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Risk-adjustment of diabetes health 
outcomes improves the accuracy of 
performance benchmarking
Eleanor Danek1, Arul Earnest2, Natalie Wischer   1, Sofianos Andrikopoulos3, Anthony Pease4, 
Natalie Nanayakkara1 & Sophia Zoungas5

Benchmarking clinical performance by comparing diabetes health outcomes across healthcare 
providers drives quality improvement. Non-care related patient risk factors are likely to confound 
clinical performance, but few studies have tested this. This cross-sectional study is the first Australian 
investigation to analyse the effect of risk-adjustment for non-care related patient factors on 
benchmarking. Data from 4,670 patients with type 2 (n = 3,496) or type 1 (n = 1,174) were analysed 
across 49 diabetes centres. Diabetes health outcomes (HbA1c levels, LDL-cholesterol levels, systolic 
blood pressure and rates of severe hypoglycaemia) were risk-adjusted for non-care related patient 
factors using multivariate stepwise linear and logistic regression models. Unadjusted and risk-adjusted 
funnel plots were constructed for each outcome to identify low-performing and high-performing 
outliers. Unadjusted funnel plots identified 27 low-performing outliers and 15 high-performing outliers 
across all diabetes health outcomes. After risk-adjustment, 22 (81%) low-performing outliers and 13 
(87%) high-performing outliers became inliers. Additionally, one inlier became a low-performing outlier. 
Risk-adjustment of diabetes health outcomes significantly reduced false positives and false negatives 
for outlier performance, hence providing more accurate information to guide quality improvement 
activity.

Benchmarking of clinical performance has become a popular tool to guide quality improvement in diabetes care1–4.  
This process involves collecting data on performance indicators from different care providers. Pooled data is ana-
lysed and used to generate benchmarking reports, in which care providers are evaluated against peer performance 
or against a recommended standard5,6. Benchmarked feedback drives quality improvement by alerting care pro-
viders to areas for improvement and by stimulating healthy competition5,7.

Performance indicators for benchmarking should accurately reflect quality of care8. Examples include meas-
ures of process, such as prescribing rates, and measures of outcome, such as glycaemic control9,10. Outcome 
measures are considered the ‘gold standard’11 for benchmarking clinical performance in healthcare as they hold 
‘intrinsic interest’9 for patients and clinicians. However, there are limitations to using outcomes measures to 
benchmark clinical performance. Variation in patient outcomes may be confounded by variables beyond the con-
trol of healthcare providers, such as age, sex and disease severity9. Consequently, the use of crude outcome meas-
ures for benchmarking may result in inaccurate depictions of clinical performance12. This may hinder the ability 
of healthcare providers to identify and address issues that fall under the influence of healthcare intervention.

Diabetes health outcomes are collected for benchmarking purposes in many countries including Australia13, 
the US2,14,15 and throughout Europe4,16–18. To date, benchmarking in diabetes care has been based on unadjusted 
diabetes health outcomes13,14,16,18.
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Risk-adjustment for the effects of non-care related patient risk factors may improve the accuracy and fair-
ness of benchmarking12,19. However, few studies have formally analysed the impact of risk-adjustment on 
benchmarking in diabetes care, with conflicting results20–25. Furthermore, few studies have used funnel plots to 
account for the effects of variation in patient volume on diabetes health outcomes. As a result, the extent to which 
risk-adjustment may improve the accuracy of benchmarking for diabetes health outcomes is unknown.

Using data obtained from the 2015 Australian National Diabetes Audit, this study sought to formally analyse 
the impact of risk-adjustment on diabetes benchmarking. We hypothesised that risk-adjustment reduces false 
positives and false negatives for outlier performance. Ultimately, the objective of our study was to inform practice 
in diabetes benchmarking to facilitate more accurate feedback, enabling diabetes centres to better identify and 
address issues in clinical care.

Methods
Data collection.  The Australian National Diabetes Audit (ANDA) is a national quality initiative that occurs 
on an annual basis. Participation is voluntary and open to all centres registered with the National Association of 
Diabetes Centres (NADC) and other interested primary care, community-based or specialist healthcare providers 
in private practice13. Formal invitations to participate in the 2015 ANDA were issued to all eligible centres. Each 
participating centre was allocated a unique code to allow data collection, handling and analysis to proceed in a 
double-blind fashion.

Clinicians at participating centres collected de-identified patient-level data using the standardised ANDA 
case record forms. These case record forms utilise the minimum dataset developed by the National Diabetes 
Outcomes Quality Review Initiative13. Data items relating to patient demographics, disease characteristics, man-
agement factors and outcomes are captured. Standardised definitions for each data item were made accessible to 
audit-participating centres. Additionally, centres were given specific direction on how to conduct and train staff 
to complete the audit.

