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Abstract
Autoimmune diseases of the central nervous system (CNS) are associated with high levels of morbidity and economic cost.
Research efforts have previously focused on the contribution of the peripheral adaptive and innate immune systems to CNS
autoimmunity. However, a failure of thymic negative selection is a necessary step in CNS-reactive T cells escaping into the
periphery. Even with defective thymic or peripheral tolerance, the development of CNS inflammation is rare. The reasons
underlying this are currently poorly understood. In this review, we examine evidence implicating thymic selection in the
pathogenesis of CNS autoimmunity. Animal models suggest that thymic negative selection is an important factor in determining
susceptibility to and severity of CNS inflammation. There are indirect clinical data that suggest thymic function is also important
in human CNS autoimmune diseases. Specifically, the association between thymoma and paraneoplastic encephalitis and
changes in T cell receptor excision circles in multiple sclerosis implicate thymic tolerance in these diseases. We identify potential
associations between CNS autoimmunity susceptibility factors and thymic tolerance. The therapeutic manipulation of
thymopoiesis has the potential to open up new treatment modalities, but a better understanding of thymic tolerance in CNS
autoimmunity is required before this can be realised.

Introduction

Autoimmune disorders that affect the central nervous system
(CNS) are an important cause of neurological morbidity and
mortality and are associated with major economic cost [1]. The
most prevalent and extensively studied of CNS autoimmune
diseases is multiple sclerosis (MS), which affects ~ 2.3 million
people globally with prevalence of ~ 1 in 1000 individuals in
Western countries [2]. The total economic burden of MS was
estimated as €14.6 billion in Europe [3]. Other CNS autoim-
mune conditions are divided into CNS-specific inflammatory
disorders (Table 1) or systemic inflammatory disorders with

CNS manifestations due to direct reaction against CNS paren-
chyma or CNS vasculitis.

CNS inflammation is the result of pathological dysfunction
in immune tolerance, which in turn implies failure in two
mechanisms which ensure that adaptive immunity recognises
and responds to pathogen-associated non-self-antigens while
remaining tolerant of autoantigens. Immunopathology of
CNS autoimmune disorders involves breaking of toler-
ance in both the T and B cell compartments: CNS-
directed autoreactive B cells, CD8+ T cells and CD4+

helper T cells (TH1, TH17) infiltrate the CNS along with
innate immune cells leading to neurotoxicity and/or in-
flammatory tissue injury [4] (Fig. 1).

Tolerance in the T cell compartment is maintained by its
continuous induction both centrally in the thymus and periph-
erally in target tissues [5, 6]. These mechanisms shape the
repertoire of antigens recognised by T cells via their T cell
receptors (TCR). Therefore, the nature and severity of defects
in central and peripheral tolerance mechanisms determine the
extent and diversity of the spectrum of autoantigens
characterising different CNS autoimmune diseases [7]. B cell
tolerance is established by sequential checkpoints in both ear-
ly and late stages of B cell differentiation in bone marrow
[8, 9]. While this central B cell tolerance develops
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independently of T cell modulation, autoreactive B cells es-
caping negative selection in bone marrow or generated in the
periphery as a result of somatic hypermutation are normally
prevented from causing autoimmunity via B-T cell interac-
tion, most importantly induction of B cell anergy or FoxP3+

regulatory T cells (Treg) [10, 11].
Experimental and clinical studies on the role of immune

tolerance in the onset and progression of CNS autoimmunity
have predominantly focused on mechanisms underpinning es-
tablishment and long-term maintenance of peripheral toler-
ance [12]. Historically, the contribution of thymic tolerance
mechanisms in both the emergence and continuance of CNS
inflammation has not been as extensively studied. However,
mounting in vitro and in vivo evidence has reignited interest in
mechanisms of central tolerance, particularly thymic selec-
tion, in the pathogenesis of CNS autoimmune diseases [13].

In this article, we review current models of the molecular
and cellular mechanisms of thymic central tolerance and their
role in CNS autoimmunity, review current preclinical and
clinical evidence for involvement of thymic dysfunction in
CNS autoimmunity and finally consider the potential for ther-
apeutic monitoring and targeting of central tolerance as an
avenue to develop novel treatments for patients suffering from
MS and other autoimmune CNS diseases.

Thymic development and function

The thymus develops as part of the segmentation of the pos-
terior pharynx: all TECs originate from the ventral endoder-
mal lining of the third pharyngeal pouch. This primordial thy-
mic anlage attracts early thymocytes and develops into distinct
cortical and medullary regions where the interaction of TECs
with other local antigen presenting cells (APCs) and stromal
cells forms a complex 3D scaffold crucial to thymocyte dif-
ferentiation and selection [14].

Differentiation, functional specialisation and establishment
of tolerance of developing T cells (thymocytes) depend on
their interaction with thymic epithelial cells (TECs) (Fig.
2a). TECs are MHC-expressing antigen-presenting cells
(APCs) whose interaction with thymocytes restricts the T cell
repertoire to conventional αβT cells expressing TCRs which
functionally engage self-MHC (positive selection) without
leading to autoreactivity (negative selection) [15].
Additionally, growth factor and cytokine signalling by TECs
supports thymopoiesis and influences thymocyte lineage
specification [16, 17].

As well as conventional αβT cells, the thymus also
produces γδT cells, natural killer T (NKT) cells and
mucosal-associated invariant T cells. These are not

Table 1 CNS-specific autoimmune diseases

Condition Main antigens Cellular pathogenesis Clinical manifestations

Multiple sclerosis (MS) Multiple possible antigens,
likely myelin components

Combined B cell–mediated
and T cell–mediated inflammation
with innate immunity
contribution

Multifocal CNS relapsing–remitting
inflammatory disease; progressive
neurological deficits associated
with inflammation in progressive
disease MS

Neuromyelitis optica
spectrum disorders
(NMOSD)

Aquaporin 4, myelin
oligodendrocyte glycoprotein

Autoantibody-mediated Mono-/polyphasic inflammatory
disease, mainly restricted to
spinal cord or optic nerves

Autoimmune encephalitis Multiple (NMDAR, LGI1,
CASPR2, AMPAR,
GABAA/BR and others)

Autoantibody-mediated Variable; typically involves subacute
encephalopathy and seizures

Stiff person spectrum
disorder (SPSD)

GAD, glycine receptor Combined B cell and T cell
involvement +/− anti-GAD
antibodies

Spasms plus muscle rigidity

Rasmussen encephalitis Unknown T cell inflammation plus
innate immunity

Progressive hemiplegia,
pharmacoresistant focal epilepsy
with cognitive decline

Cerebellitis GAD, CASPR2, Yo Variable (B and T cell) Subacute onset of ataxia plus other
clinical features

Bickerstaff encephalitis Gangliosides (GQ1b) Autoantibody-mediated Brainstem deficits

CLIPPERS Unknown Likely T cell Brainstem deficits responsive
to steroids

Combined central and
peripheral demyelination

Neurofascin Autoantibody-mediated Focal CNS neurological deficits
plus polyradiculoneuropathy

NMDAR, N-methyl-D-aspartate receptor; LGI1, leucine-rich glioma-Inactivated protein 1; CASPR2, contactin-associated protein-like 2; AMPAR, α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; GAD, glutamic acid decarboxylase; GlyR, glycine receptor; GABAA/BR, γ-
aminobutyric acid (A or B) receptor; CLIPPERS, chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids
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discussed in depth here, but all are associated with CNS
autoimmune disease and require intact thymopoiesis for
their development [18–20].

