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Abstract

The indispensability of visual working memory (VWM) in human daily life suggests its

importance in higher cognitive functions and neurological diseases. However, despite

the extensive research efforts, most findings on the neural basis of VWMare limited to a

unimodal context (either structure or function) and have low generalization. To address

the above issues, this study proposed the usage ofmultimodal neuroimaging in combina-

tionwithmachine learning to reveal the neural mechanism of VWMacross a large cohort

(N = 547). Specifically, multimodal magnetic resonance imaging features extracted from

voxel-wise amplitude of low-frequency fluctuations, gray matter volume, and fractional

anisotropy were used to build an individual VWM capacity prediction model through a

machine learning pipeline, including the steps of feature selection, relevance vector

regression, cross-validation, and model fusion. The resulting model exhibited promising

predictive performance on VWM (r = .402, p < .001), and identified features within the

subcortical-cerebellum network, default mode network, motor network, corpus cal-

losum, anterior corona radiata, and external capsule as significant predictors. The main

results were then comparedwith those obtained on emotional regulation and fluid intel-

ligence using the same pipeline, confirming the specificity of our findings. Moreover, the

main results maintained well under different cross-validation regimes and preprocess

strategies. These findings, while providing richer evidence for the importance of

multimodality in understanding cognitive functions, offer a solid and general foundation

for comprehensively understanding the VWMprocess from the top down.
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1 | INTRODUCTION

Visual working memory (VWM) is the actively retaining and

processing of visual information in aids of ongoing tasks during a short

period of time. It is fundamental in human daily life for beingYu Xiao and Ying Lin contributed equally to this work.
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indispensable from simple behaviors like direction identification and

cash payment to more complex ones like web search and test taking.

Besides, VWM is strongly correlated with cognitive ability (Luck &

Vogel, 2013). It lays a ground foundation for human cognitive behav-

iors and provides a link between basic and higher cognitive functions.

A number of mental diseases, including schizophrenia, Alzheimer's dis-

ease, and Parkinson's disease, have been found to accompany signifi-

cant VWM capacity reduction (Gold et al., 2006; Lee et al., 2010;

Leonard et al., 2013). In addition, the capacity of VWM has long been

recognized to exhibit essential variation across individuals (Vogel,

McCollough, & Machizawa, 2005). Such individual differences are sta-

ble and largely account for variation in higher cognitive functions

(Luck & Vogel, 2013). Fukuda, Vogel, Mayr, and Awh (2010) reported

that VWM accounted for 43% of individual differences in global fluid

intelligence (FI), while Johnson et al. (2013) found VWM accounted

for 46% of individual differences in the overall performance on a

broad battery of cognitive tasks. Therefore, unraveling the neural

basis of VWM at the individual level is of great importance for better

understanding cognition in both cohorts of healthy people and

patients with one or more of the aforementioned diseases.

Neuroimaging offers an efficient and in-vivo method to explore

the neural basis of VWM (Luck & Vogel, 2013). Biomarkers signifi-

cantly correlated with VWM capacity were found from the function

and structure of human brain, including the amplitude of low-

frequency fluctuations (ALFF) in the middle frontal gyrus and parietal

lobules (Li, He, Wang, Hu, & Guo, 2017; Zou et al., 2013), the gray

matter volume (GMV) of the dorsolateral frontal gyrus and hippocam-

pus (Cannon et al., 2005; Guo et al., 2014; Strangman et al., 2010),

and the fractional anisotropy (FA) in intraparietal sulcus and corpus

callosum (Klingberg, 2006; Olesen, Nagy, Westerberg, &

Klingberg, 2003; Takeuchi et al., 2010). However, these studies were

all based on mono-modality data. In fact, few studies have considered

the possibility of using joint information from different modalities.

Since structural magnetic resonance imaging (MRI) captures the fun-

damental brain morphology, diffusion MRI captures the white matter

integrity, while functional MRI (fMRI) captures temporal fluctuation

level of brain regions (Griffa et al., 2017), analyzing multimodal MRI

that combines structural and functional information may allow us to

reveal the neural mechanism of VWM in a more comprehensive and

integrative manner. Until now, only small efforts have been paid to

this theme. Tseng et al. (2017) combined task-fMRI, hippocampi vol-

ume, and DWI to study visual recognition memory. However, using

multimodal imaging data to comprehensively examine VWM remains

to be elucidated.

Most of the existing unimodal MRI studies used the correlation

analysis method to explore the patterns of neural basis of individual

differences in VWM. Recently, machine learning methods have been

found to be a surging tool to assist research in neuroscience

(Davatzikos, 2019; Serra, Galdi, & Tagliaferri, 2018; Woo, Chang,

Lindquist, & Wager, 2017). Compared with traditional correlation

analysis methods, the merits of machine learning mainly lie in four

aspects. First, it enables multivoxel pattern analyses, which facilitates

inspection of the relationship between cognitive behavior and

multiple voxels in one or more brain regions simultaneously. Second,

it allows concrete and quantified backtracking on neural features

about how they are related to the cognitive behavior in concern,

which helps to identify the important neural traits. For example, the

weight of a neural feature in the model built by machine learning

methods can be used to measure the contribution of the neural fea-

ture to the behavior and/or its degree of correlation with the behav-

ior. Third, it has a systematic way to relieve overfitting issues

associated with large-scale and high-dimensional neuroimaging data.

The resulting prediction model thus gains improved generality,

suggesting that it can better pinpoint the actual relationship and has

border implications (Dwyer, Falkai, & Koutsouleris, 2018). Last but not

least, machine learning methods can be well-tailored for neural basis

examination at the individual level, offering promising opportunities

to precision medical care, including personalized diagnostic, prognos-

tic, and treatment for diseases. These merits have inspired a variety of

novel applications of machine learning methods on imaging data,

including but not limited to detecting imaging signature for various

diseases and disorders (Nielsen, Barch, Petersen, Schlaggar, &

Greene, 2020; Pellegrini et al., 2018), exploring imaging-based bio-

types that can assist diagnosis, prognosis and treatment of patients

(Chand et al., 2020; Song, Yang, Sui, & Jiang, 2017), seeking neural

patterns to explain individual differences in affect, cognition, and

behavior (Cui & Gong, 2018; Mihalik et al., 2019; Scheinost

et al., 2019), and offering brain fingerprints for individual identification

(Finn et al., 2015; Wachinger, Golland, Kremen, Fischl, &

Reuter, 2015). In the field of VWM, machine learning methods have

also been applied to predict individual differences from imaging data

since the last decade. Karch, Sander, von Oertzen, Brandmaier, and

Werkle-Bergner (2015) applied linear discriminant analysis to classify

VWM loads using electroencephalography (EEG) data and found that

person-specific models lead to better discriminative performance.

