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Abstract

Graphene reportedly exerts positive effects on plant root growth and development, although

the corresponding molecular response mechanism remains to be elucidated. Maize seeds

were randomly divided into a control and experimental group, and the roots of Zea mays L.

seedlings were watered with different concentrations (0–100 mg/L) of graphene to explore

the effects and molecular mechanism of graphene on the growth and development of Z.

mays L. Upon evaluating root growth indices, 50 mg/L graphene remarkably increased total

root length, root volume, and the number of root tips and forks of maize seedlings compared

to those of the control group. We observed that the contents of nitrogen and potassium in

rhizosphere soil increased following the 50 mg/L graphene treatment. Thereafter, we com-

pared the transcriptome changes in Z. mays roots in response to the 50 mg/L graphene

treatment. Transcriptional factor regulation, plant hormone signal transduction, nitrogen and

potassium metabolism, as well as secondary metabolism in maize roots subjected to gra-

phene treatment, exhibited significantly upregulated expression, all of which could be

related to mechanisms underlying the response to graphene. Based on qPCR validations,

we proposed several candidate genes that might have been affected with the graphene

treatment of maize roots. The transcriptional profiles presented here provide a foundation

for deciphering the mechanism underlying graphene and maize root interaction.

Introduction

Nanomaterials have been widely used in the fields of electronics, machinery, energy, and bio-

medicine [1–4]. Research has indicated that certain nanomaterials may improve seed germina-

tion rate and promote plant growth in certain species [5, 6]. Nanomaterials broadly include

metals, metal oxides, polymers, and carbon nanoparticles, but only carbon nanomaterials have

attracted considerable attention because of their unique chemical properties [6]. Graphene is a

member of the carbon nanomaterials family and is the most promising engineered nanomater-

ial due to its huge surface area, unparalleled mechanical properties, and electrical and thermal
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conductivity [7]. Notably, the large surface area can be chemically modified to harbor a variety

of oxygen-containing functional groups, including carboxyl, hydroxyl, and carbonyl groups,

which confer higher water dispersity to these modified graphene structures [8].

Myriad studies have evaluated the positive effects of graphene on plant growth and develop-

ment. For a few species, including tomato, spinach, and wheat, graphene treatment reportedly

promotes seed germination. In a study conducted using tomato, graphene-treated seeds

showed accelerated germination compared to control (CK) seeds, possibly due to graphene

penetrating the seed husks and consequently facilitating water uptake [9]. Likewise, He et al.

reported that graphene could act as a water transporter to promote germination of spinach

seeds in soil [10]; however, He et al. previously reported that hydrated graphene ribbon could

promote aged seed germination in wheat [11].

Research in several species (e.g., rice, tomato, cilantro, garlic, fava bean, and maize, among

others) have shown that graphene positively affects roots generally by promoting growth and/

or by increasing the number of lateral roots [9, 12–15]. In several cases, this may also result in

increased gibberellic acid production [9] and/or greater biomass [12–14]. In rice, graphene-

treated plants exhibited increased seedling weight [12], whereas graphene treatment in cilantro

and garlic promoted the growth of numerous organs, ultimately leading to elevated yield [16].

In maize, low concentrations of sulfonated graphene are associated with increased reactive

oxygen species (ROS) scavenging in roots, leading to both altered root morphology and

improved seedling health [17]. Other possible benefits of graphene on plant growth and devel-

opment include the activation of reproduction [16], reduction of the toxic effects of drought

and salt stresses [18], increased carrier potential for the slow release of fertilizer, inhibition of

pathogens [19, 20], and/or improved utilization efficiency of nutrients [21–23].

To date, multiple studies have focused on the physiological and/or phenotypic response to

graphene exposure, with few studies characterizing the molecular response to graphene. The

goal of the present study was to explore the effects of graphene on gene expression and to char-

acterize the molecular response to graphene exposure regarding root growth and development

in Zea mays L. seedlings.

Materials and methods

Graphene characterization

Graphene was obtained and generated in our lab. The characteristics of graphene were ana-

lyzed by using ultraviolet-visible absorption spectrogram and Raman spectroscopy (HORIBA,

LabRAM HR Evolution). The Raman spectra were obtained using Renishaw inVia™ Qontor

with a 532-nm excitation laser. The morphology of graphene was examined using scanning

electron microscopy (SEM, TESCAN MAIA 3 LMH) and transmission electron microscopy

(TEM, TecnaiG2F20 S-TWIN TMP).