Positive selection of conventional T cells occurs in the
cortex and is mediated exclusively by cortical TECs
(cTECs). Thymocytes are selected by stromal survival signals
if they express a TCR with high affinity for its cognate
peptide-MHC (pMHC) complex expressed on cTEC surfaces.
Thymocytes that do not fulfil these criteria of MHC restriction
(around 98%) are prohibited from further maturation into T
cells by withdrawal of selective stromal survival signals and
die by neglect.

Negative selection of thymocytes occurs in both the cortex
and medulla [21, 22]. It is mediated by cTECs or mTECs to-
gether with other intrathymic APCs. In negative selection, an-
tigen presentation induces apoptosis of thymocytes expressing
TCRs with high affinity for autoantigens [23]. At the same
time, thymocytes expressing TCRs with intermediate to high
affinity for autoantigens, undergo a process of clonal diversion:
engagement of autoantigens by their self-reactive TCR in pres-
ence of a favourable cytokine milieu (TGFβ, IL-2) induces
FoxP3 expression and differentiation into thymic Treg (tTreg),
which limit peripheral T cell autoreactivity [24–27].

The balance between survival, clonal diversion and clonal
deletion is principally determined by the affinity of TCR-
pMHC interactions.

Molecular mechanisms of negative selection

Establishment of thymic central tolerance by negative selec-
tion is dependent on the ability of thymocytes to respond
differentially to the specific kinetics of TCR-pMHC binding.
For example, TCR-pMHC complex binding triggers Ca2+ in-
flux and extracellular-signal regulated kinase (ERK) activa-
tion: prolonged, low-level Ca2+ influx and ERK signalling
maintains thymocyte survival, whereas rapid and robust
ERK activation triggers clonal deletion [28]. Moreover, close
to thymic selection thresholds (Fig. 2b), small quantitative
increases in TCR ligand affinity and binding time trigger a
qualitative shift in the phosphorylation status and subcellular
compartmentalisation of Ras/MAPK signalling intermediates,
whose recruitment to thymocyte membrane signals induction
of negative selection [29].

Thymic negative selection requires that TECs present pep-
tides derived from virtually all genes expressed within the
body, a process known as promiscuous gene expression
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(PGE). mTECs use molecular pathways coordinated by the
proteins AIRE (~ 4000 genes) and FEZF2 (~ 400 genes) to
drive the expression of tissue-restricted antigens (TRA) and
ensure that positively selected thymocytes are screened
against a wide complement of self-peptides [30–32]. Genes
regulated by AIRE-mediated PGE are associated with high
levels of chromatin marks that characterise transcriptional
repression.

The molecular orchestration of PGE in TEC is essential for
the negative selection of thymocytes. However, TECs alone
are insufficient to induce complete negative selection [33].

TEC-independent negative selection

Thymic APCs other than TECs, mainly intrathymic B cells
and dendritic cells (DCs), also play an active role in TRA
presentation. Firstly, intrathymic B cells directly participate
in PGE. Circulating naïve B cells that immigrate into the thy-
mus interact with cognate autoreactive CD4+ thymocytes via
CD40: this leads to MHC-II and CD80 upregulation and

“licences” B cells for AIRE expression, allowing TRA pre-
sentation and central tolerance induction [34]. Thymic B cells
also contribute to clonal diversion into tTreg, and mTEC func-
tion and TRA presentation by lymphotoxin secretion [35, 36].
DCs participate in negative thymocyte selection by three main
mechanisms: thymic DCs present autoantigens found in thy-
mic parenchyma or the medullary perivascular system [37];
circulating active DCs are recruited to the medulla to present
autoantigens from peripheral tissues [38, 39]; thymic DCs
present TEC-derived autoantigen through exosomal transfer
[40]. DCs are known to present some encephalitogenic T cell
epitopes to thymocytes, which may have implications for
CNS autoimmunity [41, 42].

Failure of negative selection

A failure of negative selection is a requirement for peripheral
T cell autoreactivity in both CNS autoimmunity and other
organ-specific autoimmune diseases. Even under physiologi-
cal conditions, TRA presentation to thymocytes is imperfect
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and permits potentially autoreactive T cells to escape to the
periphery [43, 44].

In most circumstances, peripheral tolerance is able to com-
pensate for incomplete thymic negative selection. This occurs
through three main processes: intrinsic or acquired immune
privilege [45], a key determinant of the relative contribution of
thymic dysfunction to CNS autoimmunity; induction of T cell
anergy [46]; and suppression of T cell responses by Treg (Fig.
2c) [11, 47].

However, peripheral tolerogenic mechanisms cannot
completely compensate for defective negative thymic selec-
tion, as illustrated by autoimmune polyendocrine syndrome
type 1.

Autoimmune polyendocrine syndrome type 1 (APS-1)

Congenital loss-of-functionAIREmutations lead to the severe
dysimmune manifestations observed in autoimmune
polyendocrine syndrome type 1 (APS-1): hypoparathyroid-
ism, adrenal insufficiency and chronic mucocutaneous candi-
diasis [48–50]. Many of these clinical manifestations are at-
tributable to defective negative selection of thymocytes by
mTEC. However, AIRE is also detectable in other cell types
both within the thymus (AIRE-expressing B cells) and else-
where (AIRE-expressing dendritic cells) [34, 51]. Evidence
for the role of these non-mTEC AIRE-expressing cells in tol-
erance is controversial, particularly since recent data on the
expression profile of human extrathymic AIRE-expressing
dendritic cells suggest that AIRE does not drive TRA expres-
sion [52, 53].

Despite the aberrant T cell selection observed in APS-1, it
is rare for autoimmune manifestations to affect the CNS be-
yond the pituitary gland [54, 55].

CNS antigen presentation in the thymus

The presence of peripheral, CNS-reactive T cells is difficult to
reconcile with the lack of neuronal autoimmunity in APS-1.
One possibility is that particular aspects of how CNS-specific
TRAs are presented to thymocytes bymTEC and other thymic
stromal cells may explain the relative lack of CNS manifesta-
tions in APS-1. TRAs in general have characteristic patterns
of chromatin modifications, depleted for active chromatin
(e.g. H3K4me3) and enriched for repressive chromatin (e.g.
H3K27me3). CNS TRAs showed very similar chromatin
modifications to other TRAs (Fig. 3a). Overall, CNS TRAs
showed the highest expression within the population of ma-
ture mTEC (Fig. 3b). There was no evidence that the propor-
tional expression or co-expression patterns of CNS TRAs
were significantly different from TRAs of other tissues, sug-
gesting that excessive redundancy in the expression of CNS
antigens within the thymus is unlikely to account for the low
frequency of CNS manifestations in APS-1 [13, 56–58] (Fig.

