary mutations at exons 13, 14, or 17, which encode tyrosine
kinase domains [146]. Notably, drug resistance derived from mutations at exon 17 is found to severely
attenuate the therapeutic effect of imatinib [147]. A compelling approach to fundamentally suppress
c-kit expression is highly desirable.

The human c-kit promoter is devoid of both TATA and CCAT boxes [148,149]. Instead, the
region within 200 bp upstream from TSS is highly rich in GC content, where several transcription
factors, including MAZ in human normal fibroblasts and SP1 in hematopoietic cells and carcinomas,
are implicated (Figure 6a) [150,151]. Two well-defined G4 structures were resolved [44,152], and
the three-dimensional structural dynamics are shown to be involved in the regulation of c-kit gene
transcription, accelerating the development of c-kit G4-preferred ligands [153–156]. The modulation of
such structural dynamics by small molecules is effective for suppressing gene expression and exhibits
an apoptotic effect.

The pioneering work performed by Balasubramanian and colleagues warrants attention, where
low-volume screening was conducted using six isoalloxazine ligands. Among the ligands, 1a and 1d,
possessing three N,N-dimethyl amine-substituted and one N,N-dimethyl amine/2 fluorine-substituted
tails, respectively, show a clear binding preference to c-kit G4s over a telomere G4, as demonstrated by
an SPR-binding assay, and an inhibitory effect for the gene expression in two different cancer cell lines
by RT-qPCR assays (Figure 6b) [157].

The feasibility of targeting the c-kit promoter G4 by small molecules was further confirmed in
patient-derived GIST cells. Neidle and colleagues demonstrated that a naphthalene diimide derivative
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strongly stabilized c-kit G4 structures and almost completely reduced the level of protein expression,
resulting in a strong effect on growth arrest in the GIST tumor cells (Figure 6b) [158].

To obtain a more bioactive c-kit G4-interacting ligand, several cell-based screenings of G4 ligands
have been performed. This approach is expected to overcome the incompatibility between the outcomes
of in vitro and cellular applications, which is often seen in ligand discovery based in vitro. To give
examples, luciferase reporter assays performed on a 96-well plate using the human gastric carcinoma
cell line (HGC-27) led to the discovery of two benzo[a]phenoxazine (BPO) derivatives as potent c-kit
G4 ligands (Figure 6b) [159]. Subsequent RT–qPCR and SPR-binding analyses confirmed that these
two molecules acted as endogenous c-kit suppressors in an HGC-27 cell line, probably through binding
to c-kit promoter G4s. Similarly, two quinazolone derivatives were identified that could downregulate
c-kit expression at the protein level (Figure 6b) [160].
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3.6. Human Telomerase Reverse Transcriptase

Human telomerase reverse transcriptase (hTERT), which encodes the catalytic subunit of
telomerase, has commanded considerable attention as a compelling biomedical target, particularly
for cancer, as elevated TERT expression is observed in ~90% of human cancer cells, whereas
it is normally silenced in most normal cells [161,162]. Aberrantly expressed TERT accelerates
telomerase activity irregularly to maintain the telomere length [163]. Other than its canonical role
in maintaining telomere length, TERT suppresses BCL2-dependent apoptosis [164] to regulate the
chromatin state [165] and DNA damage responses [165,166], and to promote c-MYC and Wnt-driven
cellular proliferation [167,168].

The mutations that were identified in >70% of melanomas partially account for the elevated level
of TERT expression [169]. C to T mutations in the sense strand (G to A mutations in the antisense
strand) in the TERT promoter highly activate transcription by creating a new consensus sequence for
the binding of ETS/TCF (E-26/ternary complex factor) [170]. Patients who have tumors expressing
elevated levels of TERT exhibit even worse survival rates than those who have tumors expressing
relatively lower levels of TERT [171]. These observations clearly indicate that TERT promoter targeting
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based on the mutations might have a great impact on tumor therapeutics covering a wide range of
tumors (Figure 7a).

