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Microarray technologies allow the identification of large numbers of expression differences within and between
species. Although environmental and physiological stimuli are clearly responsible for changes in the expression levels
of many genes, it is not known whether the majority of changes of gene expression fixed during evolution between
species and between various tissues within a species are caused by Darwinian selection or by stochastic processes. We
find the following: (1) expression differences between species accumulate approximately linearly with time; (2) gene
expression variation among individuals within a species correlates positively with expression divergence between
species; (3) rates of expression divergence between species do not differ significantly between intact genes and
expressed pseudogenes; (4) expression differences between brain regions within a species have accumulated
approximately linearly with time since these regions emerged during evolution. These results suggest that the
majority of expression differences observed between species are selectively neutral or nearly neutral and likely to be
of little or no functional significance. Therefore, the identification of gene expression differences between species fixed
by selection should be based on null hypotheses assuming functional neutrality. Furthermore, it may be possible to
apply a molecular clock based on expression differences to infer the evolutionary history of tissues.

Introduction

Advances in microarray technology have made the system-
atic study of expression levels of thousands of transcripts
possible. This has been heralded as a major step forward in
understanding the function of genomes, since transcript
expression levels are expected to correlate with biological
functions. Although this is clearly the case for many genes
that change their expression in response to environmental
stimuli (e.g., Spellman et al. 1998; Hughes et al. 2000; Miki et
al. 2001), it is not known whether evolutionary changes in
gene expression are determined primarily by Darwinian
selection or by stochastic processes. Indeed, the extent to
which natural selection has shaped the properties of
organisms has been hotly debated ever since Charles Darwin
proposed that organisms are adapted to their environment as
a result of natural selection. At the molecular level, the view
that most changes are due to Darwinian selection was
challenged by Kimura’s neutral theory of molecular evolution
(Kimura 1983). This theory states that the vast majority of
differences seen in nucleotide and amino acid sequences
within and between species have no or only minor selective
effects. Consequently, their occurrence within a species and
the fixation of differences between species are primarily the
result of stochastic processes. Thus, it is believed today that
the evolution of the overwhelming majority of synonymous
nucleotide changes within protein-coding exons, as well as
changes in noncoding parts of genomes, are determined by
mutational processes and random genetic drift (Li 1997). In
fact, even at the level of morphology, it has been argued that
many features are not adaptive, but instead result from
physical constraints or historical accidents (Gould and
Lewontin 1979). However, since selection acts at the level of
the phenotype while variation is generated at the level of the
genotype, the proportion of changes caused by selection can
be expected to be largest at the phenotypic level and smallest
at the DNA sequence level. As a corollary, we may expect the
proportion of selected changes to gradually decrease at the

proteome and the transcriptome levels, since these are
located progressively further from the phenotype. Conse-
quently, a large proportion of transcriptome changes might
be explained by historical accidents rather than by selective
events.
To test whether this may be the case, we have investigated

whether a neutral model can describe transcriptome differ-
ences observed among primate and mouse species as well as
among various brain regions within a species.

Results/Discussion

Transcriptome Evolution among Species
If the majority of evolutionary changes are caused by

historical accidents rather than by natural selection, they will
accumulate mainly as a function of time rather than as a
function of morphological or behavioral change of organ-
isms. Applied to transcriptome evolution, a neutral model
therefore implies that the rate of transcriptome change is
proportional to time. In particular, if we assume that
mutations cause changes in the relative amounts of tran-
scripts independently of the absolute expression level of the
gene, then the squared difference of the logarithm of the
expression level is expected to increase linearly with
divergence time (Lande 1976; Felsenstein 2004). To inves-
tigate whether this is the case, we have studied differences in
the gene expression levels of around 12,000 genes in the
prefrontal cortex of six humans, three chimpanzees (Pan
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trogodytes), one orangutan (Pongo pygmaea), and one rhesus
macaque (Macaca mulatta) using oligonucleotide microarrays.
To exclude the influence of DNA sequence differences on the
hybridization results, at least between humans and chimpan-
zees, only oligonucleotide probes that matched perfectly to
the chimpanzee DNA sequences were used in the analysis (see
Materials and Methods). In Figure 1A, we plot species

divergence times against the average squared difference
between the logarithm of the expression levels of 1,998 genes
that had expression levels large enough to be detected in all
primate samples. Although comparisons involving orangutan
and rhesus were complicated by nucleotide sequence differ-
ences to array probes, the result shows that the squared
differences represent an approximately linear function of
time over at least 20 million years. When we apply the same
analysis to published gene expression data for the livers of
three humans, three chimpanzees, and one orangutan (Enard
et al. 2002), we again observe a linear relationship between
gene expression differences and species divergence times
(Figure 1B).
Since oligonucleotide-based microarrays are sensitive to