3c). It is possible that a mismatch between transcript expres-
sion and peptide abundance may explain part of this discrep-
ancy; future studies are likely to examine this directly.

One characteristic that distinguishes CNS-specific TRAs
from those found in other organs, is an enrichment for mi-
cro-exons: the expression of exonic sequences ≤ 30 base-
pairs in length [60, 61]. Relatively little is understood regard-
ing the expression of micro-exon-containing genes within
mTEC, but recent research suggests that micro-exons are
poorly represented within the thymus with or without the ex-
pression of AIRE [62]. CNS antigens are also known to
undergo post-translational modification [63]. In a similar
fashion to micro-exons, the representation of post-
translationally modified TRA in thymus is incomplete
[64]. The implications of these unique antigenic charac-
teristics for CNS autoimmunity are currently unclear but
would constitute potential routes by which developing
thymocytes reactive against CNS TRAs could escape
negative selection.

Overall, there are no characteristics of the thymic expres-
sion pattern of CNS-specific antigens that would explain why
the CNS compartment is rarely affected in APS-1 patients.

CNS-autoreactive T cells

T cells contribute to the immunopathogenic mechanisms of
CNS autoimmune diseases both via cellular immunity, involv-
ing direct induction of CNS inflammation along with innate
immune cells, and humoral immunity, stimulating autoanti-
body production in B cells [65]. Evidence that T cells can
result in CNS immune-mediated damage is provided by either
CNS-reactive T cells in patient CNS tissue and/or cerebrospi-
nal fluid (CSF) samples or association between HLA haplo-
types and susceptibility to CNS autoimmune disease.

Neuropathological studies show autoreactive T cell infiltra-
tion is a feature of both paraneoplastic forms of autoimmune
encephalitis, in which cytotoxic T cells and “onconeural” Abs
are directed against intracellular CNS autoantigens, and auto-
immune encephalitides characterised by autoantibodies against
CNS surface self-antigens, e.g. NMDA receptors, leucine-rich
glioma-inactivated protein 1 (LGI1) [66–69]. Similarly, in stiff
person syndrome spectrum disorders (SPSDs), IFNγ-
producing CD4+ T cells specific for an isoform of autoantigen
glutamic acid decarboxylase (GAD65) can be isolated from
patient blood and CSF samples and, in ~ 90% of patients, stim-
ulate production of anti-GAD65 IgG autoantibodies by intra-
thecal B cells [70, 71]. In Rasmussen encephalitis, there is
demonstrable infiltration of CNS parenchyma by IFNγ-
producing CD8+, CD4+ and γδ-T cells, although as of
yet without an identifiable autoantigenic target [72, 73].

Beyond a direct role of T cells in autoimmune-mediated
CNS toxicity, T cell help in the form of cytokines (e.g. IL-2)
and co-stimulatory molecules (e.g. CD40 ligand) has been
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identified as an important stimulant of B cell autoantibody
production in patients with neuromyelitis optica spectrum dis-
orders (NMOSD) and NMDA-receptor antibody encephalitis
[74, 75].

In anti-PIT-1 antibody syndrome, a thymoma-associated
form of autoimmune hypophysitis characterised by acquired
GH, TSH and prolactin deficiency, both direct T cell–
mediated neurotoxicity and T cell humoral responses have
been identified. There was CD8+ T cell infiltration of pituitary
and other endocrine organs [76]. The correlation between
levels of circulating anti-PIT 1 antibody and aberrant PIT-1
expression in thymomas supports the role of dysfunctional
thymic selection in anti-PIT-1 antibody syndrome [77].

Association of HLA haplotypes with increased risk of CNS
autoimmune disease also implicates T cell effects as key
drivers of CNS inflammation. There is a > 90% association
of the HLA-DRB1*07:01 allele with susceptibility to LGI1
antibody encephalitis, as well as a ~ 50% association of the
HLA-DRB1*11:01 allele with susceptibility to contactin-
associated protein-like 2 (CASPR2)–mediated CNS autoim-
mune diseases [78]. This association with MHC class II HLA
alleles demonstrates that autoantigen presentation to T cells is
a key process in the pathogenesis of LGI1 and CASPR2 anti-
body encephalitis.

Overall, these findings strongly indicate thymic escape of
autoreactive T cells as an important pathophysiological mech-
anism in autoantibody-mediated CNS autoimmune diseases.
However, the rarity of CNS manifestations in APS-1 argues
that a failure of thymic selection alone is unlikely to be suffi-
cient for CNS autoimmunity.

Evidence for thymic tolerance in CNS
inflammation

The most commonly used model of CNS autoimmunity is
experimental autoimmune encephalomyelitis (EAE):
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induction of cerebral and spinal inflammation by myelin
autoantigens, such as myelin oligodendrocyte glycoprotein
(MOG), proteolipid protein (PLP) and myelin basic protein
(MBP). This system has been widely used to model the key
features of human MS, albeit with several key clinical and
pathophysiological differences between human CNS autoim-
munity and EAE [79, 80].

AIRE-dependent tolerance in CNS autoimmune
disease

Induction of EAE in AIRE-deficient mice can provide insight
into the potential role of thymic tolerance in CNS autoimmu-
nity. The susceptibility of Aire−/− mice to EAE is age-
dependent and correlates with the gradual reduction of an
initially elevated number of Treg cells in the brain parenchyma
[81, 82]. AIRE deficiency results in altered development and
thymic recirculation of Treg as well as the inappropriate diver-
sion of Treg into an effector T cell phenotype [83–85].
However, further studies in MHC humanised, Aire−/− mice
showed that, even with peripheral Treg depletion, spontaneous
CNS inflammation did not develop [86].

Overall, this supports clinical insights from APS-1 patients
suggesting that impairment of thymic selection alone is insuf-
ficient for the development of CNS autoimmunity.

Treg cells in CNS autoimmune disease

Thymic Treg (tTreg—those Treg generated in the thymus) and
peripheral Treg (pTreg—peripheral conversion of effector T
cells into Treg) cells have distinct roles in control of CNS
inflammation [12]. Several studies show that Treg cell–
mediated immunomodulation has a pivotal role in protection
from EAE and MS by suppression of peripheral myelin-reac-
tive, potentially encephalitogenic T cells [87]. Acute depletion
or functional inhibition of circulating Treg cells in animal
models exacerbates EAE course, and clinical studies suggest
that Treg cells in MS patients display defects in effector T cell
suppression [88–90]. Presentation of neuronal antigenic ma-
terial by DCs to autoreactive T cells in a non-inflammatory
context leads to their differentiation into Hopx+ pTreg

cells, which in turn provide long-lasting tolerance that
protects from subsequent EAE induction [91]. MS pa-
tients exhibit defects in peripheral B cell tolerance in
spite of normal central B cell selection, implicating dys-
function in Treg cell–mediated modulation of peripheral
B cell differentiation checkpoints [92]. Recent results
from murine models have also identified a role of Treg

cells in promoting oligodendrocyte progenitor cell pro-
liferation and remyelination [93].

tTreg cells appear to be primarily involved in recovery from
CNS autoimmunity. Spontaneous resolution of EAE in mice
has been shown to involve accelerated tTreg cell proliferation,

differentiation and thymic output and is effectively prevented
by thymectomy [94].