We would like to highlight a unique approach to addressing the issue of hTERT downregulation
on the basis of the mutations in a G4-mediated manner. The region located approximately −90 to
−22 upstream of the transcription start site was abundant in GC base pairs and has multiple PQSs
(Figure 7a) [43]. In particular, tandemly aligned G4s formed by the entire PQSs have been suggested
to be a key mechanism in maintaining the normal transcriptional levels of the hTERT gene [43,172].
Interestingly, the involvement of the dynamic equilibrium of such three-dimensional structures of
DNA upon the somatic mutations (G/C to T/A) in this region is attributable to activated TERT
expression [172]. Hurley and colleagues developed a small molecule that binds to the higher-order G4
structure observed in the hTERT promoter via dual-motif targeting for the G4 and the mismatched
duplex stem loop (GTC365, Figure 7b) [172]. The mutations situated at a mismatched duplex-stem
loop within G4 structures alter the folding pattern of G4s to increase the gene expression, likely by
inhibiting a certain transcription repressor. The interplay of GCT365 and the element was proposed to
act like a chaperone to steer the correct folding seen in the wild-type G-rich element of the promoter,
resulting in the reactivation of the silencing function.
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and a molecule interacting with the specific motif of its G4 DNA and showing the downregulation of
the hTERT gene transcription. The arrows with asterisks in the right illustration of the (b) represent
bases that are protected in the presence of GTC365 from methylation by dimethyl sulfate (DMS) in
the experiment performed in Reference 102. The protection suggests the occupied site of GTC365.
The numbers represent the order of the runs of poly G observed in the hTERT promoter, which are
numbered in Reference 102. The antitumor activity of GTC365 is summarized in Table 1. The right
illustration of the Figure 7 (b) was adapted with permission from Reference. 172.

3.7. KRAS

The RAS gene family, including HRAS, NRAS, and KRAS, was first discovered in human tumors
as driver oncogenes and has long been recognized as an important therapeutic target. Mutation
of KRAS is one of the most oncogenic driver mutations in pancreatic, colorectal, and lung cancers,
and plays a role in acquiring and increasing the drug resistance [173,174]. Hence, direct targeting
of active KRAS by small molecules was considered to be a compelling strategy for combating KRAS
mutant tumors, yet it remains at an unsuccessful stage. Recently, our group has developed a novel
approach that directly targets the mutant DNA using an alkylating pyrrole-imidazole polyamide (PIP)
molecule, which is capable of selectively alkylating oncogenic codon 12 mutant DNA and causing



Molecules 2019, 24, 429 13 of 29

strand cleavage, and consequent tumor growth suppression in a tumor xenograft model of cancer in
mice [175].

G4-mediated promoter targeting is also reported. The NHE in the KRAS proximal promoter is
highly abundant in G-rich sequences, and several transcription factors interact with a G4 structure
formed in this region (Figure 8a) [176–178]. A polypurine G-rich element, located approximately
–300 to –100 nucleotides upstream of the exon 0/intron 1 boundary in a murine or human genome,
is likely to be a component of the promoter activity, and includes multiple PQSs [45,46,176–180].
Importantly, pyrene-modified oligonucleotides that were devised to be a more stable form of the KRAS
G4 formed in the PQS1 were able to attract the factors essential for transcription and to exhibit a strong
antiproliferative activity through a G4-decoy effect in pancreatic cancer cells [181].
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Small molecule targeting for the KRAS G4 would also be a promising strategy for suppressing
gene expression. Indeed, Paulo and colleges have prepared a small library of indolo[3,2-c]quinolines
(IQc), and found that two triple-cation derivatives had a clear preference for KRAS G4 over a telomere
G4 and duplex DNA, and acted as superior downregulators of KRAS expression and inhibited mutated
KRAS expression in HCT116 and SW620 cells [182]. The data presented suggest that direct targeting of
the KRAS G4 at the transcription level in KRAS mutant tumors by small molecules selective for G4
might be a promising therapeutic strategy for tumors. More recently, comprehensive studies on the
human KRAS promoter, in terms of the possible G4 structures and their relevance to the promoter
activity, which were performed by Brooks group, revealed that a newly discovered G4 formed in the
PQS2 more critically affected the attenuation of the promoter (Figure 8a) [46]. These findings would
contribute to the creation of more efficient and selective G4-mediated transcriptional repression by
ligands in a future study.