Maize plant cultivation and graphene exposure treatment

Similar-sized maize seeds were divided into five groups (30 seeds in each group), germinated

in potting soil in a growth chamber, and the resulting seedlings were maintained in a con-

trolled environment at 28˚C (daytime) and 20˚C (night-time), with a 16-h light/8-h dark pho-

toperiod. Graphene was diluted to five different concentrations with deionized water (0, 20,

25, 50, and 100 mg/L) and neutralized to pH 6.3–6.5 with an aqueous solution of sodium

hydroxide (0.1 M). Each solution was used as a treatment for one group of maize seeds/seed-

lings. Each graphene treatment was applied to the group via irrigation once per week, begin-

ning with seed planting. After germination, seedlings were watered weekly with 1 L of the

working solution containing the respective concentration of graphene. After 30 days (d) of
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exposure to graphene, the maize roots were thoroughly washed with deionized water, dried

with absorbent paper to remove surface water, flash-frozen in liquid nitrogen, and stored at

-80˚C until RNA extraction.

Root architecture analysis of maize seedlings

Maize seedlings from each treatment group were used for root architecture analysis. Similar to

the procedures followed for samples collected for RNA-seq, maize roots were washed and har-

vested after 30 d of graphene exposure. Roots were scanned using the Epson Perfection V850

Pro (Seiko Epson Corp., Tokyo, Japan) at 600 dpi, and the scanned images were subsequently

analyzed by WinRHIZO (Version 4.0b, Regent Instruments Inc., Quebec, Canada) [24], which

is designed to measure root-specific traits. General root architecture traits were measured by

WinRHIZO, including total root length, total projection area, total surface area, root volume,

number of root tips, and root forks.

RNA extraction, library construction, and sequencing

Total RNA of maize roots from the CK and 50 mg/L graphene-treated group was extracted

using the RNAprep pure plant kit (TIANGEN, Shanghai, China) according to the manufactur-

er’s instructions. A total of 1 μg purified mRNA was used for cDNA library construction using

the NEBNext UltraTM RNA Library Prep Kit for Illumina (NEB, USA), following the manu-

facturer’s instructions. Briefly, mRNA was purified from total RNA using poly-T oligo-

attached magnetic beads. Fragmentation was conducted using divalent cations under elevated

temperature conditions using the NEBNext First Strand Synthesis Reaction Buffer (5X). First-

strand cDNA was synthesized using random hexamer primer and M-MuLV Reverse Tran-

scriptase. Second-strand cDNA synthesis was subsequently performed using DNA Polymerase

I and RNase H. The remaining overhangs were converted into blunt ends via exonuclease/

polymerase activities. After adenylation of the 30 ends of DNA fragments, the NEBNext Adap-

tors containing hairpin loop structures were ligated to proceed with hybridization. The

AMPure XP bead system (Beckman Coulter, Beverly, USA) was used to select cDNA frag-

ments of ~300 bp. PCR amplification of the library was performed using Universal PCR prim-

ers and an Index (X) Primer with the Phusion High-Fidelity DNA polymerase. Finally, PCR

products were purified (AMPure XP system) and library quality was assessed using the Agilent

Bioanalyzer 2100 system. Clustering of the index-coded samples was performed using the cBot

Cluster Generation System and the TruSeq PE Cluster Kit v4-cBot-HS (Illumina) according to

the manufacturer’s instructions. After cluster generation, the prepared libraries were

sequenced using the Illumina NovaSeq platform and 150-bp paired-end reads were generated.

Three biological replicates were performed for both the CK and graphene treatment groups.

RNA-seq data quality control and read mapping

Raw data (raw reads) were initially processed using the FASTX-Toolkit (http://hannonlab.

cshl.edu/fastx_toolkit/) to remove adapter-containing reads and/or those of a low quality

(including poly-N). These clean reads were then mapped to the Z. mays (assembly B73

RefGen_v4) reference genome [25] using HISAT2 [26, 27]. Only reads with a perfect match or

one mismatch were retained to calculate expression. Clean data are available from the Genome

Sequence Archive in the BIG Data Center of Sciences (https://bigd.big.ac.cn/) under accession

number CRA002623.
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Quantification of gene expression levels and differentially expressed gene

(DEG) analysis

Gene expression levels were determined as fragments per kilobase of transcript per million

fragments mapped (FPKM), using the following formula:FPKM = {cDNA Fragments\over

{Mapped Fragments (Millions) �Transcript Length(kb)}}.