Systemic loss of Treg cell function due to mutations in the
Treg master regulator, FOXP3, leads to immune dysregulation,
polyendocrinopathy, enteropathy, and X-linked (IPEX) syn-
drome, characterised by severe multi-organ autoimmunity
[95, 96]. However, as with defective thymic selection in
APS-1, CNS involvement in patients with IPEX syndrome is
rare, with only one report of posterior reversible encephalop-
athy syndrome (PRES) [97].

Overall, this suggests that importance of Treg cells in CNS
autoimmunity reflects a combination of regenerative and im-
munomodulatory functions but that the loss of Treg peripheral
tolerogenic functions is insufficient to induce spontaneous
CNS autoimmunity.

Insight from genetic studies

Several lines of genetic evidence highlight the necessity of
normal thymus function to maintain homeostasis between ef-
fector and tolerogenic mechanisms of adaptive immunity in
peripheral tissues, including the CNS. Mutations in genes re-
quired for thymus development and/or thymocyte selection
have been associated with CNS autoimmunity or vice versa.

Development, differentiation and function of TECs require
transcriptional master regulator Foxn1. MAP3K14 and IRF8,
genes whose mouse orthologues are regulatory targets of
Foxn1, have been implicated in MS by genome-wide associ-
ation studies (GWAS) [98–100]. Conditional Foxn1 ablation
in mice, which accelerates thymic involution, reduces Aire
expression and disrupts negative selection, also induces auto-
immune infiltration of pro-inflammatory cells in the CNS
[101]. TEC-specific knockout of Map3k14 in mice leads to
drastic decrease in thymic development and IL-17 secretion of
dendritic epidermal γδ T cells, as a result of downstream loss
of expression of Rorc and Il23r, genes required for IL-17
synthesis in γδ T cells [102]. As clinical studies have reported
increased frequency of IL-17-producing γδ T cells in the CSF
of MS patients, abnormal γδ T cell development may be im-
portant to the pathogenesis of CNS autoimmune disease [18].
Finally, Irf8 is part of a transcriptional program that facilitates
Aire expression in TECs; thus, Irf8 dysfunction may alter
representation of AIRE-regulated CNS autoantigens in the
thymus [103, 104].

Genetic evidence also points to associations between dys-
function in mechanisms of thymic selection and CNS autoim-
munity. CLEC16A, variants of which are associated with sus-
ceptibility toMS, is involved in the control of TEC autophagy,
a process that regulates MHC-associated thymic presentation
of lysosomal, nuclear and mitochondrial peptide antigens
[105, 106]. Silencing of Clec16a protects against autoimmu-
nity by inducing CD4+ T cell hyporeactivity [106], and
CLEC16A expression is upregulated in peripheral APCs of
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MS patients [107]. EAE severity in mice is exacerbated by
dysfunction in PRSS16, which encodes a serine protease con-
trolling peptide presentation to developing thymocytes [108,
109].

GWAS over the last decade have identified over 200 gene
loci that independently contribute to MS pathogenesis [110].
Like many putative autoimmune diseases, major genetic var-
iants associated with MS occur in the MHC class II subgroup
of the HLA complex: HLA-DRB1*15:01-containing haplo-
types carry the strongest association with MS risk [111].
Yet, the extent to which these variants affect thymic tolerance
is difficult to determine, as specific haplotypes will both exert
intrathymic effects on thymocyte selection and influence pe-
ripheral mechanisms of antigen presentation [112].
Autoimmunity-associated MHC polymorphisms are typically
thought to alter TCR-pMHC complex binding dynamics and
may cause extensive TCR-pMHC microcluster formation
leading to escape of autoreactive T cells [113, 114].

In general, characterisation of genetic pathways associated
with thymic function is less comprehensive than pathways
associated with peripheral innate or adaptive immune cells.
Variants in other genes associated with susceptibility to MS
or other CNS autoimmune diseases might hence affect central
thymic tolerance processes in addition to their presently un-
derstood roles in peripheral immunity [110]. Emerging se-
quencing datasets from thymic stromal cells derived frommu-
rine or human samples will help annotate biological pathways
important for thymic function [115, 116].

Evidence from animal models

Responses to myelin autoantigens in mouse models
of CNS autoimmunity

The pathological effects of manipulating thymic expression of
CNS antigens in murine EAE provide insight into the roles of
thymic selection in CNS inflammation. Immunisation with
PLP in Plp1ΔTEC mice, which lack thymic expression of
resistance-associated PLP isoforms, leads to a more severe
EAE course than in Plp1WT mice [41]. This is consistent with
previous studies showing that TEC expression of an enceph-
alitogenic PLP splice isoform induces T cell tolerance for all
PLP epitopes in EAE-resistant but not EAE-susceptible inbred
mouse strains [117].

Similar protective effects of Mbp and Aqp thymic expres-
sion are seen in EAE models induced by MBP and AQP4
respectively, with peripheral expansion of CNS-reactive T
cells not seen in wild-type mice [118, 119]. Bypassing thymic
tolerance via neonatal adoptive transfer into EAE-resistant rats
of resting MBP-reactive T cells induces susceptibility to later
EAE induction by MBP, despite MBP expression in TECs
[120]. Similarly, transfer of TH17-polarised AQP4-specific

cells into wild-type mice induces clinical and histologic signs
of CNS autoimmune disease consistent with NMOSD [119].

Collectively, evidence suggests that experimental models
of defective thymic selection can overwhelm peripheral toler-
ance mechanisms so that CNS-reactive T cells generate CNS
autoimmunity. However, since these animal models do not
develop spontaneous CNS inflammation in the absence of
exogenous antigenic priming, it is unlikely that these
models could completely recapitulate the complex path-
ophysiology of MS.

Thymic dysfunction and the rarity of CNS
inflammation

This evidence of apparently dominant influences of central
tolerance in some EAE models further highlights the paradox
in the lack of spontaneous CNS autoimmunity in human
(APS-1) and animal (Aire−/− mice) models in which thymic
selection is entirely absent. Two hypotheses have been ad-
vanced to explain this apparent contradiction.