Majerus et al. (2016) applied support vector machine to classify VWM

loads based on fMRI data and found that the dorsal attention network

and sensory processing cortices could offer promising predictors.

Girdher, Gupta, Jaswal, and Naik (2020) used seven different machine

learning techniques to predict VWM responses using EEG data and

found that the random forest and the neural network performed the

best. However, in the aspect of decoding the neural mechanism of

individual VWM capability, little effort has been made on utilizing the

advantages of machine learning methods (Postle, 2015), especially in

combination with multimodal neuroimaging data.

In this article, we combined three indicators from three different

modalities, GMV, FA, and ALFF, to investigate the neural basis of

VWM. The three indicators were selected for two reasons. First, they

formed a comprehensive feature pool that can capture both the func-

tional and structural aspects of human brain with fine granularity

(i.e., all indicators can be obtained at the voxel level). In particular,

ALFF measures the spontaneous fluctuations in brain gray matter and

can reflect the functional activity of brain. GMV and FA quantify the

volume of gray matter and the integrity of white matter, respectively,

and thus offer descriptions of voxel-wise attributes of brain structure.

Second, as stated before, there has been abundant evidences
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supporting the strong associations of these three indicators with

VWM. Specifically, it has been found that the ALFF values of the rele-

vant brain regions (e.g., middle frontal gyrus and parietal lobules) may

have distinct roles in VWM processes (Li et al., 2017; Xu &

Chun, 2006, 2009; Zou et al., 2013). In addition, cortical and subcorti-

cal volumes have been shown to be related to VWM (Cannon

et al., 2005; Guo et al., 2014; Machizawa, Driver, & Watanabe, 2020;

Strangman et al., 2010), indicating that GMV would be a promising

indicator. The integrity of white matter pathways (i.e., FA) has also

been found critical for individual VWM processing (Golestani

et al., 2014; Klingberg, 2006; Lazar, 2017; Olesen et al., 2003;

Takeuchi et al., 2010). Based on the above three indicators, a machine

learning pipeline that includes the steps of feature selection, relevance

vector regression (RVR), cross-validation, and model fusion was pro-

posed to build a model that predicts individual VWM capacity from

features extracted from the above three modalities. The RVR is a

promising method for continuous variable prediction, especially when

handling high-dimensional data of a relatively small volume

(Tipping, 2000, 2001). Besides, it can determine the hyperparameters

in the prediction model automatically through a Bayesian learning

strategy, which avoids the tediousness and unreliability induced by

manual hyperparameter tuning. With the above efforts, we aim at

achieving two goals: (a) build a generalized model to predict individual

VWM capacity using multimodal MRI (R-fMRI, T1, and DWI) data;

(b) find discriminative brain regions contributive to individual VWM

capacity for a more integrated understanding on the neural basis of

individual VWM.

2 | MATERIALS AND METHODS

2.1 | Participants

All participants were from Stage 2 Cam-CAN study (Shafto

et al., 2014, www.cam-can.com). The R-fMRI, T1 weighted image,

DWI and VWM score data from 625 healthy adults were used in the

current study. The data and the ethical approval for this study were

obtained by the Cambridgeshire 2 (now East of England—Cambridge

Central) Research Ethics Committee and written informed consent

was obtained from each participant.

2.2 | Data acquisition

All participants were scanned at the Medical Research Council Cognition

and Brain Sciences Unit on a 3 T Siemens TIM Trio System with a

32-channel head coil. The R-fMRI was collected axially using a gradient-

echo echo-planar imaging sequence. The image parameters were as fol-

lows: repetition time (TR)/echo time (TE) = 1,970 ms/30 ms; flip

angle = 78�; field of view (FOV) = 192 × 192 mm2; time points = 261;

slices = 32; direction = descend; thickness = 3.7 mm; voxel

size = 3 × 3 × 4.44 mm3; gap = 0.74 mm. Participants were required to

lie still with their eyes closed and remain awake. The scan lasted for 8 min

and40 s. T1-weighted structuralMagnetization Prepared RApidGradient

Echo (MPRAGE) 3D images were acquired using the following parame-

ters: TR/TE = 2,250 ms/2.99 ms; inversion time (TI) = 900 ms; flip

angle = 9�; FOV = 256 × 240 × 192 mm3; voxel size = 1 × 1 × 1 mm3;

and GRAPPA acceleration factor = 2. The acquisition lasted for 4 min and

32 s. The twice-refocused spin-echo axial DWI were acquired using fol-

lowing parameters: 30 diffusion gradient directions for each of two b-

values: 1,000 and 2,000 s/mm2, along with three images acquired using

b-value of zero; TR/TE = 9,100/104 ms; voxel size = 2 × 2 × 2 mm3;

FOV = 192 × 192 mm2; slices = 66; number of averages = 1. This acquisi-

tion lasted for 10min and 2 s.

All the participants finished a modified version of a previous

experiment (Zhang & Luck, 2008) that measured VWM ability. On

each trial of the experiment, a participant was presented with one to

four colored disc(s) with a fixation at the center of the screen for

250 ms. The locations of the discs were randomly selected from eight

positions equidistant from a central fixation. Following a brief 900 ms

blank retention interval, a test display with a color wheel appeared for

the participant to respond. The participant needed to recall the color

of a disc in the memory display at the location indicated by a cue and

select the matching hue on the color wheel. After the participant

responded, there was an 830 ms intertrial interval. The experiments

included one practice trial and two formal blocks of 112 trials, where

the set-size and the probe context were counterbalanced and ran-

domly intermixed. The probe context included whether the nontarget

items were present or absent. In addition, a control experiment con-

sisted of 56 trials was carried out to examine the performance of per-

ceptual matching. On each trial of the control experiment, only one

disc was presented and meanwhile the participant needed to select

the matching hue on the color wheel. Based on the collected data,

various indicators for VWM ability, such as the VWM capacity, the

accuracy of reported hues, and the probability of retaining the cued

item can be estimated by model fitting (Bays & Husain, 2008; van den

Berg, Awh, & Ma, 2014; Zhang & Luck, 2008). All the experiments and

estimation were done by Cam-CAN (detailed information, Shafto

et al., 2014). Since the putative VWM capacity for color is about four

items (Alvarez & Cavanagh, 2004; Luck & Vogel, 1997, 2013), the

capacity measure that obtained on four colored discs is most likely to

capture individual differences among participants, and therefore here

we adopted this measure for analyses. Additionally, the experimental

paradigm was widely used for testing the performance on VWM

(Mitchell & Cusack, 2018; Shafto et al., 2014).