Differential expression analysis of the two groups was performed using the DESeq2 [28].

DESeq2 provides a statistical method for calculating differential expression using a model

based on the negative binomial distribution. The resulting p-values were adjusted using the

Benjamini-Hochberg approach [29] for controlling the false discovery rate (FDR). Genes with

an adjusted p-value< 0.01 and two-fold or greater expression change identified by DESeq2

[28] were considered differentially expressed. The Multiple Experiment Viewer (MeV) [30]

was used to display the gene expression patterns.

DEG functional annotation and enrichment analyses

DEGs were assigned functions based on the following databases: nr (NCBI non-redundant

protein sequences, ftp://ftp.ncbi.nih.gov/blast/db/), nt (NCBI non-redundant nucleotide

sequences, ftp://ftp.ncbi.nih.gov/blast/db/), Pfam (the database of homologous protein fami-

lies, http://pfam.xfam.org/), COG (Clusters of Orthologous Groups of proteins, http://www.

ncbi.nlm.nih.gov/COG/), Swiss-Prot (a manually annotated and reviewed protein sequence

database, http://www.uniprot.org/), KO (KEGG Ortholog database, http://www.genome.jp/

kegg/), and GO (Gene Ontology, http://www.geneontology.org/).

Gene Ontology (GO) enrichment of the DEGs was analyzed using the R package goseq,

which uses a Wallenius non-central hypergeometric distribution [31] that can adjust for gene

length bias of DEGs. We used KOBAS [32] to test for statistical enrichment of DEGs in KEGG

pathways.

RNA extraction, cDNA synthesis, and qRT-PCR validation

Total RNA from the CK and 50 mg/L graphene-treated group was extracted for qRT-PCR anal-

yses using the RNAprep pure plant kit (TIANGEN, Shanghai, China) according to the manu-

facturer’s instructions. The resulting RNAs were treated with DNase I before synthesizing

cDNA with oligo (dT) primers and M-MLV Reverse Transcriptase (Invitrogen); these prod-

ucts were diluted 5-fold before use. For quantitative real-time PCR (qRT-PCR), the Primer5

software was used to design gene-specific forward and reverse primers (S1 Table). Analyses

were performed with the SYBR-Green PCR Mastermix (TaKaRa) using a Mastercycler (Mas-

tercycler RealPlex; Eppendorf Ltd, Shanghai, China). The Z. mays GAPDH (ZmGAPDH) gene

was used as an internal reference [33], and the relative amount of the amplified product was

calculated following the 2-ΔΔCt method [34]. Relative expression levels were normalized by

calibrating with the CK sample from roots.

Measurement of N and K contents in rhizosphere soil of maize plants

The soil nutrient analyzer TPY-6PC developed by Zhejiang Tuopu Yunnong Technology, Co,

Ltd, was used to determine nitrogen and potassium contents of the seedling rhizosphere soil

according to the manufacturer’s instructions. The rhizosphere soil was sampled with a 5-point

sampling method according to the manufacturer’s instructions. Soil samples were thoroughly

mixed and dried for 24 h and passed through a 1-mm sieve before measurement.
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Statistical analysis

Each treatment was conducted in triplicate, and the results are presented as mean ± standard

deviation (SD). The data were analyzed using a one-way analysis of variance (ANOVA). The

significance of differences between mean values was determined using the least significant dif-

ference (LSD) test at a 0.05 probability level. Pairwise comparisons were made using the Stu-

dent’s t-test and differences were regarded as significant at p< 0.05. All statistical analyses

were performed using SPSS 21 (Predictive Analytics Software statistics 21).

Results

Characterization of graphene

The ultraviolet-visible absorption spectrogram (Fig 1A) showed a remarkable absorption peak

at 270 nm, a typical peak for graphene. Raman spectroscopy (Fig 1B) showed that the G peak

appeared near 1576 cm-1, which is generated by the stretching and movement of sp2 hybrid-

ized atoms in carbon rings or long chains, representing the ordered sp2 bond structure. Peak

D appeared near 1348 cm-1, which is indicative of a sp3 hybridized structure, representing

defects and amorphous structures at the edges of the graphene. A wide 2D peak appeared near

2707 cm-1, indicating that the number of graphene layers prepared was within 10 layers. High-

Fig 1. Characterization of graphene. (A) Ultraviolet-visible absorption spectrogram. (B) Raman spectra. (C) Transmission electron

microscopy (TEM) image. (D) TEM image.

https://doi.org/10.1371/journal.pone.0244856.g001
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resolution scanning electron microscopy (Fig 1C) and TEM (Fig 1D) analyses indicated that

the graphene was present in a transparent sheet structure with a slightly wrinkled and undu-

lated surface. The number of graphene layers prepared was 3–5, as observed by TEM.