3.8. c-Myb

c-Myb is largely expressed in an early stage of the differentiation of hematopoietic cells, and
its expression is gradually decreased toward the end of their differentiation [183]. It encodes
a transcription factor that plays a critical role in the proliferation, differentiation, and survival
of hematopoietic progenitor cells; c-myb was identified by the discovery of v-myb found in
avian myeloblastosis virus and E26 [184]. This gene is also recognized as a proto-oncogene,
high expression of which is related to promoting the development of hematological cancers and
adenocarcinomas [185–189] by a mechanism based on its canonical proliferative property.
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The regulation of c-myb expression at a transcription level relies on multiple activating and
repressing transcription factors in a cell-type-dependent fashion [190–195]. Notably, a region in the
promoter with three (GGA)4 triplet repeats beginning 17 bp downstream of the transcription start site
on the antisense strand is implicated in the promoter activity through its formation of thermally-stable
higher-order parallel G4 structures [196–198]. Partial deletion of the (GGA)4 triplet repeats blocks
the ability to form the dimerized G4 which enhances the promoter activity, suggesting that the G4
structure forms by utilizing the three (GGA)4 triplet repeats, which function as a negative regulator of
the c-myb promoter activity [196]. Additionally, MAZ protein may bind to the c-myb G4 structure and
negatively regulate the promoter activity.

The GC-rich promoter region in the DNase hypersensitive elements (to approximately 850 bp
upstream of the transcription start site) is also reminiscent of the putative G4 formation and its
involvement of transcription regulation [199,200]. Recently, the group led by Yuan used a reporter
assay system to extensively examine the way that folded and unfolded G4s affect c-myb expression
through their effect on c-myb promoter activity [201]. In this system, four PQSs in the c-myb promoter
were selected as potential G4 formation elements, and the activity in MCF-7 cells was compared with
that in cells with a promoter-containing plasmid, where mutations were made so as not to form G4s in
the respective PQSs (Figure 9a). The promoter activity of the PQS1-mutated plasmid was markedly
reduced, whereas the PQS1, −2, and −3-mutated plasmids exhibited no significant changes in these
promoter activities. These data strongly implied that the transcription regulation on those G-rich
sequences was considerably mediated by the formation of the G4 structures on the PQS1 element
in MCF-7 cells, where the binding of a transcription suppresser was likely impeded. The newly
discovered c-myb G4-interacting ligand, topotecan, increased the transcription level in the wild-type
plasmid without affecting the use of the PQS1-mutated plasmid (Figure 9b). This downregulation effect
was confirmed in the endogenous c-myb expression at the protein level. Since the binding specificity of
topotecan to the c-myb G4s among the other G4s has never been mentioned, further studies are needed.

When the focus moves more specifically to diseases, c-myb is identified as a target in glioma stem
cells for glioblastoma multiforme (GBM) therapy, in which expression was considerably elevated in
GBM tissues relative to normal tissues [202]. Interestingly, telomestatin, a ligand interacting with G4,
globally impairs the maintenance of the GSC stem cell state through an apoptotic pathway, largely by
reducing a c-myb expression in vitro and in vivo. Although the direct interplay of telomestatin and
c-myb G4s in the promoter has not been examined, these observations offer the possibility that direct
targeting of c-myb G4 DNA is a compelling therapeutic approach to GBM treatment.
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Table 1. Summary of targeted G-quadruplex (G4)-preferred ligands that exhibit antitumor activities.