The traditional view that the blood-brain barrier (BBB)
entirely prevents infiltration of CNS-reactive T cells, making
the CNS a perfectly immunoprivileged site, has been aban-
doned in light of current evidence [121]. In vivo tracing and
imaging findings show that, under physiological conditions, T
cells of heterogenous TCR specificities, including CNS-
reactive T cells, frequently cross the BBB of meningeal and
CNS parenchymal vessels to scan leptomeningeal and
perivascular spaces for APC-presented antigen, suggesting
that continuous trans-BBB immune cell trafficking is impor-
tant to homeostatic immune surveillance of CNS parenchyma
[122–124]. Recent findings have shown that the CNS har-
bours a complex network of T cells, which includes resting
myelin-reactive T cells, involved in recovery from brain inju-
ry, CNS ageing and neurodegeneration, and higher cognitive
function [125–128]. Disruption of homeostatic T cell surveil-
lance is central to CNS inflammation [129]. Moreover, induc-
tion of BBB breakdown in the context of stroke rapidly in-
duces clonal expansion of CNS-reactive T cells in brain pa-
renchyma, indicating that partial immune privilege is impor-
tant for the normal protection from CNS autoimmunity [130].

As well as this efferent arm (i.e. immune-cell CNS entry),
the afferent arm of the neuroimmune axis influences roles of
central and peripheral tolerance in CNS autoimmunity. The
lymphatic system of the CNS, which includes glymphatic
clearance of interstitial CNS solutes by CSF, drains soluble
antigens and immune cells from CSF and CNS parenchyma
into the cervical lymph nodes (CLNs) [131, 132]. The CNS
lymphatic system constitutes a key site where CNS antigen
presentation may trigger activation of CNS-reactive T cells. In
rodents, antigens injected in CSF or brain parenchyma grad-
ually accumulate in deep CLNs [133]. Both pharmacological
ablation of meningeal lymphatics and dCLN resection
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attenuate EAE development, most likely by reducing licens-
ing, reactivation and acquisition of encephalitogenic profile of
CNS-reactive T cells in secondary lymphoid tissues [134,
135].

An additional explanation for the rarity of CNS inflamma-
tion in the context of thymic dysfunction is that antibodies
against pro-inflammatory cytokines may preferentially block
peripheral pathogenic processes leading to CNS autoimmuni-
ty. APS-1 patients, which lack T cell–dependent B cell toler-
ance, harbour high-affinity, strongly disease-ameliorating au-
toantibodies against type I interferons, which may account for
the relative absence of CNS involvement in APS-1 [136].

Overall, it is likely that the combination of relative
immune privilege and a constitutive anti-inflammatory
state makes the CNS, under normal conditions, suffi-
ciently resistant to induction of autoimmunity in spite
of thymic escape of potentially encephalitogenic T cell
clones. This suggests that additional exogenous triggers
are required to break peripheral tolerance in human
CNS autoimmunity.

Environmental triggers of CNS autoimmunity

Animal models of CNS autoimmunity require exogenous
priming with CNS antigens to break central and peripheral
tolerance. Molecular mimicry between pathogen-derived an-
tigens and autoantigens, leading to priming and later cross-
activation of autoreactive T (and B) cells, may be a critical
environmental factor required, in addition to thymic dysfunc-
tion, to trigger CNS autoimmunity under physiological condi-
tions [137].

The strongest association between MS susceptibility and
an environmental pathogen is with Epstein-Barr virus (EBV)
[138, 139]. Crystallographic studies have revealed strong
structural homology between TCR epitopes of HLA-
DRB1*15:01-restricted MBP and HLA-DRB5*01:01-restrict-
ed EBV peptides, suggesting that molecular mimicry may be a
key determinant of the MHC class II link in MS [140].
Moreover, EBV-specific TH1 cells from infected MS patients
can cross-react against MBP peptides [141].

Molecular mimicry between AQP4 and Clostridium
perfringens has been implicated as an environmental factor
in NMOSD. NMO patients can harbour AQP4-specific
TH17-polarised cells cross-reactive against C. perfringens an-
tigens, and C. perfringens is overrepresented in their gut
microbiome [142, 143].

Distinct from molecular mimicry, infections with a variety
of pathogens can alter the phenotype and reactivity of cells
migrating into the CNS [144, 145]. This is an epitope-
independent mechanism by which environmental exposure
could overwhelm peripheral tolerance in the presence of po-
tentially autoreactive T cell clones that escaped thymic
selection.

Evidence from human autoimmune disease

Due to clear differences in the pathophysiology of EAE and
MS, findings from EAE in murine models cannot be directly
extrapolated to human CNS autoimmune disease [79].
Importantly, the contribution of ongoing thymopoiesis to
adaptive immunity differs between rodents and humans. In
mice, robust thymic function allows lifelong thymocyte selec-
tion and naïve T cell output, whereas in humans, thymic in-
volution starts in the second year of life [146]. Therefore, in
contrast to mice, in adult humans adaptive immune function is
mainly maintained by peripheral homeostatic proliferation of
naïve and memory cells in an established T cell compartment.
The early involution of human thymic tissue and its relative
inaccessibility to clinical investigation have been major obsta-
cles to studies of links between loss of thymic tolerance and
CNS autoimmunity. Nonetheless, several lines of indirect ev-
idence from patient studies point to potentially important roles
of dysfunctions in thymic tolerance in human CNS autoim-
mune disease.

Recent thymic emigrant cells and TREC
measurements

Quantification of T cell receptor excision circles (TRECs) is
an indirect assay of thymic activity that circumvents tissue
accessibility problems. TRECs are circular non-replicating
DNA fragments, produced as a result of V(D)J recombination
of TCR chain loci during thymocyte development, which can
be detected in peripheral blood T cells [147–149]. The number
of TRECs per million peripheral T cells correlates to the pro-
portion of de novo T cells that have recently emigrated from
the thymus and have not yet undergone substantial peripheral
homeostatic proliferation.

Several studies have compared numbers of TRECs in pe-
ripheral T cells of MS patients versus healthy controls to de-
termine the influence of thymopoiesis on the peripheral T cell
clonal expansion found in MS [150–161]. Meta-analysis of
these findings reveals a remarkably consistent reduction of
TREC numbers in different subsets of peripheral lymphocytes
in MS, which can be interpreted as a sign of accelerated or
premature thymic senescence (Fig. 4). However, it is impor-
tant to note that low TREC numbers do not unequivocally
reflect reduction in thymic output of naïve T cells, as increases
in peripheral T cell proliferation will also dilute the proportion
of recent thymic emigrants (RTEs) in the T cell compartment
[162]. As not all TREC studies inMS patients sort T cell based
on phenotypic markers, these do not provide conclusive evi-
dence that MS-related decreases of TREC levels are due to
reduced thymic output instead of homeostatic or antigen-
induced T cell proliferation.

CD31 has been used as a selective marker to distinguish
CD31+ TREChi RTE CD4+ T cells from CD31− TREClo
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CD4+ T cells that have undergone homeostatic proliferation.
The frequency of CD31+ RTE cells in blood are reduced in

MS patients relative to healthy controls [157–161, 163].
Furthermore, paediatric MS patients exhibit significantly
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reduced levels of circulating CD31+ RTE effector T cells and
Treg cells relative to healthy controls as well as adult-like
naïve/memory T cell ratios [164]. In addition, MS-associated
genetic variants of IL7RA, which promotes early thymocyte
survival, were associated with an increased frequency of
RTEs [165]. These lines of evidence implicate premature in-
trinsic failure of thymopoiesis as a key factor in early onset of
CNS autoimmunity.

