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introduCtion

Spinal cord injury (SCI) is a devastating condition 
associated with significant functional and sensory 
deficits, emotional, social, and financial burdens, 

and an increased risk of cardiovascular complications, deep 
vein thrombosis, osteoporosis, pressure ulcers, autonomic 
dysreflexia, and neuropathic pain.

The estimated annual global incidence of SCI is 15–40 
cases per million. In the USA, approximately 1.275 million 
individuals are affected, with over 12,000 new cases 
each year.1-5 The most common causes of traumatic SCI 
are road traffic accidents, falls, occupational and sports-
related injuries that result in contusion and compression 
of the spinal cord.1 Approximately 55% of SCIs occur at 
the cervical level (C1 to C7-T1) with a mortality of 10% 
in the first year following injury and an expected lifespan 
of only 10–15 years post-injury, and thoracic (T1–T11), 
thoracolumbar (T11–T12 to L1–L2) and lumbosacral (L2–
S5) injuries each account for approximately 15% of SCI.1-4 
Depending on the age of the patient, severity, and levels of 
SCI, the lifetime cost of health care and other injury-related 
expenses can reach $25 million.1-5

Despite advances in pre-hospital care, medical and surgical 
management and rehabilitation approaches, many SCI 
sufferers still experience substantial neurological disability. 
Intensive efforts are underway to develop effective 
neuroprotective and regenerative strategies.

PathoPhysioLogy

SCI involves a primary (the physical injury) and a secondary 
injury (the subsequent cascade of molecular and cellular 
events which amplify the original injury).6 The primary 
injury damages both upper and lower motor neurons 
and disrupts motor, sensory and autonomic functions. 
Pathophysiological processes occurring in the secondary 
injury phase are rapidly instigated in response to the 
primary injury in an attempt to homeostatically control 
and minimize the damage. Paradoxically, this response is 
largely responsible for exacerbating the initial damage and 
creating an inhibitory milieu that prevents endogenous 
efforts of repair, regeneration and remyelination. These 
secondary processes include inflammation, ischemia, lipid 
peroxidation, production of free radicals, disruption of ion 
channels, axonal demyelination, glial scarring (astrogliosis), 
necrosis and programmed cell death. Nevertheless, 
endogenous repair and regenerative mechanisms during 
the secondary phase of injury minimize the extent of the 
lesion (through astrogliosis), reorganize blood supply 
through angiogenesis, clear cellular debris, and reunite and 
remodel damaged neural circuits. The spatial and temporal 
dynamics of these secondary mediators7 are fundamental to 
SCI pathophysiology and as such offer exploitable targets 
for therapeutic intervention.

CeLL theraPy

A multitude of characteristics of cells tested pre-clinically 
and clinically make them attractive to potentially address the 
multifactorial nature of the pathophysiology of secondary SCI 
– they are anti-inflammatory, immunomodulatory,8-12 anti-
gliotic,13 pro-oligodendrogliogenic,14 pro-neuronogenic,15 
and secrete various anti-apoptotic and pro-angiogenic 
neurotrophic factors. Given the pathophysiological targets 
of SCI,7 transplanted cells should: 1) enable regenerating 
axons to cross barriers; 2) functionally replace lost cells; and/
or 3) create an environment supportive of neural repair.16 
However, given the multifactorial nature of SCI and its 
dynamic pathophysiological consequences, the success of 
future clinical trials of cell therapy will likely depend on the 
informed co-administration of multiple strategies, including 
pharmacological and rehabilitation therapies.7
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Different sources and types of cells have been and/or are 
being tested in clinical trials for SCI, including embryonic 
stem cells (ESCs), neural progenitor cells (NPCs), bone 
marrow mesenchymal cells (BMSCs) and non-stem cells 
such as olfactory ensheathing cells and Schwann cells.17 
Other cell types are being developed for the clinic, including 
other sources of mesenchymal cells (fetal blood,18 adipose 
tissue, umbilical cord19-36), adult21,37 and immortalized 
neural progenitors (PISCES, NCT01151124), skin-derived 
progenitors,38-47 induced pluripotent stem cells48-52 and 
endogenous spinal cord progenitors53-58 [Table 1]. The 
advantages and disadvantages of each cell source and type 
being considered or already in clinical trials for SCI have 
been extensively described and compared elsewhere,17,59-63 
and reflect their potential in the clinic [Table 1]. There are 
currently more than a dozen cell therapy clinical trials for 
SCI listed on clinicaltrials.gov.64 Most are Phase I or I/II 
clinical safety and feasibility studies, indicating that cellular 
treatments for SCI developed in the laboratory are still in 
the very early stages of clinical translation.