The audit period was restricted to four weeks in 2015 (either over the month of May or June), during which 
time each centre was required to complete a case record form for all consecutive patients with diabetes attend-
ing the diabetes centre. Diabetes case ascertainment was based on a previous or new diagnosis of diabetes, in 
accordance with Australian diagnostic guidelines26. Informed consent was obtained from all study participants. A 
minimum of 30 completed case-record forms, corresponding to 30 consecutive patients, was required per centre 
(with a two-week extension of the audit period granted to centres that were unable to collect data on 30 patients 
within the initial audit period).

Upon completion of the audit period, de-identified patient information was forwarded by each centre to the 
ANDA data management centre for review of data completeness and correctness. Duplicate entries (where multi-
ple case records for a single patient were submitted due to multiple visits during the audit month) were handled by 
retaining only the most recent entry. Based on pre-determined data validation rules, lists of missing or potentially 
invalid data were generated and sent to participating centres to provide them with an opportunity to improve 
their data. Centres were encouraged to comprehensively address data queries prior to resubmission to the data 
management centre.

Ethics approval to undertake this study was obtained from the Monash Health Human Research Ethics Panel. 
All methods were performed in accordance with the relevant guidelines and regulations.

Variables.  Patient factors considered for the statistical modelling exercise were: age, sex, duration of dis-
ease, severity of disease, body mass index (BMI), country of birth and smoking history (ever smoker vs never 
smoker). These factors were selected based on feasibility, conceptual reasoning and clinical validity. Feasibility 
was determined by whether the variable was able to be retrieved/calculated from the 2015 ANDA dataset. In 
selecting patient factors, we referred to the conceptual framework proposed by a previous study of risk factors 
for glycaemic control in patients with T2DM25. In accordance with this framework, six domains of risk were con-
sidered: demographics, access to care, health-seeking behaviour, geographic location, disease characteristics and 
comorbidity. Feasible patient factors relating to one or more of these risk domains were selected and assessed for 
clinical face validity with the input of an experienced endocrinologist.

Severity of disease was defined using a pre-validated tool, the Diabetes Complications Severity Index27. 
Smoking history was defined as positive for ‘ever smokers’ (current or past smokers) and negative for never 
smokers. The decision to categorise past and current smokers as ‘ever smokers’, rather than keeping these cate-
gories separate, was made a priori. This was due to a lack of data on the duration of abstinence for past smokers.

The health outcomes considered in this study were glycated haemoglobin (HbA1c, %), low-density lipopro-
tein cholesterol (LDL-Ch, mmol/L), systolic blood pressure (mmHg) and the incidence of severe hypoglycaemia 
(where severe hypoglycaemia was defined as an episode of hypoglycaemia associated with neuroglycopaenia 
and requiring third-party assistance to correct28. The first three outcomes were selected based on evidence from 
previous studies that benchmarking clinical performance with regards to these health outcomes drives quality 
improvement2–4,14,18,29. The severe hypoglycaemia outcome was selected based on clinical importance.

Risk-modelling.  In accordance with a-priori clinical reasoning, patients were stratified by diabetes type 
to allow for separate analysis of patients with T2DM and T1DM diabetes. For each T2DM and T1DM health 
outcome, multivariate stepwise regression was performed with p values for variable inclusion and removal set 
at p < 0.01 and p > 0.05, respectively. Based on a-priori clinical reasoning, patient fasting status at the time of 
LDL-Ch measurement was forced into the multivariate model for LDL-Ch. Collinearity was identified using var-
iance inflation factor with a cut-off value of 1030. Where relevant, the collinear term demonstrating less statistical 
significance (as determined by the magnitude of the z-statistic) was eliminated from the model. All statistical 
functions were performed using STATA version 14 (Stata Corp, College Station, Tx, USA).
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Sensitivity and subgroup analyses.  Additional analyses were performed on the multivariate risk models to ana-
lyse the impact of outlier values, missing data and treatment. For each of the continuous outcomes, outlier values 
were determined using the Tukey fence method31. Multivariate regression was repeated for each continuous out-
come measure with the outliers excluded. The results of this analysis were then compared to the original results.

A second sensitivity analysis assessed the significance of missing data. All numerical study variables with 
missing rates exceeding 10% were identified. A multiple imputation model was then run using multivariate nor-
mal distribution, which accommodates arbitrary missing value patterns using the iterative Markov chain Monte 
Carlo method. Using predictor variables with high rates of data completeness, 10 datasets were created containing 
imputed values for the missing data. Regression models were then run separately and combined using the method 
proposed by Little et al.32. The results of the multiple imputation analysis were compared to the original results.