Exogenous graphene promotes the growth and development of maize roots

The maize seedling roots were treated with five concentration gradients of graphene and a CK.

At the seedling stage, the phenotypes of maize plants were observed (S1 Fig), indicating that 50

mg/L graphene treatment significantly promoted the growth of maize plants. We next focused

on the root architecture of maize seedlings in response to the CK and five concentration gradi-

ents of graphene was investigated. Root growth and development of maize seedlings in

response to graphene treatments were promoted, especially at the 50 mg/L graphene concen-

tration (Fig 2A). Root architecture traits, including total root length, total projection area, total

surface area, root volume, and the number of root tips and root forks were measured (Fig 2B–

2G). Compared to the CK group, 25, 50, and 100 mg/L graphene treatments increased the total

root length (Fig 2B), root volume (Fig 2E), and the number of root tips (Fig 2F) and root forks

(Fig 2G) of maize seedlings. Total projection area (Fig 2C) and total surface area (Fig 2D) were

not affected by any graphene treatment. For those traits affected by graphene, those treated

with 50 mg/L graphene showed significantly higher values than those exhibited by the CK (Fig

2). Based on the above-mentioned assay results, the 50 mg/L graphene concentration was used

for the subsequent experiments and analyses.

Fig 2. Root architecture analysis of maize seedlings in response to five concentrations of graphene (0, 20, 25, 50,

and 100 mg/L). (A) Root morphology in response to five concentrations of graphene. (B) Graphene effects on the total

root length of maize seedlings. (C) Graphene effects on the total projection area of maize seedlings. (D) Graphene

effects on the total surface area of maize seedlings. (E) Graphene effects on the root volume of maize seedlings. (F)

Graphene effects on the number of root tips of maize seedlings. (G) Graphene effects on the number of root forks of

maize seedlings.

https://doi.org/10.1371/journal.pone.0244856.g002
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Transcriptome sequencing

To gain insights into the mechanisms by which graphene induces a promoting effect leading

to enhanced root development, a comparative transcriptome analysis was performed. We col-

lected root tissue samples from maize seedlings treated with 50 mg/L graphene (X100) and

used untreated seedlings as the corresponding CKs. All samples were used for transcriptome

sequencing with three biological replicates (S2 Table). In total, 170.02 million raw reads were

obtained for the CK libraries (CK-1, CK-2, and CK-3), and 166.69 million raw reads were

obtained for the X100 libraries (X100-1, X100-2, and X100-3). After removing adapter-con-

taining and low-quality sequences along with contaminated reads, 24.15 Gb and 23.92 Gb

high-quality clean bases were obtained from the CK and X100 libraries, respectively (S2

Table). Using the Z. mays genome B73 [35], the number of mapped clean reads was 43.67–

60.13 million for the CK libraries (79.65%–87.30% mapped; 77.66%–85.09% uniquely mapped)

and 49.56–59.40 million for the X100 libraries (77.83–%84.46% mapped; 75.66%–82.18%

uniquely mapped) (S3 Table).

DEGs in Z. mays roots in response to graphene treatment

We first calculated the Pearson correlation coefficient (PCC) for all genes and generated a

heatmap plot showing changes in gene expression (as shown in S2A Fig). The correlation coef-

ficients of the three biological replicates were greater than 0.90, indicating that the RNA-seq

data were reliable for further analysis. Based on principal component analysis of six samples,

the transcriptional response observed in Z. mays roots exposed to 50 mg/L graphene and CK

treatments exhibited two levels of gene expression (as shown in S2B Fig).

We were specifically interested in the identification of transcripts that were differentially

expressed in the root samples in response to graphene treatment, indicative of genes that

might be related to root development in response to graphene treatment. The expression value

of each gene was calculated using fragments per kilobase of transcript per million fragments

mapped (FPKM). A two-fold change and a p-value of less than 0.05 were set as the cutoffs to

define genes with significant differential expression (S2C Fig). We identified 962 DEGs,

among which 792 were graphene-induced and 170 were graphene-repressed (S2D Fig).