This editorial will focus specifically on the most widely 
studied progenitor cells currently in clinical trials for SCI: 
BMSCs and NPCs.

Bone Marrow stroMaL CeLLs

BMSCs are isolated from the stromal compartment of bone 
marrow, and fractioned from hematopoietic stem cells by 
virtue of their adherence to tissue culture plastic and/or 
their expression of distinct cell surface antigenic markers. 
They are non-teratogenic, have anti-inflammatory and 

immunomodulatory effects65,66 and secrete neurotrophic 
factors, making them attractive candidates in CNS cell 
rescue and as autologous transplanted cellular sources of 
trophic support for endogenous and co-implanted cells. 
Despite recurring claims of their neurogenic differentiation 
potential in vitro or in vivo, there is no conclusive evidence 
to support this.67

Most studies of BMSCs have found beneficial effects of 
BMSC administration after thoracic SCI, largely as a result 
of neurotrophic factor secretion68,69 and possibly also anti-
inflammatory cytokine secretion. Intraspinal as well as 
intrathecal and systemic (intravenous) routes of delivery 
have been successful.70-72 Porcine and non-human primate 
studies have been carried out to further support their clinical 
use,73,74 and as in rodent studies, it has been found that 
BMSCs promote a certain degree of axonal regrowth and 
sprouting, at least in transection models,75 especially when 
treated with growth factors prior to being implanted.68

The inflammatory component of SCI and subsequent 
demyelination of surviving axons are serious limiting factors 
in the efficacy of early cell therapy for SCI, as implanted 
cells are more likely to be eliminated by the host.76 The 
immunomodulatory effect of bone marrow-derived cells 
has been demonstrated in the Canadian Bone Marrow 
Transplant (BMT) clinical trials for multiple sclerosis led by 
Freedman.65,66 It is therefore worth considering interventions 
to modify the inflammatory milieu in order to enhance 
donor cell survival and efficacy, as in the newly initiated 
clinical trial of autologous BMSCs in children suffering from 
SCI [Table 2] (NCT01328860).

Table 1: A comparison of the different cell types and sources currently in (*) or under consideration for clinical trials for SCI
WJ/UCM fMPC BMSC* ES* iPS fNPC* aNPC OEC* SC* SKP Adip 

MSC 
Isolation

Practicalities
Ethical  
considerations

Easy
None

Chal-
lenging
Signifi-
cant

Chal-
lenging
Consid-
erable

Challenging
Significant

Challenging
None

Challeng-
ing
Signifi-
cant

Challeng-
ing
Consider-
able

Chal-
lenging
Few

Chal-
lenging
Consid-
erable

Less  
challenging
Few

Easy
Few

Differentiation potential
Bone
Fat
Cartilage













Pluripotent Pluripotent Neural Neural - - Peripheral 
myelin





Storage
Pre-isolation
Post-isolation




×


×


×


×


×


×


×


×


×


?


Immunogenicity Low Low Low Low/? Low/? Low ? Low Low Low Low
Immunosuppressant/ 
anti-inflammatory

 ×  ? ?  ? ? ? ? ?

Tumorigenicity × × ×   × × × × ? ×
Transfection          ? ?
Safety/risk     ?     ? 