Based on a priori clinical reasoning, the effect of treatment on the relationship between risk variables and 
outcomes was investigated. Patients were stratified according to treatment status (i.e. on insulin vs not on insulin). 
Regression analyses were subsequently repeated on each treatment subgroup. This was to observe whether strati-
fication by treatment status altered the strength or direction of the association between risk variable and outcome.

Assessing the impact of risk-adjustment.  Unadjusted and risk-adjusted funnel plots were constructed 
and compared to test the impact of risk-adjustment on performance benchmarking. Unadjusted and risk-adjusted 
diabetes health outcomes were converted into performance measures of average levels or rates. Average patient 
measurements per centre were calculated for HbA1c, LDL-Ch and systolic blood pressure. Rates of severe hypo-
glycaemia were calculated by dividing the total number of patients per centre who had experienced severe hypo-
glycaemia at least once within the previous 12 months by the total number of patients per centre, and multiplying 
by 100. Funnel plots were constructed for each unadjusted and risk-adjusted performance measure by plotting 
centre specific values against sample size (the number of patients per centre for whom data was submitted).

Performance status was determined by the position of a centre relative to 99.8% control limits (three standard 
deviations, 3SD, above and below the mean). For each performance measure, the magnitude of the average level 
or rate was considered inversely proportional to clinical performance. For example, lower rates of severe hypo-
glycaemia indicated better performance. Therefore, centres positioned above the upper control limit (3SD above 
the mean) were identified as low-performing outliers and centres positioned below the lower control limit (3SD 
below the mean) were identified as high-performing outliers. All centres within 3SD of the mean were inliers. 
Centres were therefore classified as (a) inlier (b) low-performing outlier or (c) high-performing outlier for each 
performance measure.

For each performance measure, unadjusted and risk-adjusted funnel plots were compared to detect changes in 
performance status resulting from risk-adjustment. Instances where low-performing outliers were reclassified as 
inliers after risk-adjustment (‘false positives’) and vice versa (‘false negatives’) were recorded. Similarly, false posi-
tives and false negatives for high-performance were recorded. Rates of misclassification of outliers were calculated 
by dividing false positives by the total number of outliers identified by unadjusted funnel plots.

Data availability.  The datasets analysed during the current study are available from the corresponding 
author on reasonable request.

Results
Study population characteristics.  Forty-nine centres delivering diabetes care participated in the 2015 
Australian National Diabetes Audit (ANDA). This corresponded to 47% of all diabetes centres registered with 
the National Association of Diabetes Centres (NADC) in 2015. The majority (67%) of participating centres were 
tertiary diabetes centres, with the remaining 33% being primary care or community-based diabetes clinics. 
Participating centres were predominantly located in Victoria, New South Wales and Queensland (41%, 27% and 
18% respectively), with the remaining centres distributed throughout the other states and territories of Australia. 
Most (78%) participating centres responded to data query reports by forwarding updated case-record forms after 
addressing missing and invalid data.

Across the 49 participating centres, data were submitted for 5,183 patients. This included 3,496 patients with 
type 2 diabetes (T2DM), 1,174 patients with type 1 diabetes (T1DM) and 243 patients with gestational diabetes. 
270 patients were of ‘unknown’ or ‘other’ type. For the purpose of this study, only patients with T1DM or T2DM 
were analysed.

The baseline characteristics of the study population are summarised in Table 1. Overall, patients with T2DM 
had a median age of 64, median disease duration of 12 years and median BMI of 32 kg/m2. Mean values (and 
standard deviations) for HbA1c (%), LDL-Ch (mmol/L) and systolic blood pressure (mmHg) were 8.2 ± 1.8, 
2.1 ± 1.2 and 133 ± 19, respectively. Compared to patients with T2DM, patients with T1DM were, on average, 
younger (median age 37) and less overweight (median BMI 26 kg/m2) but with a longer disease duration (median 
disease duration 16 years). Patients with T1DM were also half as likely to have been born overseas, and less 
likely to suffer from complications. Metabolic control was slightly worse in patients with T1DM compared to 
patients with T2DM patients; on average, HbA1c (%) and LDL-Ch (mmol/L) levels were 0.3 and 0.4 units higher, 
respectively; but blood pressure was slightly better (systolic blood pressure 9 mmHg lower on average). Patients 
with T1DM were 3 times more likely than T2DM patients to have experienced at least one severe hypoglycaemic 
episode within the previous 12 months (13% vs 4%).