2.3 | Data preprocessing

1. R-fMRI data: Unless stated otherwise, all functional imaging data

preprocessing was performed using Statistical Parametric Mapping

(SPM12, http://www.fil.ion.ucl.ac.uk/spm/), Resting-State fMRI

Data Analysis Toolkit (REST, http://rest.restfmri.net) (Song

et al., 2011), and Data Processing Assistant for Resting-State fMRI

(Yan & Zang, 2010). The first six functional images were discarded

to allow the signal stability (four participants were excluded for
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lacking volume number). The remaining R-fMRI images were

preprocessed as follows: (a) slice-timing, (b) realignment (69 partici-

pants were excluded because of large head movement: >2 mm/2�),

(c) spatial normalization to the Montreal Neurological Institute

(MNI) space using the normalization parameters estimated in T1

segmentation (one participant was excluded for normalization fail-

ure caused by huge ventricle), (d) smoothing with a 4 mm full width

at half maximum (FWHM) Gaussian kernel, (e) removing the linear

trends, and (f) covariates regression (including Friston 24-head

motion parameters (Worsley et al., 1996), cerebrospinal fluid,

white matter and global signals). After preprocessing, the ALFF

was calculated for each participant (Zang et al., 2007). Briefly, we

first converted the time series of every voxel to the frequency

domain using a fast Fourier transformation. Then the square root

of the power spectrum was computed and then averaged across

0.01–0.1 Hz. Thus, for each participant, there was an ALFF map.

2. T1-weighted data: T1-weighted MPRAGE data preprocessing

included: (a) coregistration to the individual average functional

image, (b) segmentation into gray matter, white matter, and cere-

brospinal fluid, (c) modulating the resulting normalized gray matter

images with Jacobian determinants of the deformation parameters,

(d) smoothing GMV image with an 8 mm FWHM Gaussian kernel,

and (e) resampling to 3 mm isotropic voxels to match the same

voxel size as preprocessed R-fMRI data. Thus, for each participant,

there was a GMV map.

3. DWI data: DWI data were preprocessed using FSL (https://fsl.fmrib.

ox.ac.uk/fsl/fslwiki) with the standard preprocessing procedure

(Smith et al., 2004). The procedure included: (a) skull-stripping,

(b) simple-motion and eddy-current correction, (c) diffusion tensor/

parameter calculation, and (d) spatial normalization. FA maps in the

MNI space were generated for each individual. Eight participants

were excluded for image artifacts, four of which overlapped with

the participants whose R-fMRI showed large head movement.

After removing unqualified data in preprocessing (i.e., large head

movement or image artifacts), there were 547 participants (male = 269,

age = 18–88) left for subsequent analyses. The demographics and

behavioral data of the participants are summarized in Table 1.

2.4 | Model construction and feature analyses

The overall procedure of model construction is illustrated in Figure 1.

First, we extracted 253,444 features from the multimodality voxel-

wise imaging data of each participant. Specifically, we first obtained

the gray matter mask (Nvoxels = 57,806) generated by a threshold of

0.2 on a priori gray matter probability map in SPM and the white mat-

ter mask (Nvoxels = 137,832) generated by a predefined FA skeleton

mask in FSL (FMRIB58_FA-skeleton_1mm.nii). Then, for each partici-

pant, the ALFF values were extracted from the ALFF map and the

GMV values were extracted from the GMV map, both of which were

constrained within the gray matter mask. The FA values were

extracted from the FA map, which was constrained within the FA

skeleton mask. Hence, for each participant, there were 57,806 ALFF

features; 57,806 GMV features; and 137,832 FA features. Second,

the RVR method (Tipping, 2001) and the leave-one-out cross-

validation (LOOCV) technique (Pereira, Mitchell, & Botvinick, 2009)

were employed to build prediction models of VWM based on the

above features. We also assessed the effects of different cross-

validation regimes on the main results. Please refer to the “Validation
Analyses” for details. For each fold of LOOCV, one participant was

withheld to test the model trained on the other 546 participants.

There were 547 folds in total and each participant was used as the

test set in one fold. During the training session of the ith fold in

LOOCV, we first normalized the regional features of the training sam-

ple (i.e., 546 participants) by using the z-score approach on each

modality separately. Then the Pearson correlations of the normalized

features with the VWM scores were computed within the training

sample. For each modality, the features with correlation significance

beyond a corrected threshold (i.e., p = .05/number of features in the

modality) were selected. Using the selected features in one modality,

the RVR method was applied to train a mono-modality model that

predicted the VWM score. Three mono-modality models, namely the

ALFF, GMV, and FA models, were thus obtained. We then built four

multimodality models by bagging the three mono-modality models

into three bimodality models (i.e., ALFF + GMV, ALFF + FA, GMV

+ FA) and one tri-modality model (i.e., ALFF + GMV + FA). Using the

bagging strategy of model averaging (Claeskens & Hjort, 2008;

Hansen, 1999), the VWM scores predicted by each of these

multimodality models were derived by averaging the VWM scores

estimated by its composing mono-modality models. This way, the bag-

ging process allowed information from multiple modalities to integrate

but did not interfere with the feature selection and training processes

in each mono-modality model, which reduced model uncertainty in

the mono-modality scenario and improved the prediction perfor-

mance in both terms of accuracy and robustness. In the testing ses-

sion of the ith fold in LOOCV, the features of the test set (i.e., data of

the ith participant, i = 1, 2, …, 547) were normalized by the z-score

approach using means and standard deviations acquired from the

training set, as suggested in previous studies (Cui & Gong, 2018). The

above seven prediction models were applied to the normalized test

set to predict the VWM score of the ith participant.