Pathotropism    ? ?  ? ? ? ? ?
Autologous Potential No  × Potential × ×    
WJ – Wharton’s jelly; UCM – umbilical cord matrix; BMSC – Bone marrow stromal cells; ES – Embryonic stem; iPS – Induced pluripotent; fNPC and aNPC – Fetal and adult neural precursor cells; 
OEC – Olfactory ensheathing cells; SC – Schwann cells; SKP – Skin-derived progenitors; AdipMSC – Adipose tissue-derived mesenchymal cells, *cells in current or pas clinical trials for SCI.
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Table 2: Clinical trials of cell therapy for SCI listed on www.clinicaltrials.gov. 
Status Study NCT Cells Administration 

route
Phase Country Sponsor/

Investigator
Duration Numbers 

enrolled
Recruiting Transfer of bone 

marrow derived  
stem cells for the  
treatment of SCI

NCT
01162915

Autologous 
BMSCs, 
expanded  
ex vivo

Intrathecal 
infusion,  
single dose

I, single 
center

USA TCA Cellular 
Therapy, LLC; 
Gabriel P.  
Lasala

July 2010–
June 2012

10

Completed Cell transplant in  
SCI patients
Condition: Chronic 
SCI
Procedure:  
Physical therapy

NCT
00816803

Autologous  
bone marrow

? I/II Egypt Cairo University, 
Cancer Institute 
of New Jersey, 
UMDNJ/RWJMS;  
Hatem E. 
Sabaawy

May 2005–
Dec 2008

80

Recruiting Transplantation of 
autologous OECs  
in complete human  
SCI
Other:  
Rehabilitation

NCT
01231893

Autologous 
olfactory  
mucosa 
ensheathing  
cells (OECs)  
and fibroblasts

Intraspinal I Poland Wroclaw  
Medical  
University; 
Wlodzimierz 
Jarmundowicz, 
Pawel Tabakow

May 2008 10

Terminated Treatment for  
acute SCI

NCT
00695149

BMSC Into  
cerebrospinal 
fluid

I/II Japan Translational 
Research 
Informatics  
Center

July 2005–
March 2010

23

Completed Autologous adipose 
derived MSCs 
transplantation in 
patients with SCI

NCT
01274975

Autologous 
adipose  
derived MSCs

Intravenous 
infusion,  
4 × 108 cells

I Korea RNL Bio  
Company Ltd, 
SangHan Kim

July 2009–
Feb 2010

8

Recruiting Safety and feasibility 
of umbilical cord 
blood cell transplant 
into injured spinal 
cord
Drug: ± Methylpred-
nisolone
Drug: ± Lithium 

NCT
01046786

Umbilical 
cord blood 
mononuclear 
cell, dose 
comparison

Intraspinal I/II China China Spinal  
Cord Injury 
Network

Jan 2010–
June 2012

20

Completed Safety and efficacy 
of autologous bone 
marrow stem cells  
in treating SCI
Condition: Acute, 
subacute and  
chronic SCI 
Procedure: 
Laminectomy

NCT
01186679

Autologous  
bone marrow

Intrathecal I/II India International 
Stemcell  
Services  
Limited,  
Arvind Bhateja

Jan 2008–
Aug 2010

12

Enrolling by 
invivation 

Umbilical cord  
blood mononuclear 
cell transplant to  
treat chronic SCI
Other: 
Methylprednisolone, 
sodium succinate 
or lithium carbonate 
plus rehabilitation

NCT
01354483

HLA-matched 
umbilical 
cord blood 
mononuclear 
cells

I/II China Treating Center  
of Spinal Cord 
Injury Chengdu 
Army Kunming 
General  
Hospital  
(Dr Hui Zhu)

Sep 2010–
Dec 2012

20

Suspended Autologous  
incubated 
macrophages 
for patients with 
complete SCIs 
condition:  
Acute SCI

NCT
00073853

Autologous 
incubated 
macrophages

Intraspinal II USA,  
Israel

Proneuron 
Biotechnologies, 
Marcus 
Foundation
B.I.R.D. (Israel-
U.S. Binational 
Industrial 
Research and 
Development); 
Daniel 
Lammertse, 
Nachshon Knoller, 
Marca Sipski, 
Edward Benzel