Ligand a Target G4 or
Gene b

Preferred Target
Structure c Cell Line d Tumor Type Effect Notes References

Ni-P telomere hybrid
MDA-MB-231 breast cancer

(adenocarcinoma)
· Caner stem cell-specific apoptosis

· Bulk cancer-specific apoptosis and senescence
· Negligible cytotoxicity to normal somatic cells

· Tumor growth suppression in a
MDA-MB-231 xenograft model vivo [82,83]

MCF-7 breast cancer
(adenocarcinoma)

IZNP1 telomere dimeric G4s SiHa squamous cell
carcinoma

· Apoptosis
· Senescence

·Telomere dysfunction (DNA
damage and telomere uncapping) [85]

TH3 c-MYC c-MYC (parallel) A549 lung cancer · Antiproliferative effect (apoptosis)
· Negligible cytotoxicity to normal somatic cells

· Validation of the minimal effects for
a G4-driven gene (BCL2) [97]

Hela cervical cancer

IZCZ-3 c-MYC c-MYC (parallel)

SiHa squamous cell
carcinoma

· Antiproliferative effect (apoptosis)
· Negligible cytotoxicity to normal somatic cells

· Validation of c-MYC G4-dependent
gene suppression

· Tumor growth suppression in a
SiHa xenograft model in vivo

[98]
Hela cervical cancer

Huh7 liver cancer

A375 malignant
melanoma

Benzofuran
derivative c-MYC c-MYC (parallel)

L363
MM1S
MM1R

etc.

myeloma · Antiproliferative effect (apoptosis)
· Negligible cytotoxicity to normal cells

· Validation of the minimal effects for
other G4-driven genes [102]

Tz 1 c-MYC c-MYC (parallel) HCT116 colorectal
carcinoma · Apoptosis · Validation of c-MYC G4-dependent

gene suppression [103]

Furopyridazinone
derivative BCL2 BCL2 (hybrid) Jurkat human acute T cell

leukemia

· Antiproliferative effect
(apoptosis)

· Negligible cytotoxicity to normal cells
- [135]

GTC365 hTERT
hTERT

(stem-loop-containing
hybrid)

MCF-7 breast cancer
(adenocarcinoma)

· Apoptosis
· Senescence

· Validation of decreased telomerase
activity and telomere length [172]

a This column describes G-quadruplex (G4)-interacting ligands that were reported to exhibit antitumor activities likely based on the clear selectivity to target G4s. b This column a
G4-related genomic structure (telomere) or G4-driven genes the were intended to be targeted by each ligand. c This column describes G4 structures or topologies that were preferred by
each ligand among other G4s examined in the respective papers. d This column describes cell lines in which antitumor activities of ligands were examined.
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3.9. Others (PDGFR-β, PDGF-A, STAT3, FGFR2)

Other G4s formed in putative regulatory elements in the promoters of cancer-related genes have
been reported, and are proposed as targetable by ligands interacting with G4 (in promotors in genes
for PDGFR-β [203], PDGF-A [204], STAT3 [205], FGFR2 [206], etc.). For instance, GSA11129, which can
interact with a G4 in the promoter of the gene for PDGFR-β to shift the equilibrium to a G4 species,
was demonstrated to reduce the transcription level and to inhibit PDGF-β-driven cell proliferation
and migration [203]. The G-rich element of the proximal promoter in the gene for PDGF-A also forms
a stable G4 structure, even in the duplex context, and TMPyP4 reduced the basal promoter activity of
PDGF-A, suggesting that targeting the PDGF-A G4 by the ligand specific for this G4 may be feasible as
a cancer therapy for gliomas, sarcomas, and astrocytomas [204,207–211].