TABLE 1 Demographics and behavioral performance of the
participants

Cam-CAN Stage 2 dataset (N = 547)a,b

Gender (M/F) 269/278

Age (years) 53.95 ± 18.30 (18–88)

Visual working memory 2.51 ± 0.82 (0.00–4.00)

Abbreviation: Cam-CAN, Cambridge Centre for Ageing and Neuroscience.
aBehavioral and age data are presented as mean ± SD (minimum-

maximum).
b78 participants were excluded because of large head motion (N = 69),

missing volumes (N = 4), huge ventricle (N = 1), and image artifacts in DWI

(N = 8, 4 of which overlapped with the participants who had large head

motion).
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Finally, for each of the seven models, we evaluated the goodness

of fit by calculating the correlation and the mean absolute error (MAE)

between the observed and the predicted VWM scores of all the

547 participants. Specifically, the MAE was calculated as the mean of

absolute differences between the observed and the predicted VWM

scores. To validate the significance of the correlation, a permutation

test (N = 1,000) was performed. In each permutation, the above

modeling procedure was repeated with the association between the

features and the observed VWM scores randomized (Dosenbach

et al., 2010). Based on the null distribution built by the correlations

obtained from the 1,000 permutations, the p value was estimated as

the proportion of permutations that obtained a higher correlation than

the tested model. Given that the correlation between the observed

values and the predicted values is used as a measure of the model fit,

model comparison can then be conducted by testing whether the cor-

relations from two models are significantly different. Because the

F IGURE 1 Model construction procedure. The step of model fusion was opted out in the case of building mono-modality models, and the
models to be fused were dependent on the modalities in use (i.e., ALFF + GMV, ALFF + FA, GMV + FA, or ALFF + GMV + FA). ALFF, amplitude
of low-frequency fluctuations; FA, fractional anisotropy; GMV, gray matter volume

1450 XIAO ET AL.



correlations of interest were measured on the same sample, the pro-

cedure of testing the difference between two dependent correlations

described in Steiger (1980) was used. One-sided t test based on equa-

tion (7) in Steiger (1980) was performed, given corresponding T2 sta-

tistics and p values. Based on the results of the above Steiger's

method, an ultimate prediction model could be selected. To show the

effectiveness and superiority of this ultimate model, we compared the

prediction performance of the ultimate model with those of two other

models obtained by using different modeling approaches but the same

feature set, bagging strategy, and cross-validation framework. The

first model was built by linear regression (LR), which is a simple yet

effective machine learning technique and is widely used to build base-

line model (Seber & Lee, 2012). The second model was built by sup-

port vector regression (SVR), which is found to be one of the most

promising machine learning techniques in a wide range of prediction

tasks (Cui & Gong, 2018; Drucker, Surges, Kaufman, Smola, &

Vapnik, 1997; Sui, Jiang, Bustillo, & Calhoun, 2020) and is the most

similar RVR model homolog (Tipping, 2001).

The feature analyses aimed at identifying the brain regions that

can effectively predict individual VWM capacity. To do this, the dis-

criminative weight for each feature involved in the ultimate prediction

model was estimated as its average weight across all folds in LOOCV

(Dai et al., 2012; Dosenbach et al., 2010; Zeng et al., 2012). The effect

of a voxel in relation to individual VWM capacity could then be quan-

tified by the signs and the absolute values of the weights of the

corresponding features. For better visualization of the results, we

mapped voxel-wise data onto a priori parcellation map for each

modality. Specifically, ALFF and GMV results were mapped onto a

268-node network (Shen, Tokoglu, Papademetris, & Constable, 2013)

and the 268 nodes were further assigned to eight modules (Finn

et al., 2015). FA results were mapped onto JHU-ICBM DTI atlas (Mori,

Wakana, Nagae-Poetscher, & van Zijl, 2005). For each regional feature

obtained, its discriminative weight was estimated as the mean discrim-

inative weight of the features of the voxels involved in the

corresponding node.

All the above analyses were implemented with the Pattern Recog-

nition for Neuroimaging Toolbox (http://www.mlnl.cs.ucl.ac.uk/

pronto/), the SPM12 toolbox (http://www.fil.ion.ucl.ac.uk/spm/), and

our in-house MATLAB code.

2.5 | Validation analyses

To validate our main findings, we reconducted the main analyses on

the same dataset using different cross-validation regimes and

preprocessing strategies. In terms of cross-validation regimes,

repeated 5-fold and 10-fold cross-validation frameworks (N = 100)

were used to avoid potential overoptimistic bias induced by LOOCV.

In terms of preprocessing strategies, we considered the following

three aspects. (a) Global signal regression. Previous studies have

suggested that whether to remove the global signal or not might sig-

nificantly alter the research results (Ibinson et al., 2015; Murphy &

Fox, 2017; Power et al., 2014). We thus examined the results without

removing the global signal. (b) Head motion exclusion. To avoid possi-

ble bias caused by different head motion exclusion criteria, we per-

formed a spike-regression-based scrubbing in the original nuisance

regression procedure during data preprocessing (Power, Schlaggar, &

Petersen, 2015; Yan et al., 2013) with the criteria of a frame-wise dis-

placement (Jenkinson, Bannister, Brady, & Smith, 2002) above

0.5 mm. (c) Standard tract-based spatial statistics (TBSS). Previous

studies have suggested that TBSS could improve intersubject FA

image alignment, making it more sensitive and interpretable for multi-

subject DTI analyses (Smith et al., 2006). Thus, we examined the

results with TBSS performed before FA extraction. Using the normal-

ized FA maps for each individual from the aforementioned DWI

preprocessing method, we created a mean group-wise FA image and

projected the individual diffusion metric data onto it.

To further validate that our main findings were specific to VWM,

we applied the machine learning pipeline proposed in the main study

to predict two other cognitive functions that Cam-CAN study mea-

sured (Shafto et al., 2014). One cognitive function was emotion regu-

lation (ER). It was chosen because it is associated with executive

functions as VWM does (Brown, Brockmole, Gow, & Deary, 2012;

Bull & Scerif, 2001). The ER task required the participants to watch

positive, neutral, and negative film clips and rate their emotional feel-

ings afterward at both negative and positive scales of 0–100. Then

the participants were asked to reappraise the negative film clips

through reinterpreting their meaning in an emotional impact reducing

way. Since reappraisal provided a measure of how well people regu-

late their negative emotions, an ER score can be calculated by com-

paring the ratings for the negative film clips at the watch and

reappraise conditions. The other cognitive function used for validation

was FI, which was selected due to the importance of working memory

in it (Heitz, Unsworth, & Engle, 2005; Jaeggi, Buschkuehl, Jonides, &

Perrig, 2008) and served as the baseline for comparison. The FI of

each participant was measured by a standard form: the Cattell Culture

Fair, Scale 2 Form A (Cattell & Cattell, 1973), containing four subtests

on series completion, classification, matrices, and conditions, resulting

in a score ranging from 0 to 46. More detailed descriptions of the

tasks could be found in the previous study (Shafto et al., 2014). After

applying the proposed pipeline to build prediction models for ER and

FI, respectively, we compared the prediction performance and the dis-

tributions of discriminative features with those of the ultimate VWM

model. Notably, in the model construction procedure for ER, the fea-

ture selection criterion was relaxed to p < .001 to ensure that at least

10 voxel-wise features can be selected into the model from each

modality.