Risk models for diabetes health outcomes.  Several non-care related patient factors were significantly 
associated with diabetes health outcomes. The impact of patient factors varied across the different T1DM and 
T2DM health outcomes. Consequently, eight unique risk models were produced (Table 2).
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HbA1c.  Among patients with T2DM, factors associated with higher HbA1c (%) levels were younger age, female 
sex, longer disease duration, positive smoking history and the presence of complications (DCSI ≥ 1). Compared 
to the reference group (patients with no complications), HbA1c levels were 0.41 units higher (95% CI: 0.22 to 
0.60, p < 0.001) in patients with a DCSI score of 1–2.

Among patients with T1DM, factors associated with higher HbA1c levels were younger age, underweight 
(BMI < 18.5 kg/m2), worsening disease severity and positive smoking history. The greatest magnitude of effect 
was observed for underweight, which was associated with HbA1c levels that were 1.73 units higher (95% CI: 0.91 
to 2.55, p < 0.001) compared to those with a healthy BMI.

LDL-Ch.  Among patients with T2DM, factors associated with higher LDL-Ch (mmol/L) levels were younger 
age, shorter disease duration and lower disease severity. Compared to those with no complications, those with 
the most severe disease (DCSI ≥ 5) had lower average LDL-Ch levels by 0.31 mmol/L (95% CI: −0.46 to −0.15, 
p < 0.001). Each 10-year increase in age was associated with a decrease in LDL-Ch level of 0.13 units (95% CI: 
−0.17 to −0.09, p < 0.001).

Among patients with T1DM, only duration of disease was significantly associated with LDL-Ch levels. Each 
10-year increase in disease duration was associated with a decrease in LDL-Ch levels of 0.14 mmol/L (95% CI 
−0.19 to −0.09, p < 0.001).

Characteristic
All patients 
(n = 4,670)

Type 2 patients 
(n = 3,496)

Type 1 patients
(n = 1,174)

Demographics

Age (years): median (IQR) 60 (46–69) 64 (55–72) 37 (25–52)

Sex

  Male: n (%) 2,399 (52%) 1,862 (54%) 537 (47%)

  Female: n (%) 2,203 (48%) 1,592 (46%) 611 (53%)

Country of birth

  Australia: n (%) 2,709 (65%) 1,820 (59%) 889 (83%)

  Overseas: n (%) 1,428 (35%) 1,240 (41%) 188 (17%)

Body mass index

Underweight (<18.5 kg/m2): n (%) 26 (<1%) 4 (<1%) 22 (2%)

Healthy weight (18.5–24.9 kg/m2): n (%) 734 (18%) 314 (10%) 420 (42%)

Overweight (25–29.9 kg/m2): n (%) 1,170 (28%) 855 (27%) 315 (31%)

Obese (30–39.9 kg/m2): n (%) 1,672 (40%) 1,446 (46%) 226 (22%)

Morbidly obese (≥40 kg/m2): n (%) 535 (13%) 509 (16%) 26 (3%)

Disease characteristics

Diabetes duration (years): median (IQR) 13 (7–20) 12 (6–20) 16 (8–27)

Severity

  DCSI score 0: n (%) 1,608 (34%) 998 (29%) 610 (52%)

  DCSI score 1–2: n (%) 1,619 (35%) 1,294 (37%) 325 (28%)

  DCSI score 3–4: n (%) 845 (18%) 721 (21%) 124 (11%)

  DCSI score ≥ 5: n (%) 598 (13%) 483 (14%) 115 (10%)

Smoking status

Never: n (%) 2,152 (54%) 1,515 (51%) 637 (62%)

Ever (current or past): n (%) 1,859 (46%) 1,461 (49%) 398 (38%)

  Current: n (%) 568 (14%) 396 (13%) 172 (17%)

  Past: n (%) 1,291 (32%) 1,065 (36%) 226 (22%)

Treatment

Insulin: n (%) 3,280 (70%) 2,120 (61%) 1,160 (99%)

Lipid-lowering medication(s): n (%) 2,862 (62%) 2,534 (73%) 328 (28%)

Antihypertensive medication(s): n (%) 2,903 (64%) 2,583 (76%) 320 (28%)

Health outcomes

HbA1c (%): mean ± SD 8.3 ± 1.8 8.2 ± 1.8 8.5 ± 1.8

LDL-Ch (mmol/L): mean ± SD 2.2 ± 1.2 2.1 ± 1.2 2.5 ± 0.9

SBP (mmHg): mean ± SD 131 ± 19 133 ± 19 124 ± 17

Severe hypo (≥1 episode in previous year): n (%) 269 (6%) 125 (4%) 144 (13%)