Clonal expansion of CNS-reactive T cells and TCR
chain pairings

As discussed above, CNS-reactive T cells are a central factor
in the pathophysiology of human CNS autoimmune disease.
Clonally expanded populations of peripheral CNS-reactive T
cells, characterised by increased proliferation and pro-
inflammatory cytokine release (IFNγ, IL-17, GM-CSF) in
response to CNS antigens relative to healthy controls, have
been observed in patients with MS, NMOSD and neuropsy-
chiatric systemic lupus erythematosus (SLE) [44, 142, 166].

Clonally expanded CNS-reactive T cell populations can be
related to thymic selection defects by population-level high-
throughput sequencing of TCR locus rearrangements, which
allows to detect overrepresentations of TCR chain pairings in
the peripheral T cell compartment. T cells from MS patients
have more shared clonal TCRβ chain sequences be-
tween CNS, CSF and peripheral T cell pools than
healthy controls [167, 168]. Longitudinal TCR sequenc-
ing has shown that clonally expanded T cell populations
could be detected in brain lesions, CSF and blood sam-
ples of a single patient with MS over an 18-year course,
strongly suggesting that thymic escape of CNS-reactive
T cells contributes to the peripheral pool of encephali-
togenic T cells with subsequent maintenance by homeo-
static proliferation [169].

Roles of MS risk factors in thymopoiesis

Indications of a link between the thymus and CNS autoim-
mune diseases have also come from analysis of MS risk fac-
tors. Some factors known to be associated with MS suscepti-
bility, such as EBV infection, vitamin D levels, female sex and

certain inflammatory or metabolic influences, have also been
linked to alterations in thymopoiesis.

EBV infection

EBV infection is strongly associated with susceptibility toMS
[138, 139]. There is also evidence to suggest that EBV infec-
tion may strengthen links between thymic escape of
autoreactive T cells and CNS pathology. Specifically, EBV
infection of B cells in vitro increases secretion of chemokine
CCL17 [170]. In turn, CCL17 in the thymus has been shown
to influence differentiation and cytokine profiles of tTreg cells
[171]. Moreover, interaction between CCL17 and its receptor
CCR4 promotes pathogenesis of both EAE and MS by stim-
ulating trans-BBB transmigration of TH17 cells [172, 173].
However, the extent to which EBV infects cells within the
thymus is controversial [174–177]. Collectively, data on the
role of CCL17 provides tentative evidence that direct EBV
infection of the thymus could alter thymic output and thus
CNS inflammation.

Vitamin D deficiency

Low serum levels of 25-(OH)-vitamin D, particularly in utero,
in early life or during adolescence, are associated with in-
creased risk of MS [178–183]. Exposure to low seasonal
low levels of vitamin D either in utero or early in life has been
proposed to underlie the month-of-birth effect on MS suscep-
tibility [184, 185]. Maternal vitamin D deficiency is indeed
associated with reduced foetal thymic volume [186]. Low
vitamin D levels later in life are not associated with reduced
thymic output but are correlated with the proportion of tTreg in
the periphery [187, 188]. Furthermore, thymic output, as mea-
sured by TREC levels, is correlatedwithmonth-of-birth [189],
supporting a potential link between thymic output, vitamin D
and MS susceptibility.

Sex-related risk factors

As observed in many other autoimmune diseases, MS risk is
clearly associated with female sex [190]. It is likely that this
female sex bias in MS susceptibility may involve sex-
dependent endocrine effects on thymic tolerance. Studies in
rodents show that exposure to high oestrogen levels induces
premature thymic atrophy associated with depletion of
thymus-homing progenitors and reduced DN thymocyte pro-
liferation, apoptosis of DP thymocytes and downregulation of
AIRE expression with subsequent impairment of PGE in
mTECs [191–195]. In contrast, androgen exposure
upregulates thymic AIRE expression, leading to increased
TRA presentation by TECs and thereby reduced EAE suscep-
tibility via a male sex–dependent and AIRE-mediated process
[196]. Sex hormone–related effects on thymic selection are

�Fig. 4 Measuring T cell receptor excision circles in MS. A schematic of
selected elements of thymopoiesis. Log2 ratios of T cell receptor excision
circle abundances between patients with MS and healthy controls are
shown in forest plots. Red points indicate meta-analysed values inferred
from a random effects model weighted by inverse variance. Standard
errors were estimated from data presented in each study. RRMS,
relapsing remitting MS; PPMS, primary progressive MS; SPMS,
secondary progressive MS; Treg, regulatory T cells; PBMC, peripheral
blood mononuclear cells. The scale bar indicates the magnitude of the
log2 ratio
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therefore highly likely to contribute to the strong association
between female sex and MS susceptibility.

Inflammatory and metabolic risk factors

Inflammatory and metabolic alterations associated with ciga-
rette smoking and high body mass index (BMI) during child-
hood and adolescence, both of which constitute risk factors for
MS [197, 198], have also been tentatively linked to disruption
in thymic function. Maternal smoking has been linked to re-
duced neonatal thymic size, and prenatal nicotine exposure in
mice results in persistent thymic hypoplasia with a reduction
in CD4+ SP thymocytes [199, 200]. Imaging studies also
show that smoking and high BMI in adults are associated with
premature fatty involution of the thymus [201, 202].

Overall, evidence that risk factors of CNS autoimmune
disease are associated with thymic dysfunction is considerable
but mainly indirect. Further research should thus focus on the
effects of genetic risk loci, lifestyle factors and environmental
exposures on alterations in thymic function [203].

Evidence from alterations in thymic function

As well as evidence that CNS autoimmune disease can be
associated with thymic dysfunction, several studies have
shown that direct disruption of thymic tolerance due to
thymoma or thymectomy can be associated with alterations
in CNS autoimmunity.

Thymic tumours can be associated with development of
paraneoplastic autoimmune encephalitides involving CNS in-
filtration of cytotoxic T cells and onconeural autoantibodies.
Benign and malignant thymomas, characterised by major al-
terations in T cell tolerance related to cortical thymic hyper-
plasia, are most frequently associated with myasthenia gravis
(MG) [204]. There is also an association between thymoma
and CNS autoimmunity (most commonly limbic encephali-
tis), a group of syndromes collectively referred to as
thymoma-associated paraneoplastic encephalitis (TAPE)
[205–209]. There have also been case reports of thymoma
associated with SPSDs [210–212].