3 | RESULTS

Table 2 tabulates the goodness of fit and the average number of fea-

tures used by the seven prediction models. As can be seen, the

multimodality models generally outperformed the mono-modality

models. In particular, the bimodality model GMV + FA (r = .414,

p < .001; MAE = 0.599), the tri-modality model ALFF + GMV + FA
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(r = .402, p < .001; MAE = 0.604), and the mono-modality model GMV

(r = .400, p < .001; MAE = 0.610) achieved the best predictive power,

while the other models achieved prediction performance with the

empirical-predicted correlation r�[0.297, 0.381] (p < .001) and MAE�

[0.613, 0.642]. The Steiger's method (Steiger, 1980) found that the

prediction performance of the tri-modality model had no significant

difference with the models of GMV + FA and GMV (p > .1), but was

significantly better than the other four models (p < .05). Further, when

tested in the repeated 5- and 10-fold cross-validation frameworks

(N = 100), the tri-modality model achieved the highest predictive

power with the smallest variance across repetitions (Supplementary

Tables 1a and 1b; Supplementary Figures 1a and 1b). Taken together

the above results and our research goal to identify VWM relevant

neural basis from three different modalities, we selected the tri-

modality model as the ultimate prediction model for further analyses.

A detailed plot of the observed VWM scores and the VWM scores

predicted by this model is shown in Figure 2. To show the effective-

ness and superiority of the above tri-modality model, we built two

additional tri-modality models using the LR and SVR approaches. Note

that except for replacing RVR with LR and SVR, respectively, the two

additional models were trained and tested in exactly the same way as

the tri-modality RVR model. The Steiger's method reported that the

performances of the tri-modality LR model (r = .298, p < .001;

MAE = 0.644; Supplementary Figure 1c) and the tri-modality SVR

model (r = .268, p < .001; MAE = 0.699; Supplementary Figure 1d)

were significantly lower than that of the tri-modality RVR model.

In the ultimate prediction model, 118 ALFF features

(p < .05/57,806); 36,366 GMV features (p < .05/57,806); and 19,918

FA features (p < .05/13,7832) were used. Figure 3 plots the weight

distribution of these voxel-wise features. For ALFF, the most contrib-

utive regions appeared in caudate, cerebellum, hippocampus, and cin-

gulate gyrus. For GMV, the most contributive regions were in

precuneus, postcentral gyrus, and middle frontal gyrus. For FA, the

most contributive regions were from anterior corona radiata, corpus

callosum, and external capsule. The voxel-wise weights were then

clustered into module/white matter tract weights according to the

corresponding atlas in each modality for better visualization and

explanation, as shown in Figure 4, with details of the top 10 most con-

tributive regions tabulated in Tables 3–5. For ALFF, the most contrib-

utive (either positively or negatively, unless stated otherwise) regions

were in the subcortical-cerebellum, default mode and motor net-

works. For GMV, the most contributive regions were in the

subcortical-cerebellum, motor, frontoparietal, and medial frontal net-

works. For FA, the corpus callosum, anterior corona radiata, and exter-

nal capsule made the greatest contributions.

TABLE 2 Results of the seven
prediction models

Modalities r-Value

Number of selected features

T2 p-ValueALFF GMV FA

ALFF .297 118 — — 5.170 1.64 × 10−7

GMV .400 — 36,366 — 0.063 .475

FA .362 — — 19,918 2.029 .021

ALFF + GMV .381 118 36,366 — 3.576 1.89×10−4

ALFF + FA .367 118 — 19,918 1.918 .028

GMV + FA .414 — 36,366 19,918 −1.167 .122

ALFF + GMV + FA .402 118 36,366 19,918 — —

Note: r value: Pearson correlation between the predicted and the observed visual working memory

scores. Number of selected features: the average number of selected features across all the 547 folds in

the cross-validation procedure. T2: one-sided two-sample t-test statistics based on Steiger's (1980)

method, which was calculated by comparing the prediction performance of the corresponding model

with the tri-modality model. p value: significant level of the corresponding T2 statistic. Related validation

results were included in Supplementary Tables 1 and 5.

Abbreviations: ALFF, amplitude of low-frequency fluctuations; FA, fractional anisotropy; GMV, gray

matter volume.

F IGURE 2 Correlation between the observed visual working
memory (VWM) score and the VWM score predicted by the bagging
model of three modalities. Related validation results were included in
Supplementary Figures 1a–i
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We assessed the reproducibility of our main results under differ-

ent cross-validation regimes (repeated 5- and 10-fold cross-valida-

tion) and preprocessing strategies (without global signal removal,

motion scrubbing, TBSS). Regarding the two different cross-

validation regimes, we found that the advantage of multimodality

models against mono-modality models maintained, with the tri-

modality model achieving the best performance in both cases

(5-fold: r = .404 ± 0.013, p < .001, MAE = 0.602 ± 0.005, Supple-

mentary Table 1a; 10-fold: r = .408 ± 0.010, p < .001,

MAE = 0.601 ± 0.004, Supplementary Table 1b). As for the three

preprocessing strategies (Supplementary Tables 1c–1e), like in the

main analysis, the multimodality models GMV + FV and ALFF

+ GMV + FA had the highest predictive power (.402 ≤ r ≤ .414,

p < .001, 0.599 ≤ MAE ≤0.605) given that the global signal was not

removed or the TBSS strategy was used. It was only in the case of

motion scrubbing could the mono-modality model GMV (r = .400,

p < .001, MAE = 0.608) slightly outperform the tri-modality model

(r = .364, p < .001, MAE = 0.611), while the bi-modality model GMV

+ FV remained to be the best one (r = .414, p < .001, MAE = 0.599).

In the aspect of feature analyses, with the repeated 5- and 10-fold

cross-validation, the number of selected features for GMV and FA

dropped to around 400 and 200, respectively (Table 2, Supplemen-

tary Tables 1a and 1b). Yet the number of voxels selected for each

modality remained stable across the three preprocessing strategies,

that is, around 100 for ALFF, around 36,000 for GMV, and around

19,000 for FA (Table 2, Supplementary Tables 1c–1e). We also found

consistent spatial patterns of the contributive regions in each modal-

ity across the above five validation conditions (Figure 3, Supplemen-

tary Figures 2a–2e). For ALFF, the most contributive regions

remained the same except for the case of motion scrubbing (Table 3,

Supplementary Tables 2a–2d), in which the contributive regions

shifted to cingulum gyrus, putamen and pallidum. For GMV, the most

contributive regions were the same across the three different

preprocessing strategies, but shifted to frontal gyrus and inferior

occipital regions when the two cross-validation regimes were used

(Table 4, Supplementary Tables 3a and 3b). For FA, the most contrib-

utive regions remained for all validation conditions (Table 4, Supple-

mentary Tables 4a–4c). Besides the spatial locations of contributive

regions, our findings regarding the network-level contributions also

maintained under the five validation conditions (Figure 4, Supple-

mentary Figures 3a–3e). Only the motion scrubbing process showed

a relatively large influence on the pattern of positively contributive

networks in ALFF. The default mode network instead of the

subcortical-cerebellum network became the largest positively con-

tributor. In summary, the validation analyses showed that our main

findings were robust and reproducible under different cross-

validation regimes and preprocessing strategies. For more details,

please refer to Supplementary Materials.