Table 1.  Study population baseline characteristics. Abbreviations: DCSI = diabetes complications severity 
index, HbA1c = glycated haemoglobin, hypo = hypoglycaemia, IQR = interquartile range, LDL-Ch = low 
density lipoprotein cholesterol, SBP = systolic blood pressure, SD = standard deviation. Note: patients with 
missing data were excluded from percentage calculations.
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Population Outcome Model Coef. CI p-value aR2

T2DM

HbA1c

Female sex (ref = male) 0.29 (0.13, 0.44) <0.001

0.044

Age (per 10 years) −0.30 −0.36, −0.23) <0.001

Duration (per 10 years) 0.22 (0.13, 0.31) <0.001

Severity (ref = DSCI score 0)

    DCSI score 1-2 0.41 (0.22, 0.60) <0.001

    DCSI score 3-4 0.34 (0.11, 0.56) 0.003

    DCSI score ≥5 0.31 (0.05, 0.57) 0.019

Ever smoker (ref = never smoker) 0.21 (0.07, 0.36) 0.005

LDL-Ch

Fasting status† (ref = non-fasting) −0.01 (−0.15, 0.13) 0.914

0.078

Age (per 10 years)* −0.13 (−0.17, −0.09) <0.001

Duration (per 10 years)* −0.08 (−0.13, −0.03) 0.002

Severity (ref = DSCI score 0)

    DCSI score 1-2 −0.16 (−0.28, −0.05) <0.001

    DCSI score 3-4 −0.27 (−0.40, −0.13) <0.001

    DCSI score ≥5 −0.31 (−0.46, −0.15) <0.001

SBP

Age (per 10 years)* 2.24 (1.68, 2.79) <0.001

0.042

High BMI (ref = healthy BMI)

    Overweight 2.85 (0.48, 5.52) 0.018

    Obese 5.13 (2.88, 7.37) <0.001

    Morbidly obese 9.24 (6.63, 11.85) <0.001

Severity (ref = DSCI score 0)

    DCSI score 1-2 2.09 (0.45, 3.73) 0.012

    DCSI score 3-4 3.02 (1.10, 4.94) 0.002

    DCSI score ≥5 2.21 (0.01, 4.40) 0.048

T1DM

HbA1c

Age (per 10 years)* −0.20 (−0.28, −0.12) <0.001

0.048

Underweight (ref = healthy BMI) 1.73 (0.91, 2.55) <0.001

Severity (ref = DSCI score 0)

    DCSI score 1-2 0.33 (0.03, 0.62) 0.032

    DCSI score 3-4 0.21 (−0.23, 0.65) 0.344

    DCSI score ≥5 0.61 (0.14, 1.08) 0.010

Ever smoker (ref = never smoker) 0.33 (0.08, 0.59) 0.011

LDL-Ch
Fasting status† (ref = non-fasting) −0.08 (−0.27, 0.12) 0.442

0.051
Duration (per 10 years)* −0.14 (−0.19, −0.09) <0.001

SBP

Male sex (ref = female) 6.06 (3.99, 8.12) <0.001

0.210

Age (per 10 years)* 2.51 (1.70, 3.31) <0.001

High BMI (ref = healthy BMI)

    Overweight 1.65 (−0.73, 4.04) 0.173

    Obese 6.42 (3.76, 9.07) <0.001

    Morbidly obese 7.28 (1.03, 13.54) 0.023

Duration (per 10 years)* 2.01 (1.08, 2.94) <0.001

Population Outcome Model OR CIs p-value ROC

T2DM Severe hypo Duration (per 10 years)* 1.54 (1.27, 1.86) <0.001 0.613

T1DM Severe hypo

Duration (per 10 years)* 1.39 (1.23, 1.58) <0.001

0.678

High BMI (ref = healthy BMI)

    Overweight 0.84 (0.54, 1.31) 0.446

    Obese 0.47 (0.27, 0.83) 0.009

    Morbidly obese 0.39 (0.08, 1.75) 0.217

Ever smoker (ref = never smoker) 1.96 (1.33, 2.89) 0.001

Table 2.  Multivariate risk-adjustment of diabetes outcomes. Abbreviations: aR2 = adjusted R2, CI = confidence 
interval, Coef. = coefficient, DCSI = diabetes complications severity index, HbA1c = glycated haemoglobin (%), 
hypo = hypoglycaemia (≥ 1 episodes in previous 12 months), LDL-Ch = low density lipoprotein cholesterol 
(mmol/L), OR = odds ratio, ROC = receiver operator characteristic (area under curve), SBP = systolic blood 
pressure (mmHg), T1DM = type 1 diabetes mellitus, T2DM = type 2 diabetes mellitus. *Coefficient calculated 
for age/duration (per 10 years) indicates average change in outcome associated with a 10-year increase in age/
duration. †Fasting status was fixed into the multivariate risk model based on a priori clinical reasoning.
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Systolic blood pressure.  Among patients with T2DM, factors associated with higher systolic blood pressure 
were older age, higher BMI and greater disease severity. In particular, obesity and morbid obesity was associated 
with higher systolic blood pressures, by 5.13 (95% CI: 2.88 to 7.37, p < 0.001) and 9.24 (95% CI: 6.63 to 11.85, 
p < 0.001) units respectively.