Gene enrichment analysis for DEGs

To investigate possible biological functions that determined the different responses of the

maize plants to 50 mg/L graphene treatment, we used GOseq [31] to perform GO category

enrichment analysis for DEGs. Fig 3 lists the results of the GO analysis for DEGs after gra-

phene treatment. GO terms associated with important biological processes were enriched in

maize exposed to graphene treatment, including cellular, metabolic, developmental, and

immune system processes, biological regulation, response to stimulus, and detoxification. Cel-

lular components, such as cell, membrane, and organelle parts were also enriched. Molecular

function enrichment consisted of catalytic activity, transporter activity, nucleic acid-binding

transcription factor activity, antioxidant activity, and transcription factor activity.

DEGs were referenced against the COG database [36] to classify gene function and homol-

ogy (results in S3 Fig). Most DEGs were found in orthologous groups related to secondary

metabolites biosynthesis, transport and catabolism, carbohydrate transport and metabolism,

amino acid transport and metabolism, lipid transport and metabolism, and defense

mechanisms.

DEGs were also subjected to KEGG pathway analysis to further inform their functional cat-

egorization. S4 Fig lists the results of the KEGG analysis for DEGs. Most DEGs were catego-

rized belonging to functional pathways responsible for the following: 1) metabolism, including
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phenylpropanoid biosynthesis, glutathione metabolism, flavonoid biosynthesis, carbon metab-

olism, amino sugar and nucleotide sugar metabolism, cysteine and methionine metabolism,

terpenoid backbone biosynthesis, biosynthesis of amino acids, as well as starch and sucrose

metabolism; 2) cellular process of peroxisomes; and 3) environmental information processing,

including plant hormone signal transduction, ABC transporters, phosphatidylinositol signal-

ing system, circadian rhythm in plants, and plant-pathogen interactions. Those DEGs exhibit-

ing expression upregulation were assigned to 73 KEGG pathways, including phenylpropanoid

biosynthesis, glutathione metabolism, flavonoid biosynthesis, and nitrogen metabolism (Fig

4A). Conversely, DEGs with downregulation of expression were significantly enriched in only

14 KEGG pathways, including amino sugar and nucleotide sugar metabolism, starch and

sucrose metabolism pathways, as well as plant hormone signal transduction (Fig 4B). The

results reveal that graphene may affect the expression of maize root genes, resulting in upregu-

lated expression of a majority of genes. The enrichment analysis illustrated that graphene treat-

ment exerted extensive and distinct effects on the life processes in maize.

Transcription factors enriched in maize plants exposed to graphene

We found that the GO term “transcription factor activity, protein binding” was significantly

enriched in maize roots subjected to graphene treatment (Fig 3). Transcription factors are

DNA-binding proteins that play a key role in gene transcription and expression and which

mediate many processes. Many transcription factors in the roots of maize responded to

Fig 3. Gene ontology (GO) enrichment analysis of differentially expressed genes (DEGs) after exposure to graphene. The

X-axis represents the biological functions (molecular function, biological process, and cellular component) of these DEGs. The

Y-axis represents the percentage or number of genes categorized into different functional pathways.

https://doi.org/10.1371/journal.pone.0244856.g003
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graphene treatment, and the responses differed with respect to upregulation or downregula-

tion (Table 1). Forty-four maize transcription factor genes, classified into seven different fami-

lies according to PlantTFDB [37], were differentially expressed in response to the graphene

treatment, including ERF, WRKY, bHLH, MYB and MYB-like, NAC, AP2, and MADS-box.

Among these, 32 transcription factor genes were upregulated and 12 were downregulated. The

transcription factor genes activated in Z. mays roots in response to the graphene treatment

mostly belonged to the MYB and MYB-like, WRKY, NAC, and bHLH families, suggesting that

these transcription factor genes might respond specifically to graphene in Z. mays roots.