4. Alternative Nucleic Acid Form as a Biomedical Target—G-triplex

The G-triplex was initially regarded as a transient DNA form and a possible intermediate in
the G4 folding process [212]. A growing body of literature suggests that such a structure forms
stably under physiological conditions [75,213–216]. Along with their potential biological significance,
small molecules targeting G-triplexes increasingly command considerable attention. Acridone–PNA
conjugates highlight dual-site targeting by a planar acridone moiety appended to a Gly-GGG-Lys
PNA sequence (Figure 10a) [217]. The PNA moiety associates with one guanine of three G-tetrads, to
form a hybrid PNA+DNA G4. This ligand is thought to prefer a G-rich sequence in a single-stranded
context over a pre-folded G4; thus, it might be especially useful for targeting G-triplex structures in
such cellular dynamics. A dihydropyrimidin-4-one derivative is identified as a G-triplex and G4 ligand
from the Mcule chemical database, by using simple docking programs (Figure 10b) [218].Molecules 2019, 23, x FOR PEER REVIEW  17 of 29 
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Our group has devised a nanoplatform constructed by DNA origami for studying such
intermediates of G4, such as G-triplex and G-hairpin, and has found that pyridostatin (PDC),
a well-known ligand interacting with G4, unexpectedly recognized the G-triplex and G-hairpin
structures (Figure 10c) [219]. Considering this, the ability to recognize the intermediates of G4 might
be an essential component for the high binding affinity, selectivity, or inducing ability of the G4
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structures from the stable duplex or single-stranded DNA. The platform manifests the power to assess
unprecedented G4-binding properties of a ligand.

5. Spatially Indirect G4 Targeting by Py-Im Polyamide Molecules

By taking advantage of the sequence-selectivity of PIPs, as mentioned earlier, a head-to-head-type
polyamide dimer was developed for the selective targeting of a designated G4, which displayed an
inducible effect toward G4 formation (Figure 11) [220]. This strategy relies on a totally new ligand
design based on the targeting of the duplex region on either side of an intended G4 in the genome.
Although the results presented are still preliminary, such simultaneous dual-duplex binding across
the targeted G4 has the potential advantages of being (1) independent of G4 topology, (2) targetable
to other higher-order DNA structures such as i-motifs, and (3) programmable for a large variety of
targets at different genome locations.
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6. Summary and Outlook

Although a number of biomedical targets in the approach toward tumor therapy are recognized
and investigators are pursuing the development of drugs, results have been limited thus far. The
G-quadruplex (G4) has been recently considered to be a potential biomedical target, particularly for
tumor therapy, and a considerable body of evidence has been accumulating that G4-interacting drugs
exhibit good antitumor activities. As protein-targeting drugs face similar situations, G4-interacting
drugs displayed low selectivity to the targeted G4 structure, mainly because of the similar skeletons
among different G4 forms observed in the genome. In this review, we addressed the ligands interacting
with G4 that were devised to gain selectivity for a particular G4 structure and to exhibit selective
bioactivity for tumor cells. The selectivity issues remain incompletely solved, but if accomplished,
would substantially impact cancer therapy.

The G4-driven oncogenes introduced here are known to be usually well-correlated and concertedly
influence tumorigenesis, tumor growth, and malignant transition [164,167,168,190,221,222]. Although
this relationship is not fully elucidated, combinatorial approaches may be a good option for further
therapeutic advancements [223].

Importantly, G4 has an influence, not only on telomere or tumor-related genes, but also on
differentiation- and neuron-related genes. As mentioned earlier, OCT4 expression may be governed to
some degree by G4 formation at the proximal promoter in human embryonic stem cells (CCTL14), as
shown by a reporter assay system [49], while the excessive occurrence of poly G4 structures on the
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expandable repeats accounts for some neurogenetic disorders [50]. On the contary, G4 structures at the
CpG island located in xl3b are recognized by ATRX, contributing to appropriate synaptic function [51].
These data clearly imply an even more global impact of G4s on overall ontogenesis. In addition to
the research direction of specific G4 ligands toward cancer therapy, studies on specific G4-interacting
ligands may also focus on these issues and depict an entire map of G4 functions.
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49. Renčiuk, D.; Ryneš, J.; Kejnovská, I.; Foldynová-Trantírková, S.; Andäng, M.; Trantírek, L.; Vorlíčková, M.
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