Thymectomy has been demonstrated to constitute an effec-
tive treatment for MG even in cases not associated with
thymoma, consistent with the centrality of thymic dysfunction
inMG [213]. Importantly, clinical improvement after thymec-
tomy has also been reported in some cases of TAPE, showing
that continuous thymic output of CNS antigen-specific T cells
may play a significant role in CNS autoimmunity [205–209].
MG is also associated with susceptibility to NMOSD, partic-
ularly following thymectomy [214]. As most patients harbour
anti-AQP4 antibodies years before thymectomy and disease
onset, this risk appears to be independent of CNS-reactive
antibody production and may instead reflect direct

precipitation of CNS autoimmunity by the abrupt loss of
thymopoiesis, possibly due to loss of thymic tTreg cell output.

Despite major translational insights from preclinical find-
ings, clinical interest in the potential for thymectomy as treat-
ment for MS has been historically lacking after an early trial
identified no benefit for thymectomy in patients with
relapsing-remitting disease and showed worsening of clinical
status in patients with chronic progressive disease [215]. Yet,
the small number of patients and invasiveness of thymectomy
limit interpretation of these results. More recently, there have
been reports of significant clinical improvement after thymec-
tomy in patients with concurrence of MG and MS, although
the nature of this improvement is not clear [216]. Due to the
lack of large-scale trials of thymectomy in MS patients, evi-
dence of therapeutic effectiveness (or lack thereof) remains
observational.

Since clinical improvement after MG or TAPE has been
seen after thymectomy in adults, it is likely that modulation of
thymoiesis into adulthood offers a potential useful therapeutic
avenue.

Evidence from effects of therapeutic
strategies

Just as alterations in thymic function can lead to pathophysi-
ological features of CNS autoimmunity, successful therapeu-
tic amelioration of CNS autoimmune disease can be associat-
ed with measurable changes in thymic T cell tolerance.

Comparative studies on treated versus untreated MS pa-
tients have sought to determine effects of different treatment
strategies on numbers of TRECs and/or CD31+ RTE cells in
peripheral blood mononuclear cells (PBMC) and in the CD4+

or CD8+ T cell compartments specifically (Fig. 5) [154, 156,
159–161, 217, 218]. The results of these have shown few
consistent findings, although T cell subtype-specific effects
would not be detected in these analyses.

Studies in MS pat ients subject to autologous
haematopoietic stem cell transplantation (HSCT) show that
an initial reduction in TREC levels is followed by recovery
of the peripheral T cell pool over a 2-year course. This
reconstituted T cell compartment is characterised by increased
frequency of TREChi CD31+ naïve RTE T cells and a broader
TCR repertoire [217]. Myelin-reactive T cells that eventually
re-emerge in the recovered T cell pool show significantly di-
minished TH17 responses, and this is associated with abroga-
tion of focal inflammatory disease activity and MS relapses
[218, 219]. Therefore, modulation of thymopoiesis leading to
the appearance of RTE T cells can occur in adulthood and lead
to clinically important changes in pathophysiological features
of CNS autoimmunity.

Large and sustained increases in TREC levels are also ob-
served during monoclonal antibody treatment with
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natalizumab, pointing to a therapeutic association with altered
thymopoiesis [160]. In contrast, IFNβ and glatiramer acetate
therapy have little effect on TREC levels [154, 156, 159] and
major decreases in thymic T cell output are observed during
immunomodulatory fingolimod therapy [161].

Evidence from treatment effects thus also points to poten-
tial therapeutic benefit of modulating thymopoiesis in CNS
autoimmune diseases. More detailed functional pheno-
typing of RTE T cells associated with altered CNS in-
flammation is necessary in order to understand how
changes in thymopoiesis are linked to reduction in the
mechanisms of CNS autoimmunity.

Therapeutic implications and future
directions

The modulation of thymopoiesis has unique potential as a
source of novel therapies for CNS autoimmune diseases

[13]. While thymectomy constitutes the most direct approach,
its routine application is unlikely since gross thymic abnor-
malities (e.g. thymoma, thymic hyperplasia) are far less fre-
quent in CNS autoimmune diseases than in conditions for
which thymectomy is an established treatment, such as MG
[204, 213].

Modulation of intrinsic and environmental factors
for thymopoiesis

A less invasive approach to reduce the risk of CNS autoim-
munity and improve the effects of disease-modifying thera-
pies could be to artificially manipulate intrinsic and environ-
mental factors for thymic selection, in order to increase the
elimination of autoreactive, potentially encephalitogenic T
cells and promote generation of CNS-specific tTreg cells.

If intrinsic defects in thymic selection play an important
role in CNS autoimmunity, complete renewal of the develop-
ing thymocyte pool may yield therapeutic benefit. Clinical
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studies have indeed shown that, in relapsing-remitting MS
patients, nonmyeloablative chemotherapy with anti-
thymocyte globulin followed by autologous HSCT is associ-
ated with post-transplant improvement in disability scores,
neurological function and CNS lesion volume, as well as
prolonged time to disease progression compared to immuno-
modulatory therapy alone [220–222]. While these findings
support modulation of thymopoiesis as a viable treatment for
CNS autoimmunity, their interpretation is limited by evidence
that immune system reconstitution by anti-thymocyte globulin
does not just reset thymocyte selection but depletes the pe-
ripheral T cell pool as well. The role of tTreg output in post-
HSCT improvement is also unclear, although HSCT is broad-
ly associated with at least a transient increase in Treg numbers
[223]. While CNS-specific Treg cells reduce neuroinflamma-
tion in animal models, development of protocols for efficient
generation of human CNS-specific Treg cells and trials in MS
patients to determine the influence of these cells on CNS in-
flammatory profiles are required in order to effectively assess
the therapeutic viability of Treg cell–based approaches for hu-
man CNS autoimmune disease.

With increased understanding of how thymic tolerance
changes in health and disease, it may also be possible to de-
velop preventative strategies that target environmental factors
that modulate thymopoiesis in early childhood to reduce risk
of CNS autoimmunity in later life. Nutritional factors may
play a role: both zinc and vitamin D supplementation has been
shown to modulate thymopoiesis in mice [224–226].
However, evidence that vitamin D supplementation improves
the course of MS is lacking [227]. Given the association of
obesity and premature thymic involution, nutritional strategies
aimed at control of BMI and adiposity may also have a pro-
tective effect for CNS autoimmunity [228].

In general, growing evidence that metabolism-, sex
hormone– and ageing-related factors can have pervasive in-
fluences on thymic output and thus the composition of periph-
eral T cell pools suggests that multiple molecular pathways
modulate thymopoiesis and could be preventatively targeted
in patients, such as those with strong family history, at high
risk for CNS autoimmunity [229, 230]. Large-scale studies, in
which quantitative effects of manipulating specific environ-
mental factors on thymopoiesis are measured, would need to
be conducted before the therapeutic potential of these factors
could be effectively assessed.

Induced pluripotent stem cell–derived artificial
thymic organoids

An alternative and technologically more complex approach to
modulate thymopoiesis is the in vitro differentiation from
host-derived human induced pluripotent stem cells (iPSCs)
of thymic epithelial progenitors (TEPs), which mature into
functional TECs upon transplantation into the recipient.