Among patients with T1DM, factors associated with higher systolic blood pressure were male sex, older age, 
higher BMI and longer duration of disease. Male sex and obesity accounted for the greatest effect on systolic 
blood pressure. Males had systolic blood pressure readings 6.06 units higher on average compared to females 
(95% CI: 3.99 to 8.12, p < 0.001). Compared to patients with a healthy BMI, patients with obesity and morbid 
obesity had higher systolic blood pressure measurements by 6.42 (95% CI: 3.76 to 9.07, p < 0.001) and 7.28 units 
(95% CI: 1.03 to 13.54, p = 0.023), respectively.

Severe hypoglycaemia.  Among patients with T2DM, only disease duration was significantly associated with the 
odds of experiencing severe hypoglycaemia. Each 10-year increase in age was associated with a 54% increase in 
odds of severe hypoglycaemia (95% CI 1.27 to 1.86, p < 0.001).

Among patients with T1DM, the odds of experiencing severe hypoglycaemia were associated with disease 
duration, high BMI and smoking history. Each 10-year increase in disease duration was associated with a 39% 
increase in odds of severe hypoglycaemia (95% CI: 1.23 to 1.58, p < 0.001). Compared to patients with a healthy 
BMI, obese patients had a 53% reduction in odds of severe hypoglycaemia (95% CI: 0.27 to 0.83, p = 0.009). 
Compared to never smoking, ever smoking was associated with a 96% increase in odds of experiencing severe 
hypoglycaemia (95% CI: 1.33 to 2.89, p = 0.001).

Sensitivity and subgroup analyses.  Additional analyses were performed to evaluate the impact of outlier values, 
missing data and treatment.

Exclusion of outlier values from the multivariate analysis of glycaemic control resulted in elimination of 
underweight from the T1DM risk model, and elimination of sex from the T2DM risk model. Exclusion of outlier 
values from the multivariate analysis of LDL-Ch and systolic blood pressure did not significantly change results.

Multiple imputation of numerical variables with missing data rates exceeding 10% (i.e. LDL-Ch, HbA1c and 
BMI) did not significantly change results.

When associations between risk variables and outcomes were analysed across treatment subgroups, two dif-
ferences were observed. Stratification of T2DM patients by insulin status reversed the effects of both disease dura-
tion and disease severity on glycaemic control. Shorter duration and reduced severity of disease were associated 
with poorer glycaemic control in insulin-taking T2DM patients.

Figure 1.  Unadjusted and risk-adjusted funnel plots of mean HbA1c (%) levels. These funnel plots compare 
unadjusted and risk-adjusted clinical performance with regards to mean HbA1 (%) levels. 99.8% (outer limits) 
and 95% (inner limits) control limits are shown. (A) Mean unadjusted HbA1c (%) in patients with T2DM and 
(B) Mean risk-adjusted HbA1c (%) in patients with T2DM (adjusted for age, sex, BMI, duration and severity; 
(C) Mean unadjusted HbA1c (%) in patients with T1DM and (D) Mean risk-adjusted HbA1c (%) in patients 
with T1DM (adjusted for age, BMI, severity and smoking history).
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Impact of risk-adjustment on performance benchmarking.  When the risk models were applied to 
funnel plots, we observed changes to the number of identified low-performing or high-performing outliers rel-
ative to 99.8% control limits (i.e. 3 SD above or below the mean). Across all diabetes health outcomes, unad-
justed funnel plots identified 27 low-performing outliers and 15 high-performing outliers. After risk-adjustment, 
22 (81%) low-performing outliers and 13 (87%) high-performing outliers became inliers (false positives). 
Additionally, one inlier became a low-performing outlier (false negative) (Figs 1–4).

Diabetes health outcome

Low-performing outliers High-performing outliers

Total False positives Total False positives

T2DM

HbA1c 6 6 (100%) 4 4 (100%)

LDL-Ch 4 4 (100%) 3 3 (100%)

SBP 4 4 (100%) 4 4 (100%)

Severe hypo 4 1

Total 18 14 (78%) 12 11 (92%)

T1DM

HbA1c 3 3 (100%)

LDL-Ch 1 1 (100%) 1 1 (100%)

SBP 2 2 (100%) 2 1 (50%)

Severe hypo 3 2 (67%)

Total 9 8 (89%) 3 2 (67%)

Overall Total 27 22 (81%) 15 13 (87%)

Table 3.  Impact of risk-adjustment on performance status. Abbreviations: HbA1c = glycated haemoglobin, 
hypo = hypoglycaemia, LDL-Ch = low-density lipoprotein cholesterol, SBP = systolic blood pressure, 
T1DM = type 1 diabetes mellitus, T2DM = type 2 diabetes mellitus.