Studies have shown that plant root development can be regulated by ERF [38], WRKY [39,

40], bHLH [41–43], MYB, and MYB-like [44–47], NAC [48, 49], AP2 [50, 51], and MADS-

box [52, 53] transcription factor (TF) genes. After exposure of Z. mays roots to graphene treat-

ment, there were three upregulated and one downregulated ethylene-responsive (ERF) tran-

scription factor (TF) genes (Fig 5A), eight upregulated and one downregulated WRKY TF

genes (Fig 5B), five upregulated and one downregulated bHLH TF genes (Fig 5C), ten upregu-

lated and two downregulated MYB and MYB-like TF genes (Fig 5D), three upregulated and

four downregulated NAC TF genes (Fig 5E), three upregulated and one downregulated AP2

TF genes (Fig 5F), and two downregulated MADS-box TF genes (Fig 5G).

As mentioned above, the total root length, root volume, and the number of root tips and

root forks (Fig 2) of maize seedlings were increased after 50 mg/L graphene treatment. These

Table 1. Differentially expressed transcription factor (TF) genes between the control (CK) and graphene treat-

ment of root samples in Zea mays.

TF family Gene Numbers Up Down

ERF 4 3 1

WRKY 9 8 1

bHLH 6 5 1

MYB and MYB-like 12 10 2

NAC 7 3 4

AP2 4 3 1

MADS-box 2 0 2

total 44 32 12

https://doi.org/10.1371/journal.pone.0244856.t001

Fig 4. KEGG pathway analysis of enriched differentially expressed genes. (A) Top 20 pathways of significantly upregulated genes (left).

(B) Top 14 pathways of significantly downregulated (right) genes.

https://doi.org/10.1371/journal.pone.0244856.g004
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seedlings exhibited improved root phenotypes that could be affected by those differentially

expressed transcription factor genes. Therefore, these TFs were considered as candidate gra-

phene-responsive genes and could be considered internal factors which promote the develop-

ment of roots in Z. mays.

Plant hormone signaling pathway

Plant hormones, including auxins, cytokinin (CKN), gibberellin (GA), abscisic acid (ABA),

ethylene, brassinosteroid (BR), jasmonate (JA), salicylic acid (SA), and strigolactone (SL) play

critical roles in plant processes, including growth, development, and adaptation to external

changing environments [54–57]. We identified DEGs related to nine hormone signal trans-

duction pathways. An overview of gene expression patterns in response to graphene treatment

in maize roots is illustrated in Fig 6. Four auxin-responsive genes, such as gene-

LOC100281448 (IAA9), gene-LOC100191976 (auxin-binding protein ABP20 precursor),

gene-LOC103642166 (auxin response factor 11), and gene-PIN5c (auxin efflux carrier PIN5c)

were differentially expressed in maize under graphene treatment conditions, indicating cross-

talk between graphene and auxin signaling. This suggests that auxin modulates the plant

response to graphene by altering the expression of genes involved in root growth regulation.

The CKN signaling pathway plays an important role in plant growth regulation. Four genes

associated with the CKN signaling pathway exhibited significant differential expression in

response to graphene treatment (Fig 6). The expression levels of gene-cko1 (cytokinin oxi-

dase1), gene-LOC100280143 (cytokinin-N-glucosyltransferase 1), and gene-LOC100282611

(cytokinin-O-glucosyltransferase 2) were increased. We found that five genes associated with

the GA pathway were also upregulated, including gene-LOC100283080 (Gibberellin 20 oxidase

Fig 5. Differentially expressed transcription factor (TF) genes between the control (CK) and graphene treatment of root samples in

Zea mays. The colored bars represent the FPKM values of the DEGs. (A) ERF. (B) WRKY. (C) bHLH. (D) MYB and MYB-like. (E)

NAC. (F) AP2. (G) MADS-box.

https://doi.org/10.1371/journal.pone.0244856.g005
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2), gene-LOC100283652 (gibberellin receptor GID1L2), and gene-gar1 (gibberellin responsive

1). JA and SA play important roles in plant defense responses. The expression of six JA-related

genes, including gene-LOC100283794 (jasmonate-induced protein), gene-LOC103629478

(jasmonate O-methyltransferase) and gene-LOC100273620 (jasmonate-regulated gene 21),

and one SA-related gene (salicylic acid-binding protein 2) were upregulated in the roots of

maize subjected to graphene treatment. Two genes involved in brassinosteroid (BR) and stri-

golactone (SL) signal transduction were induced in response to graphene treatment, suggest-

ing the roles of emerging functions of graphene-responsive hormones. Together, these results

demonstrate that hormones might form a complex regulatory network related to the graphene

response in the roots.