F IGURE 3 Discriminative weights of voxel-
wise features in (a) amplitude of low-frequency
fluctuations (ALFF), (b) gray matter volume (GMV),
and (c) fractional anisotropy (FA). In all the three
maps, warm color indicates positive weights, while
cold color indicates negative weights. Darker color
indicates larger absolute values of the weights.
Related validation results were included in
Supplementary Figures 2a–g
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We also assessed the specificity of our main findings through

comparison with the findings obtained by using the proposed pipeline

on ER and FI. As shown in Supplementary Table 5 and Supplementary

Figures 1h and 1i, the correlation between the predicted and the

actual ER scores was 0.085 (p = .099), and that between the predicted

and the actual FI scores was 0.656 (p < .001). Most importantly, the

discriminative features drawn from the prediction models for the

three cognitive functions were totally different (Tables 3–5, Figures 3

and 4; Supplementary Tables 6–8, Supplementary Figures 2f and 2g,

Supplementary Figures 3f and 3g), which further confirmed the exclu-

siveness of our findings. Specifically, different from the contributor

pattern in the VWM model where high level cognitive networks

showed higher contributions, in the model predicting ER, the ALFF

and GMV features in the basic sensory-motor and subcortical-

cerebellum networks were more contributive than those in the higher

cognitive networks including frontoparietal and medial frontal net-

works. For ALFF, the most positively contributive regions were in

visual, motor, subcortical-cerebellum, and frontoparietal networks,

and the most negatively contributive regions were in subcortical-cere-

bellum, motor, and medial frontal networks. For GMV, the most con-

tributive regions were in motor, subcortical-cerebellum, and visual

networks. For FA, the most contributive regions were in external cap-

sule, internal capsule, and cingulate gyrus. For FI, the ALFF features in

higher cognitive networks contributed more than they did for VWM.

In particular, the subcortical-cerebellum, default mode, and

frontoparietal networks were the most contributive regions in ALFF

F IGURE 4 Respective sum of positively and negatively contributive weights from the (a) eight networks of amplitude of low-frequency
fluctuations (ALFF), (b) eight networks of gray matter volume (GMV), and (c) 48 fiber tracts of fractional anisotropy (FA). The network/fiber
information was derived from the 268-node functional atlas (Finn et al., 2015; Shen et al., 2013) and JHU-ICBM DTI atlas (Mori et al., 2005),
respectively. Related validation results were shown in Supplementary Figures 3a–g
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for FI. For GMV, the most contributive regions were in subcortical-

cerebellum, motor, frontoparietal, and medial frontal networks. For

FA, the most contributive regions were in corpus callosum, external

capsule, and corona radiata.

4 | DISCUSSION

By successfully building a prediction model on individual VWM capac-

ity using multimodal MRI data and machine learning techniques, we

demonstrated that specific individual cortical morphologies are associ-

ated with subject-level variation in VWM. Key features identified for

ALFF were in the subcortical-cerebellum network, default mode net-

work, and motor network. Key features identified for GMV were more

widespread, with higher cognitive networks playing the main role. For

FA, key features were mainly identified from white matter fibers of

corpus callosum, anterior corona radiata, and external capsule. These

results were highly replicable using different cross-validation and

preprocessing schemes. Although in scrubbing data, the three higher

cognitive networks revealed more discriminant validity for ALFF fea-

tures. These results revealed rich information from both structural

and functional perspectives on individual differences in VWM

capacity using task-independent data, which may provide further

implications on individual VWM and cognition research.

4.1 | Model behaviors

In this article, we adopted the RVR model, embedded with

correlation-based feature selection and average bagging, to predict

individual VWM capacity using multimodal imaging data. The

multimodality models generally outperformed the mono-modality

models (Table 2 and Figure 2), suggesting that multimodal imaging

data embraces richer information. This result also supports our

hypothesis that multimodality offers more comprehensive idiosyncra-

sies in the neural basis of VWM. Note that the performance of the tri-

modality model was significantly better (p < .05) than all the other

models except for the two involving the GMV features (i.e., GMV and

GMV + FA). This phenomenon indicates that GMV is a prominent

indicator for distinguishing individual VWM capacity, which is in line

with the results of former studies (Dimond, Perry, Iaria, & Bray, 2019;

Machizawa et al., 2020). It also provides support for previous findings

that GMV atrophy could be a sensitive biomarker in memory related

disorders such as Alzheimer's disease (Jack et al., 2013). Meanwhile,

TABLE 3 Top 10 contributive ALFF
regions and their discriminative weights

Rank

Coordinate

Weight Regionx y z

Positive weight

1 −3 −84 45 0.0431 Near left cuneus

2 −15 −63 15 0.0364 Left calcarine

3 0 6 18 0.0318 Near left caudate

4 0 9 15 0.0308 Near left caudate

5 6 −6 −12 0.0289 Near right hippocampus

6 3 9 15 0.0251 Near right caudate

7 3 −42 27 0.0240 Right cingulate gyrus, posterior part

8 −15 −6 −9 0.0238 Near left hippocampus

9 0 6 15 0.0233 Near left caudate

10 0 3 18 0.0199 Near left caudate

Negative weight

1 −42 −75 −21 −0.0676 Left cerebellum Crus1

2 −48 −36 −30 −0.0411 Near left cerebellum Crus1

3 12 −24 −39 −0.0367 Near right cerebellum 10

4 −18 −15 −18 −0.0349 Left hippocampus

5 12 −54 −60 −0.0311 Near right cerebellum 9

6 9 −24 −42 −0.0311 Near right cerebellum 10

7 −6 −6 −12 −0.0267 Near left hippocampus

8 −3 −9 −12 −0.0261 Near left hippocampus

9 3 −12 3 −0.0240 Right thalamus

10 −27 12 −12 −0.0210 Right insula

Note: Related validation results were included in Supplementary Tables 2 and 6.