Sep 2003 61

Table 2 contd/-
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Status Study NCT Cells Administration 
route

Phase Country Sponsor/
Investigator

Duration Numbers 
enrolled

Recruiting Safety study of 
GRNOPC1 in SCI
Condition:  
Complete T3–T9 
level subacute  
(7–14 days post-
injury) SCI

NCT
01217008

GRNOPC1  
(ES cell- 
derived 
oligodendrocytic 
progenitors)

Intraspinal,  
single dose  
of 2 million  
cells

I USA Geron, Gary  
K. Steinberg, 
David Apple, 
Richard G  
Fessler,  
James S 
Harrop,  
Shekar Kurpad

Oct 2010–
Oct 2012

10

Recruiting Autologous stem 
cells for SCI in 
children
Condition: Primary 
SCI, to minimize 
secondary SCI

NCT
01328860

Autologous 
BMSCs

Intravenous 
infusion

I USA Memorial 
Hermann 
Healthcare 
System, James  
E. Baumgartner

April 2011–
Oct 2014

10

Recruiting Autologous bone 
marrow stem cell 
transplantation in 
patients with spinal 
cord injury

NCT
01325103

Autologous 
BMSC

Intraspinal I Brazil Hospital Sao 
Rafael; Ricardo  
R. dos Santos

July 2010–
Jan 2013

20

Recruiting Study of human  
CNS stem cells 
(HuCNS-SC) in 
patients with  
thoracic spinal  
cord injury
Condition: Subacute 
thoracic (T2–T11) SCI

NCT
01321333

HuCNS-SC  
cells

Single dose, 
intramedullary

I/II Switzer-
land

StemCells, Inc.; 
Armin Curt

March 
2011–March 
2016

12

Table 2 contd/-

Ongoing clinical studies and those carried out to date have 
enrolled small patient numbers and have used autologous 
marrow-derived cells rather than purified stromal cells.77-80 
A recently published dose-escalation trial examined 
autologous BMSCs in patients with chronic SCI.66 Although 
BMSCs were safe, they were not found to be beneficial 
in this cohort of patients. Having clearly established the 
safety and feasibility of the clinical use of BM-derived cells 
specifically for SCI in these trials, the continued testing of 
BMSCs in the context of SCI appears justified although the 
use of this intervention in complete thoracic cases may not 
be optimal. Based on the mechanism of action of BMSCs, 
which appear to provide trophic support to the penumbra 
zone of the acutely and subacutely injured cord, trials in 
patients with subacute severe, but incomplete spinal cord 
lesions are a consideration.

The use of BMSCs in SCI does, however, present certain 
issues. BMSC migration beyond the injection site (for 
intraspinally delivered cells) is limited, and inter-donor 
variability in efficacy and immunomodulatory potency 
might confer variable clinical outcome,81 making evaluation 
of efficacy difficult. Studies of BMSCs in cervical contusion–
compression models have yet to be carried out. BMSCs 
have, in all but two studies by the same group, been used 
in subacute and acute models.82-85 Based on the limited 
number of pre-clinical studies in chronic models, it is not 
yet possible to evaluate their efficacy. It is also not known 

whether BMSCs provide functional preservation of axons or 
de novo axonal regrowth across the lesion site in contusion–
compression models, which are more appropriate models 
to distinguish these processes than transection models.86-89

neuraL Progenitor CeLLs

NPCs can be generated from ESCs, which are derived from 
the blastocyst-stage embryo. These cells have indefinite self-
renewal capacity and are pluripotent, with the potential to 
generate all cell types of the body, making them a potentially 
limitless source of cells for therapy. However, they are not 
without problems [Table 1], including the moral issues and 
practical constraints of their embryonic derivation, their 
karyotypic instability with repeated freeze–thaw cycles,90,91 
and their teratogenic potential in the host.