More specifically, artificially bioengineered thymic epithelial
tissue can be combined with biocompatible 3D scaffolds that
mimic the organisation of thymic extracellular matrix to sup-
port ex vivo or even in situ generation of artificial thymic
organoids (ATOs) [231–234].

Different studies have shown that ATOs can be generated
from animal- and human-derived iPSCs or embryonic stem
cells (as well as mature postnatal TECs) and can potentially
support thymopoiesis in vitro [235–238]. Moreover, findings
in athymic nude mice suggest ATO transplantation can effec-
tively promote central T cell tolerance (i.e. reduce allograft
rejection) [239].

Importantly, this approach can be combined with genetic
manipulation of grafted autologous TEPs to ensure that their
TEC progeny expresses desired or putative autoantigens and
can thus limit thymic escape of potentially pathogenic T cells
by fostering their clonal deletion or differentiation into
antigen-specific tolerogenic tTreg cells. The potential efficacy
of this strategy for CNS autoimmune diseases is supported by
a proof-of-concept study in a preclinical model, in which
transplantation of embryonic stem cell–derived TEPs
engineered to express MOG rendered mice resistant to later
EAE induction through deletion of MOG-autoreactive T cells
and generation of MOG-specific Treg cells [240].

Nonetheless, there are key limitations in current under-
standing of human thymic function that limit future therapeu-
tic applicability of iPSC- and ATO-based approaches for CNS
autoimmunity. Firstly, available in vitro models of human
thymopoiesis and TCR repertoire selection are incomplete.
Development of more sophisticated stem cell–derived thymic
models, which can reliably recapitulate complexities of TEC
function (especially transcriptional control of TRA gene ex-
pression) as well as the roles of intrathymic DCs and B cells, is
required before clinical investigations can be pursued.

Furthermore, the less prominent role of thymopoiesis in
adult maintenance of the peripheral T cell pool in humans than
rodents is a potential obstacle to clinical translation of ATO-
based strategies [146]. However, the detection of CNS-
specific RTE T cells following reconstitution of the peripheral
T cell compartment by autologous or allogeneic HSCT in MS
patients demonstrates that substantial potential for therapeutic
targeting of thymopoiesis can be present in adulthood [218].

Finally, the correlation between intrathymic levels of CNS
autoantigen transcripts, synthesis of CNS peptide antigens in
TECs and actual presentation to thymocytes of potentially
encephalitogenic TCR epitopes is itself only partly under-
stood. Detailed characterisation of the TEC peptidome
through recently developed high-throughput proteome screen-
ing assays is required to complement data from transcriptomic
studies and thus resolve the proportion of CNS antigens that
are effectively presented to developing thymocytes [241]. In
turn, this would allow to evaluate more accurately the poten-
tial clinical benefits for CNS autoimmunity of approaches,
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such as ATO-based strategies, aimed at therapeutic modula-
tion of the molecular mechanisms of thymic T cell tolerance.

TCR clonality of RTE T cells as a measure of treatment
effect and relapse risk

An increased consideration of the role of the thymus in CNS
autoimmunity in clinical settings could provide an important
complement to existing therapies for CNS autoimmunity. In
particular, advances in transcriptomic techniques could make
the analysis of TCR clonality of recent thymic emigrant T
cells a valuable tool to monitor the efficacy of available treat-
ment approaches.

Population-level transcriptomic analysis of peripheral T
cell pools allows to identify overrepresentation of specific
TCRβ chain locus rearrangements, which gives an indication
of overall clonal diversity in peripheral T cells and allows to
detect disease-relevant, clonally expanded T cell populations
(e.g. in MS). Yet, these approaches cannot determine the spe-
cific TCRα- andβ-chain pairings in individual cells, which is
required to understand TCR antigen specificity and clonality.
By contrast, single-cell sequencing approaches make it possi-
ble to reconstruct full-length,α-β paired TCR sequences from
the RNA sequencing data of individual T cells [242]. Such
precise characterisation of the TCR repertoire allows the iden-
tification of clonal relationship between T cells and, most
importantly, to predict their functional phenotype (e.g. effec-
tor/memory) and TCR ligand specificity.

Two main clinical applications can be envisaged for this
approach. Firstly, comparing findings from TCR repertoire
sequencing of RTE T cells in patients with CNS autoimmune
diseases before and after treatment allows to detect whether
CNS-reactive, pathogenic T cell clones persist or have been
successfully eliminated. In turn, the detection of residual or re-
emerging pathogenic T cell clones gives an indication of treat-
ment failure, allows to faithfully predict the occurrence of
relapses and may direct the choice of alternative therapeutic
approaches. Secondly, single-cell analysis of TCR clonality
may allow the identification of novel antigens (e.g. due to
epitope spreading) involved in the initiation or continuance
of CNS autoimmune responses [243].

As for other strategies, a major knowledge gap limits the
potential for testing the practicality of single-cell sequencing-
based treatment approaches in preclinical disease models and
patient-based studies. Specifically, future research should fo-
cus on providing a more detailed description of how thymic
antigen presentation, thymopoiesis and the TCR repertoire of
RTE T cell populations vary as a function of age (in particular
with thymic senescence), as well as on examining the impact
on CNS inflammation of the different functional phenotypes
of CNS-specific RTE T cells that emerge after therapeutic
haematopoietic stem cell transplantation for CNS autoimmune
diseases.

Conclusions

Research into the roles of central tolerance in human CNS
autoimmunity has considerably lagged behind research
into peripheral tolerogenic mechanisms. Nonetheless, ev-
idence from both preclinical models and studies in human
patients over the last two decades has suggested a role for
the thymus in susceptibility to and severity of CNS in-
flammation, and therefore in the risk, pathogenesis, pro-
gression and response to treatment of CNS autoimmune
disease, in particular MS.

There are still major gaps in our understanding and ability
to measure how thymopoiesis and central T cell tolerance
change during health and disease, as well as in our ability to
discriminate the influences of central tolerance induction and
peripheral tolerogenic processes in pathophysiological fea-
tures of CNS inflammation. Critically, a detailed and compre-
hensive functional phenotyping of all innate and adaptive im-
mune cells isolated from the CNS is still lacking, although is
beginning to emerge from recent studies [244]. Understanding
of this would be fundamental to a clearer elucidation of the
relationship between the CNS and the peripheral T cell com-
partment, which may resolve why the CNS is resistant to
autoimmunity even in the presence of disrupted thymic
selection (e.g. in APS-1). In turn, these knowledge gaps
significantly limit the potential for translating the mod-
ulation of thymic selection into viable therapeutic strat-
egies for CNS autoimmune disease. The promise of
these therapeutic approaches should act to stimulate fur-
ther research in this area.

In the next decade, studies providing an improved under-
standing of the roles of thymic tolerance in autoimmune dis-
eases of the CNS may support the emergence of novel inter-
ventions with greater efficacy and a lower risk of adverse
effects than currently available therapeutic options.
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