Nitrogen and potassium metabolism

We also identified eight nitrogen and potassium metabolism genes that were differentially

expressed (Fig 7). All five nitrogen metabolism genes were upregulated (Fig 7A) and three

(gene-GLN6, gene-nrt2, and gene-nrt2.2) were validated by qRT-PCR analysis (Fig 7B). These

genes were annotated as the glutamine synthetase root isozyme 1 and ammonium transporter,

which are involved in nitrogen transmembrane transport and root development. Conse-

quently, we measured NH4
+ content in the seedling rhizosphere soil, which was significantly

increased by up to 1.64 times in response to the 50 mg/L graphene treatment (Fig 7C).

Expression levels of three potassium metabolism genes (gene-HAK20, gene-HAK21, and

gene-kup1) were also upregulated based on RNA-seq (Fig 7D) and qRT-PCR data (Fig 7E).

Fig 6. Twenty-two plant hormone signaling pathway genes are differentially expressed. Differentially expressed

genes (DEGs), including four auxin metabolism genes, four cytokinin (CKN) metabolism genes, five gibberellin (GA)

metabolism genes, one brassinosteroid (BR) metabolism gene, six jasmonate (JA) metabolism genes, one salicylic acid

(SA) metabolism gene, and one strigolactone (SL) metabolism gene.

https://doi.org/10.1371/journal.pone.0244856.g006
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These genes are involved in potassium ion transmembrane transport and uptake; therefore, we

also measured the K+ content in the seedling rhizosphere soil, finding an increase of 1.33 fold

in response to the 50 mg/L graphene treatment (Fig 7F). These results indicate that parameters

associated with soil fertility, such as the content of NH4
+ and K+, may be elevated after irriga-

tion with graphene to further promote the growth and development of maize seedling roots.

qRT-PCR identification of DEGs

To validate the RNA-seq results, 20 DEGs were screened by qRT-PCR, including fourteen TF,

three nitrogen metabolism, and three potassium metabolism genes. We analyzed the expres-

sion of these genes using quantitative real-time PCR (qRT-PCR) and compared the results

with the RNA-seq data (Table 2). These transcripts exhibited similar expression patterns in the

qRT-PCR and RNA-seq experiments and the correlation coefficient between the two sets of

data was 0.7783 (Table 2).

Discussion

Recently, research on carbon nanomaterials has focused on applications in agriculture and for-

estry [6, 12, 58–60]. Studies have shown that graphene carbon nanotubes may affect the growth

of maize roots, promote the growth of seminal roots, and exert no effect on the growth of pri-

mary roots, but may restrain the growth of root hairs [58]. Liu et al. [12] showed that graphene

could promote rice seed germination, and could affect root development and other physiologi-

cal indicators. Graphene could interact with plants through root irrigation or leaf spraying.

Graphene-induced plant growth occurs at low concentrations, but demonstrates inhibitory

effects on plant growth at high concentrations. However, the mechanism of graphene interac-

tion with plants has not been thoroughly characterized. In this study, we determined the tran-

scriptomic response of maize roots after exposure to 50 mg/L graphene, which is considered a

low-concentration solution.

Using RNA-seq, we successfully identified 962 DEGs in the roots of Z. mays subjected to

graphene treatment. After exposure to graphene, the number of upregulated DEGs was higher

than the number of downregulated DEGs. Functional characterization of DEGs show

Fig 7. Upregulated expression of genes involved in nitrogen and potassium metabolism. (A) Nitrogen metabolism gene expression

profile based on RNA-seq data. (B) Validation of the nitrogen metabolism gene expression by qRT-RCR. (C) Nitrogen content in the

rhizosphere soil of maize seedlings in the CK and 50 mg/L graphene treatment. Values indicate mean ± SE (n = 5). p< 0.05 obtained by the

Student’s t-test. (D) Expression profile of potassium metabolism genes based on RNA-seq data. (E) Validation of the potassium metabolism

gene expression by qRT-RCR. (F) Potassium content in the rhizosphere soil of maize seedlings in the CK and 50 mg/L graphene treatment.

Values indicate mean ± SE (n = 5). p< 0.05 obtained by the Student’s t-test.

https://doi.org/10.1371/journal.pone.0244856.g007
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enrichment in the categories of transporter activity, TF activity, metabolisms and plant hor-

mone signal transduction, response to stimulus, and detoxification.