Pre-clinical studies have shown that animals transplanted 
with human ESC-derived oligodendrocytic progenitors cells 
(OPCs) show improvement in functional recovery following 
SCI.12,92-96 With this background, extensive pre-clinical 
studies were conducted by Geron to characterize the safety 
and efficacy of hESC-OPCs exclusively in rodent models 
prior to the conduct (not without considerable objection and 
controversy) of a clinical trial of human ESC-derived OPCs 
implanted within 2 weeks into patients with thoracic SCI.97-99 
This Geron-sponsored clinical trial is further supported by 
behavioral and histological data from studies implanting 
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glial restricted progenitors (GRPs)100 and OPCs101,102 
isolated from embryonic and post-natal rodents in SCI 
models, albeit indirectly. Whilst these show predominantly 
astroglial differentiation of GRP implanted within the 
blunt contusion-induced thoracic lesion site, there is a shift 
toward oligodendrocytic specification beyond the injury site 
correlated with the degree of functional improvement,103-105 
both of which can be enhanced by transduction of factors 
such as D15A, brain-derived neurotrophic factor (BDNF) 
and neurotrophin-3 (NT-3).106 GRP implantation was also 
shown to be neuroprotective and inhibited neuropathic pain.

Neural progenitor cells can also be derived from several 
regions of the fetal, post-natal and adult CNS, including the 
sub-ventricular zone of the brain, the central canal of the 
spinal cord and the hippocampus. They can be expanded 
in culture as non-adherent neurospheres and have the 
potential to generate all three neural cell types under the 
appropriate conditions. The key advantage of this NPC 
source is the amenability to in vitro manipulation (including 
immortalization) prior to implantation as well as the lack 
of tumorigenicity. However, autologous derivation of CNS 
NPCs would be unfeasible for cell therapy purposes.

On the basis of promising results in clinically relevant 
primate107-109 and canine cervical contusion models of 
SCI and cell number-dependent locomotor recovery in 
acute, subacute and chronic thoracic rodent models,110-113 
a StemCells Inc-sponsored clinical trial is underway to 
treat SCI sufferers with non-immortalized fetal human CNS 
stem cells (HuCNS-SC, NCT01321333). The lack of trials 
of NPCs in SCI is in spite of the bulk of pre-clinical findings 
to date in support of the potential of fetal and adult NPCs 
(particularly the former) in experimental SCI models,17 and is 
likely to reflect ethical concerns over their origins and practical 
issues hindering their isolation and directed differentiation. 
Another possible explanation for the absence of clinical trials 
of NPCs for SCI is that the mechanisms through which NPCs 
provide functional benefit (including immunomodulation 
and angiogenesis) are only now beginning to be understood. 
Also, aims of axonal regeneration through the injury site 
have been replaced pre-clinically by more realistic objectives 
of remyelination17 and provision of trophic support for 
endogenous precursors and axons. This makes NPCs much 
more promising candidates for cell therapy for SCI and 
probably heralds their increased use in clinical trials.

ConCLusion

Cell therapy can potentially enhance the quality of life of those 
affected by SCI. The significant advances that have been made 
on the basis of pre-clinical studies carried out in rodent models 
of SCI have enabled clinical trials demonstrating the safety of 

cell therapy for SCI to proceed and have informed researchers 
of the knowledge gaps that remain to be addressed. However, 
rodent contusion/compression models of SCI are generally 
“incomplete” with partial sparing of motor and sensory 
functions, and mimic most closely patients with severe, partial 
lesions with an American Spinal Injury Association (ASIA) 
impairment scale rating of AIS B or C. Given that most trials of 
cell therapy have been carried out in AIS A patients (the safest 
to treat but also the least likely to show cell therapy-induced 
benefit), there is a need for future clinical trials to include 
patients modeled in the laboratory. There is a compelling 
need for preclinical researchers to develop valid models of 
compressive/contusive cervical SCI given that approximately 
50–60% of human SCI involves the cervical region.
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