Figure 2.  Unadjusted and risk-adjusted funnel plots of mean LDL-Ch (mmol/L) levels. These funnel plots 
compare unadjusted and risk-adjusted clinical performance with regards to mean LDL-Ch (mmol/L) levels. 
99.8% (outer limits) and 95% (inner limits) control limits are shown. (A) Mean unadjusted LDL-Ch (mmol/L) 
in patients with T2DM and (B) Mean risk-adjusted LDL-Ch (mmol/L) in patients with T2DM (adjusted for age, 
disease duration, disease severity, and fasting status); (C) Mean unadjusted LDL-Ch (mmol/L) in patients with 
T1DM and (D) Mean risk-adjusted LDL-Ch (mmol/L) in patients with T1DM (adjusted for disease duration 
and fasting status).
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T2DM health outcomes.  Across all T2DM health outcomes, unadjusted funnel plots identified 18 
low-performing outliers and 12 high-performing outliers. Of these, 14 (78%) low-performing outliers and 
11 (92%) high-performing outliers were false positives. For each outcome, the number of false positives for 
low-performance ranged from 0 to 6 and the number of false positives for high-performance ranged from 0 to 4. 
There were no outlier false positives for the severe hypoglycaemia outcome, and no outlier false negatives for any 
of the T2DM health outcomes.

T1DM health outcomes.  Across all T1DM health outcomes, unadjusted funnel plots identified 9 low performing 
outliers and 3 high-performing outliers. Of these, 8 (89%) low-performing outliers and 2 (67%) high-performing 
outliers were false positives. For each outcome, the number of false positives for low-performance ranged from 1 
to 3 and the number of false positives for high-performance ranged from 0 to 2. There was one outlier false nega-
tive for low-performance for systolic blood pressure (Table 3).

Discussion
This is the first study to analyse the impact of risk-adjustment on clinical performance benchmarking across 
Australian diabetes centres. We have demonstrated that risk-adjusting for non-care related patient factors (age, 
sex, disease duration and severity, body mass index and smoking history) significantly impacts on performance 
benchmarking with regards to the identification of low-performing and high-performing outliers. Our study 
provides compelling evidence to support risk-adjustment of diabetes health outcomes to facilitate fairer, more 
accurate benchmarking of clinical performance in diabetes care.

Risk-adjustment of diabetes health outcomes resulted in a significant reduction in low-performing outliers, 
or ‘false positives’. False positives are associated with several adverse outcomes. For example, negative representa-
tions of performance may lower morale and create unwarranted anxiety in centres that are actually performing at 
a satisfactory level relative to their peers33. Furthermore, false positives may result in the misdirection of resources 
towards areas of apparent underperformance34. Given the finite nature of healthcare funding, this may be at the 
expense of areas that would be more likely to benefit from additional funding. Risk-adjustment protects against 
these adverse outcomes by minimising false alarms for low performance.

Risk-adjustment also reduced ‘false negatives’ for low performance by enabling the identification of a previ-
ously undetected low-performing outlier. False negatives may engender inappropriate complacency in centres 

Figure 3.  Unadjusted and risk-adjusted funnel plots of mean systolic blood pressure (mmHg) measurements. 
These funnel plots compare unadjusted and risk-adjusted clinical performance with regards to mean systolic 
blood pressure (SBP) measurements (mmHg). 99.8% (outer limits) and 95% (inner limits) control limits are 
shown. (A) Mean unadjusted SBP (mmHg) in patients with T2DM and (B) Mean risk-adjusted SBP (mmHg) in 
patients with T2DM (adjusted for age, BMI and disease severity); (C) Mean unadjusted SBP (mmHg) in patients 
with T1DM and (D) Mean risk-adjusted SBP (mmHg) in patients with T1DM (adjusted for sex, age, BMI and 
disease duration).
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that are underperforming relative to peer centres33. With risk-adjusted feedback, centres participating in bench-
marking are more likely to identify and address clinical care issues that fall under the influence of healthcare 
intervention. Furthermore, we observed that risk-adjustment reduced the number of identified high perform-
ing outliers. Risk-adjustment therefore attenuates the complacency and consequent demotivation to strive for 
improvement that may result from inaccurate representations of high performance33.