Previous research suggests that plant responses to graphene include altered expression of

TF genes, as seen by the several WRKY genes induced by graphene in the roots of treated

maize. Importantly, WRKY TFs often act as activators or repressors to modulate important

plant processes [61]. For example, Li et al. [39] showed that WRKY genes were involved in the

root elongation in Arabidopsis, while Wang et al. [40] reported a WRKY TF gene that could

affect adventitious root formation in Catalpa Scop. MYB and MYB-like TF families are also

important, as they are involved in controlling trichome development and root hair formation

[44–47]. Additionally, the R2R3 MYBs, the basic helix-loop-helix (bHLH) factors, and the

WD40 repeat (WDR) protein, play crucial roles in trichome development. These three groups

of TFs form a trimeric activator complex, MYB-bHLH-WDR (MBW), which positively regu-

lates the expression of downstream targets and, in turn, induces trichome formation [62].

Studies have also shown that bHLH TF genes are involved in root hair and meristem develop-

ment in plants [41–43], and NAC TF genes regulate lateral root development in potatoes [48]

and enhance root length in wheat [49]. In our study, we identified several differentially

expressed TF genes that respond to graphene treatment, namely WRKY, MYB, MYB-like,

bHLH, and NAC TF genes. This suggests that graphene stimulates maize root growth by upre-

gulating the expression of TF genes.

Conclusions

In this study, we demonstrated that low-concentration graphene treatment (50 mg/L) pro-

motes root growth and development in Z. mays. Thereafter, we systematically characterized

the influence of graphene on multiple metabolic pathways of Z. mays roots, including

Table 2. qRT-PCR validation of the RNA-seq results.

Gene ID Function annotations RNA-seq qRT-PCR Regulation

Fold change FDR Fold change p-value

gene-EREB60 AP2-EREBP transcription factor 2.74 6.12E-04 2.28 2.16E-03 up

gene-LOC541743 Transcription factor MYB30 isoform X1 3.51 4.87E-03 5.58 2.67E-06 up

gene-MYB64 Transcription repressor MYB6 2.48 1.42E-06 5.32 3.12E-03 up

gene-myb8 Transcription factor MYB8 3.83 5.45E-12 6.26 2.66E-02 up

gene-LOC103651266 WRKY transcription factor 51 3.74 2.39E-05 2.18 1.89E-03 up

gene-WRKY45 WRKY DNA-binding domain superfamily protein 0.37 3.91E-04 0.25 3.06E-04 down

gene-LOC103628959 MADS-box transcription factor 26 0.30 1.75E-04 0.38 8.46E-02 down

gene-bHLH94 bHLH DNA-binding domain superfamily protein 2.33 1.88E-04 4.37 4.56E-03 up

gene-LOC103631852 Transcription factor EMB1444 2.22 4.93E-04 3.89 2.49E-05 up

gene-LOC103633674 NAC transcription factor 32 8.55 2.85E-04 6.26 1.80E-03 up

gene-LOC103653847 NAC domain-containing protein 7 0.20 6.75E-03 0.13 5.17E-03 down

gene-LOC103625838 Transcription factor JUNGBRUNNEN 1 2.46 3.63E-03 3.36 4.39E-02 up

gene-LOC103630375 Ethylene-responsive transcription factor ERF020 0.36 9.69E-03 0.29 3.68E-05 down

gene-LOC103635988 Ethylene-responsive transcription factor WRI1 2.86 2.45E-04 4.16 6.44E-03 up

gene-GLN6 Glutamine synthetase root isozyme 1 2.88 2.34E-07 2.65 3.32E-02 up

gene-nrt2 Ammonium transport 2 3.42 3.66E-03 3.56 1.26E-04 up

gene-nrt2.2 High affinity ammonium transporter 3.14 7.32E-04 3.68 1.86E-03 up

gene-HAK20 Potassium transporter 5 3.00 8.11E-03 3.22 3.36E-03 up

gene-HAK21 Potassium transporter 21-like isoform X1 4.87 4.65E-15 5.56 3.72E-03 up

gene-kup1 Potassium ion uptake permease 1 3.06 9.09E-09 3.26 4.70E-03 up

https://doi.org/10.1371/journal.pone.0244856.t002
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producing alterations in the expression of phytohormones, TF, and transporter genes. These

genes are potential candidates that respond to graphene treatment by promoting root growth

and development. These results provide a theoretical foundation for subsequent research

detailing the molecular mechanisms underlying the interaction between graphene and maize

roots.
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