Abbreviation: ALFF, amplitude of low-frequency fluctuations.
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the insignificant difference between the two multimodality models

(GMV + FA vs. ALFF + GMV + FA) suggests tight associations

(e.g., collinearity) between the functional pattern (reflected by ALFF)

and the structural pattern (reflected by GMV and FA) regarding

VWM. This is expected because a wealth of research has shown that

white matter microstructure links discreet brain areas and thus regu-

lates brain functions (Gu et al., 2015; Tang & Bassett, 2018). In fact,

with the predictive power of the multimodality models not equal to

the sum of the power of the related mono-modality models, we can

also draw the above suggestion: the information provided by different

modalities was, on the one hand, complement to each other, while on

the other hand, overlapping to some extent. Similar results were also

found in previous machine learning studies using imaging data (Dai

et al., 2012; Ecker et al., 2010). Considering that the tri-modality

model performed the best in repeated 5- and 10-fold cross-validation

(Supplementary Tables 1a and 1b; Supplementary Figures 1a and 1b)

and one of the purposes of our study was to find the most predictive

brain regions for individual VWM from three different modalities, the

tri-modality model was selected as the ultimate prediction model. The

effectiveness of this tri-modality model was further confirmed from

three aspects: (a) robustness regarding three different preprocessing

strategies (Supplementary Tables 1c–1e; Supplementary Figures 1e–

1g); (b) superiority against the models built by LR (a baseline

algorithm) and SVR (the kin counterpart of RVR) (Supplementary

Figures 1c and 1d); and (c) specificity in contrast to prediction of ER

and FI (Supplementary Table 5; Supplementary Figures 1h and 1i),

both of which are cognitive indicators related to executive functions

as VWM is.

4.2 | Identified potential neuromarkers

Our results found that in both ALFF and GMV (Tables 3 and 4;

Figures 3a,b and 4a,b), the most contributive features in the VWM

prediction model were often associated with regions of the

subcortical-cerebellum network, which revealed the crucial function

of subcortical-cerebellum network in predicting individual VWM

capacity. This is consistent with previous findings on the cognitive

functions of cerebellum and subcortical regions. For example, Habas

et al. (2009) reported that cerebellum was involved in various kinds of

nonmotor functions, supported by interaction with basal ganglia and

other brain regions (Bostan, Dum, & Strick, 2013). Sobczak-Edmans

et al. (2016) showed that different parts of the cerebellum contributed

to different VWM processes, including encoding and maintenance.

Houk et al. (2007) found that subcortical loops through basal ganglia

and cerebellum were required in encoding the sequence of visual

TABLE 4 Top 10 contributive GMV
regions and their discriminative weights

Rank

Coordinate

Weight Regionx y z

Positive weight

1 0 −39 60 0.000523 Left precuneus

2 39 9 42 0.000522 Right middle frontal gyrus

3 36 12 45 0.000503 Right middle frontal gyrus

4 0 −36 60 0.000501 Right paracentral lobule

5 −33 −21 39 0.000493 Near left postcentral gyrus

6 −39 21 24 0.000491 Left inferior frontal gyrus (triangular)

7 0 −39 63 0.000485 Near left Precuneus

8 −15 45 45 0.000483 Left superior frontal gyrus

9 −15 45 42 0.000479 Left superior frontal gyrus

10 27 −12 −12 0.000478 Right hippocampus

Negative weights

1 −39 −30 54 −0.000541 Left postcentral gyrus

2 −21 −45 12 −0.000507 Near left precuneus

3 15 −15 6 −0.000499 Right thalamus

4 −36 −30 54 −0.000497 Left postcentral gyrus

5 −39 −30 51 −0.000477 Left postcentral gyrus

6 −39 −30 57 −0.000462 Left postcentral gyrus

7 −12 −15 3 −0.000459 Left thalamus

8 −36 −30 57 −0.000459 Left postcentral gyrus

9 −12 −18 6 −0.000458 Left thalamus

10 −51 −60 18 −0.000453 Left middle temporal gyrus

Note: Related validation results were included in Supplementary Tables 3 and 7.

Abbreviation: GMV, gray matter volume.
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objects into a serial order of working memory. Further, our results

showed that subregions of subcortical-cerebellum network were

related to the VWM capacity in different ways (positively or nega-

tively), suggesting that different parts of the subcortical-cerebellum

network might act differently when performing VWM-related tasks.

Regions in the default mode network were also found contributive to

VWM prediction. Most of them were positively correlated with VWM

capacity, while a few exhibited negative correlation. Such a finding

indicates that to facilitate VWM performance, most parts of the

default mode network are activated while some other parts are

suppressed. Further, it suggests that different parts of the default

mode network might interact with different brain regions and partici-

pate in different levels of the VWM process. This is consistent with

the findings of previous studies, which reported significant correlation

between VWM performance and coordination within the default

mode network and between the default mode network and other net-

works (Greicius, Krasnow, Reiss, & Menon, 2003; Sambataro

et al., 2010; Uddin, Kelly, Biswal, Castellanos, & Milham, 2009). It is

also supportive of the findings that impairment in the default mode

network was related to the VWM capacity reduction in brain disor-

ders such as depression and schizophrenia (Whitfield-Gabrieli &

Ford, 2012). Furthermore, it is worth noting that frontoparietal net-

work showed a negative contribution to VWM prediction. Studies

have shown that the activity between the default mode and

frontoparietal networks during working memory and other tasks

tended to be anticorrelated (Murphy, Bertolero, Papadopoulos,

Lydon-Staley, & Bassett, 2020; Uddin et al., 2009). This confirms our

finding that a large portion of the contribution from the default model

network was positive and the contribution from the frontoparietal

network was negative. The motor network also made a great contri-

bution to VWM prediction. Previous studies demonstrated that motor

network was responsible for cognition, and it participated in attention

and execution through connections with other networks

(Jeannerod, 2001; van den Heuvel & Hulshoff Pol, 2010). Following

these findings, our results on the strong contribution of motor net-

work to VWM prediction reflected the task action, during which par-

ticipants responded by clicking on the right color on the panel.