Of note, risk-adjustment removed most variation in clinical performance with regards to HbA1c, LDL-Ch and 
systolic blood pressure in both patients with T2DM and T1DM. This suggests relative consistency in the quality 
of T2DM and T1DM care delivered across Australian diabetes centres participating in the 2015 ANDA. However, 
significant variation in clinical performance was observed even after risk-adjustment for severe hypoglycaemia 
in patients with T2DM. This may reflect that severe hypoglycaemia rates are not typically reported as indicators 
of clinical performance10,35. Consequently, clinicians may neglect this clinical care issue in order to focus on opti-
mising the health outcomes that are likely to influence benchmarking (‘tunnel vision’ phenomenon)33. Ongoing 
benchmarking of severe hypoglycaemia may assist to combat this largely ‘unrecognised healthcare burden’36 by 
directing attention to this clinical care issue and incentivising targeted preventative strategies.

There are several strengths to our study. Firstly, our use of data from a nationwide diabetes benchmarking 
initiative is appropriate in the context of our primary objective: to inform benchmarking of clinical performance 
across Australian diabetes centres. Our study cohort is highly representative of the patients and centres who stand 
to benefit from changes to current practice in benchmarking. Furthermore, we are confident in the reliability of 
our dataset given that the ANDA dataset has been clinically validated during previous nationwide audits and 
subject to multiple reviews and additions. All data items were based on standardised, objective definitions to 
minimise the risk of measurement bias.

Another key strength of this study is that the risk models were tailored to diabetes type. By contrast, previous 
studies of risk-modelling for diabetes health outcomes have not distinguished between patients with T2DM and 
T1DM20,22,24,25,37,38. Our decision to stratify patients by diabetes type enabled us to identify differences in risk 
models for patients with T2DM compared to T1DM. For example, duration of diabetes was a risk factor for 
poorer glycaemic control in patients with T2DM but not in patients with T1DM. This is not surprising given the 
differences in the pathogenesis and natural history between T2DM and T1DM. Indeed, T2DM is characterised 
by progressive β-cell dysfunction leading to progressive loss of insulin secretion39. A worsening of glycaemic 
control may therefore be anticipated in patients with increasing duration of T2DM. Our findings suggest that 
stratification by diabetes type avoids inappropriate generalisations and improves the accuracy and validity of risk 
modelling.

Figure 4.  Unadjusted and risk-adjusted rates of severe hypoglycaemia (%). These funnel plots compare 
unadjusted and risk-adjusted clinical performance with regards to rates of severe hypoglycaemia (proportion of 
patients who experienced one or more episodes of severe hypoglycaemia within the previous 12 months). 99.8% 
(outer limits) and 95% (inner limits) control limits are shown. (A) Unadjusted rates (%) in patients with T2DM 
and (B) Risk-adjusted rates (%) in patients with T2DM (adjusted for disease duration); (C) Unadjusted rates (%) 
in patients with T1DM and (D) Risk-adjusted rates (%) in patients with T1DM (adjusted for disease duration, 
BMI and smoking history).
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Our sensitivity analyses indicated that our results were minimally impacted by missing data and outlier values. 
Furthermore, most associations between patient risk factors and diabetes health outcomes were unchanged when 
analysed across treatment subgroups. This suggests that the identified risk factors were unrelated to treatment and 
therefore suitable for inclusion in the risk models. Only two changes were observed during the subgroup analyses: 
increasing severity and duration of diabetes were each associated with lower HbA1c levels in patients with T2DM 
taking insulin. Duration and severity of disease are likely on the causal pathway to intensification of insulin treat-
ment in patients with T2DM39. This could account for a lowering of HbA1c levels.

Our study is subject to limitations. Our risk models only included variables that were able to be retrieved/
calculated from the minimal dataset collected by the audit activity. We were unable to adjust for unmeasured 
confounders including socio-economic status. There was significant variation in statistical performance between 
our risk models, with adjusted R2 values ranging from 4.2% to 21%. This variation may reflect the varying degree 
to which unmeasured patient risk factors impact on different study outcomes. Future studies should consider 
testing for the impact of additional non-care related patient factors on benchmarking of clinical performance.

In conclusion, our study demonstrates that risk-adjustment for non-care related patient risk factors signifi-
cantly impacts performance benchmarking in diabetes care by reducing false positives for outlier performance. 
We recommend that risk-adjustment be performed on diabetes health outcomes for benchmarking to reduce 
misclassification of performance and provide more accurate feedback to inform subsequent quality improvement 
activity. We also recommend that clinicians focus on prevention of severe hypoglycaemia in patients with T2DM.
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