Aligned with the findings in ALFF and GMV, the white matter

tract found using FA may suggest the potential pathways that link dif-

ferent networks regarding VWM (Table 5; Figures 3c and 4c). Anterior

corona radiata, the most positively contributive fiber, was shown to

play an important role in encoding visual information during VWM

tasks (Katshu et al., 2017). Moreover, right anterior corona radiata

was found significantly correlated with gaze error variability when

doing the task (Maruta, Suh, Niogi, Mukherjee, & Ghajar, 2010), which

further implies its importance in VWM. Corpus callosum, the major

TABLE 5 Top 10 contributive FA
regions and their discriminative weights

Rank

Coordinate

Weight Regionx y z

Positive weight

1 36 42 −5 0.00170 Near right anterior corona radiata

2 35 43 −4 0.00167 Near right anterior corona radiata

3 36 43 −5 0.00162 Near right anterior corona radiata

4 35 42 −4 0.00159 Near right anterior corona radiata

5 36 42 −4 0.00156 Near right anterior corona radiata

6 35 43 −3 0.00156 Near right anterior corona radiata

7 35 42 −3 0.00154 Near right anterior corona radiata

8 34 43 −3 0.00149 Near right anterior corona radiata

9 −24 24 −13 0.00143 Near left external capsule

10 36 43 −4 0.00143 Near right anterior corona radiata

Negative weight

1 11 30 −4 −0.00104 Genu of corpus callosum

2 3 −19 −6 −0.00104 Near right cerebral peduncle

3 0 0 12 −0.00101 Fornix (column and body of fornix)

4 3 −19 −5 −0.00100 Near right cerebral peduncle

5 9 26 −5 −0.000959 Genu of corpus callosum

6 25 −52 29 −0.000955 Near right posterior corona radiata

7 3 −18 −5 −0.000946 Near right cerebral peduncle

8 −8 8 26 −0.000932 Body of corpus callosum

9 11 29 −6 −0.000929 Genu of corpus callosum

10 9 29 −3 −0.000922 Genu of corpus callosum

Note: Related validation results were included in Supplementary Tables 4 and 8.

Abbreviation: FA, fractional anisotropy.
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negatively contributive fiber, was shown to be distinctively associated

with VWM (Menegaux et al., 2017). Golestani et al. (2014) have also

shown that corpus callosum underlay the integration of visual infor-

mation across the right and left visual fields. External capsule was

shown to be the second positively contributive fiber to VWM. Studies

have shown that external capsule was significantly associated with

working memory (Charlton, Barrick, Lawes, Markus, & Morris, 2010;

Nolze-Charron et al., 2020).

For the validation studies about cross-validation regimes and

preprocessing strategies, the most contributive networks maintained

except for the case of motion scrubbing (Supplementary Figure 3d). In

scrubbing data, positive contributions for all the networks increased.

This might be due to the interpolation of scrubbing decreased the

power of some voxels. Overall, this further validates the generalizability

and robustness of our findings. For the validation analyses regarding

model specificity, the networks and regions contributive to the model

that successfully predicted FI showed different patterns compared with

VWM (Supplementary Tables 6b, 7b, and 8b; Supplementary

Figures 2g and 3g; Tables 3–5, Figure 4). We found that the contribu-

tive networks of ALFF and GMV to FI were different from those con-

tributive to VWM. Specifically, the frontal parietal and medial frontal

networks of ALFF were more contributive to FI compared with VWM,

and this is in line with previous findings that FI was associated with

frontal brain (Finn et al., 2015; Woolgar et al., 2015). Meanwhile, we

also found overlapping contributive regions for predicting VWM and

FI. This is not a surprise as Fukuda et al. (2010) reported that VWM

accounted for 43% of individual differences in global FI, and other stud-

ies have also revealed the close association between FI and VWM tasks

(Heitz et al., 2005; Jaeggi et al., 2008). The overlapping regions included

the subcortical-cerebellum network in ALFF and GMV, and external

capsule, corona radiata, and corpus callosum in FA. Takagi, Hirayama,

and Tanaka (2019) have shown the state-unspecific property of the

subcortical-cerebellum network across different cognitive tasks, reveal-

ing a general association of the subcortical-cerebellum network with

cognition. Consistently, Avery et al. (2019) also found that the

subcortical-cerebellum network was a discriminative predictor for both

working memory and FI. Previous studies suggested that FI is associ-

ated with corpus callosum integrity (Nikolaidis et al., 2017; Wolf

et al., 2014) and could be improved via increasing corpus callosum

integrity during working memory training (Aydin, Uysal, Yakut,

Emiroglu, & Yilmaz, 2012; Peng, Mo, Huang, & Zhou, 2017; Takeuchi

et al., 2010). It was also observed that corpus callosum integrity could

predict FI through working memory (Privado et al., 2014). Studies have

shown that corona radiata integrity was associated with FI (Colom, Kar-

ama, Jung, & Haier, 2010; Nikolaidis et al., 2017). Tang et al. (2010) also

found that activated corona radiata during working memory task was

highly correlated with FI. As for external capsule, it is considered associ-

ated with executive functions (Mayo et al., 2019; Nolze-Charron

et al., 2020), and both VWM and FI are known to be correlated with

executive functions (Brown et al., 2012; Brydges, Reid, Fox, &

Anderson, 2012; Garlick & Sejnowski, 2006). Therefore, the over-

lapping contributive regions we found for predicting VWM and FI were

actually in good match with previous findings.

4.3 | Methodological issues and future directions

We chose the RVR method with a linear kernel to establish the VWM

prediction model from the imaging data with high dimension but a rel-

atively small sample size. Although this linear model already obtained

satisfying prediction performance and was straightforward to inter-

pret, given a larger sample, future studies might consider using

nonlinear models to better capture the relationship between neural

activities and individual VWM capacity. Besides, the feature selection

method and the bagging method used in this article were effective

but naïve. For better prediction performance, more complicated tech-

niques can be used in future studies. It is also worth noting that the

proposed model was built solely based on the dataset from the Cam-

CAN study. Although the model was trained, evaluated, and validated

following strict protocols, it remains an open issue whether the model

can perform well on imaging data from other populations and other

sites. Therefore, it would be important to perform further validation

on an independent dataset in future studies to examine the robust-

ness and generalization ability of the proposed model, which might

greatly increase the impact of the current findings.

Due to the sensibility of ALFF, GMV, and FA in predicting individ-

ual cognitive abilities (Zang et al., 2007), this article extracted the

voxel-wise data of the three modalities at the whole-brain level to

predict individual VWM capacity. Our results showed that many of

the most predictive regions located in the subcortical-cerebellum net-

work, default mode network, and motor network. Moreover, different

regions in the same network could affect the VWM capacity in differ-

ent ways. Based on these findings, an interesting future direction is to

explore whether and how the connectivity patterns of these predic-

tive regions determine their influence on the VWM capacity and how

they interact when performing VWM-related tasks.

5 | CONCLUSION

In summary, we combined multimodal imaging data of healthy partici-

pants to investigate individual VWM capacity using a well-designed

machine learning pipeline that included feature selection, RVR, cross-

validation, and model fusion. Using voxel-wise features extracted

from the whole brain in three modalities, we can predict individual

VWM capacity with correlation at 0.402 (p < .001). Moreover, we

identified several key predictors to individual VWM capacity from

both functional and structural perspectives, which can serve as poten-

tial neuromarkers of VWM and might provide further implications for

future related research.
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