DNA sequence differences and the orangutan and rhesus
macaque genome sequences are not yet known—so that we
cannot delete oligonucleotides carrying mismatches between
the species—we used arrays containing around 28,000 cDNAs
ranging in length from 500 to 1,500 nucleotides to assay gene
expression patterns in the prefrontal cortex of six humans,
five chimpanzees, five rhesus macaques, and five crab-eating
macaques (Macaca fascicularis). Due to the greater probe
length, these arrays are much less sensitive to DNA sequence
differences and therefore can be used to compare gene
expression in humans and macaques (Ranz et al. 2003). When
we plot the extent of gene expression divergence for 5,829
genes whose expression was detected in all samples against
species divergence time, we again observe that expression
differences accumulate approximately linearly with time
(Figure 2).
In a recent study of gene expression in the brains of

humans, chimpanzees, and orangutans, we found that the rate
of expression change on the human lineage has been larger
than on the chimpanzee lineage (Enard et al. 2002). This is in
apparent contradiction to the linearity observed here.
However, the analysis of Enard et al. (2002) was based on
less than 5% of all genes expressed in the brain because it was
confined to genes that differed significantly in expression
between humans and chimpanzees. In contrast, here we
perform a transcriptome-wide analysis of all genes with

Figure 1. Brain and Liver Transcriptome Change among Primates as a

Function of Time

Average expression differences within and between primates in
brains (A), in liver (B), and for genes in brain for genes with high (red)
and low (blue) variation among six humans (C). Colors: red,
comparisons between and with humans; blue, comparisons between
and with chimpanzees; purple, comparisons between humans and
chimpanzees; orange, comparisons between orangutan and rhesus
macaque; black, comparisons between experimental duplicates.
Vertical error bars for expression indicate 95% confidence intervals
calculated by 10,000 bootstraps over genes. Divergence times are
according to Glazko and Nei (2003).
DOI: 10.1371/journal.pbio.0020132.g001

Figure 2. Brain Transcriptome Change as Measured by cDNA Arrays

Colors and symbols as in Figure 1 except orange, which indicates
comparisons between chimpanzee and both macaque species, and
blue, which indicates comparisons between rhesus macaque and crab-
eating macaque. Divergence times are according to Hayasaka et al.
(1996) and Glazko and Nei (2003).
DOI: 10.1371/journal.pbio.0020132.g002
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detectable expression in several primate species. However,
the slightly higher divergence of humans than chimpanzees
from the two macaque species may reflect the previously
reported higher rate of gene expression divergence on the
human evolutionary lineage (Enard et al. 2002; Caceres et al.
2003; Gu and Gu 2003). However, additional experiments are
necessary to exclude the possibility that this is caused by
experimental artifacts.

The clocklike accumulation of expression differences
between species observed for primates is in agreement with
the recent observation that differences in gene expression are
consistent with phylogenetic relationships among Drosophila
species (Rifkin et al. 2003), and both these observations are
compatible with the predictions of the neutral model.
However, under certain selection scenarios, positively se-
lected changes would also accumulate linearly with time
(Felsenstein 2004). Therefore, linear accumulation of expres-
sion differences alone does not rule out selection.

In addition to the clocklike accumulation of evolutionary
changes, the neutral theory states that the same forces
determine the rate of evolution both within and between
species (Kimura 1983). Thus, a neutral prediction with
respect to transcriptome evolution is that genes that vary
more within species should be more likely to change between
species as well. In order to test this, we ranked 2,926 genes
with detectable expression levels in six humans and three
chimpanzees according to their variation within humans and
calculated the species divergences for the 25% of genes that
had the largest and the smallest human variation, respec-
tively. Figure 1C shows that the genes with high variation
among humans changed significantly faster between species
than the genes with low variation. The magnitude of observed
expression differences may be influenced by DNA sequence
mismatches affecting hybridization between orangutan and
rhesus samples and array probes. However, the difference in
divergence rates between genes with high and low expression
variation within species is unlikely to be explained by
hybridization artifacts, since this would require a difference
in sequence divergence between the two groups of genes.

We further considered the correlation between the average
diversity within humans and chimpanzees and the divergence
between the species for the 2,926 genes. This correlation is
highly significant (p , 0.001) as gauged by a permutation test
(see Materials and Methods). Since all array probes that
carried sequence differences between humans and chimpan-
zees were removed prior to analysis, this correlation is not
affected by hybridization artifacts. The strength of the
correlation (s = 0.24) is of a similar magnitude as the one
obtained for the correlation of diversity and divergence of
random genomic DNA sequences in humans and chimpan-
zees (s = 0.179, p = 0.028, n = 76), the vast majority of which
are noncoding (Hellmann et al. 2003). Thus, although the two
measures are not directly comparable, the degree of
correlation between intraspecific diversity and interspecific
divergence is similar for brain transcriptomes and random
genomic DNA sequences in humans and chimpanzees.

To investigate whether gene expression differences accu-
mulate as a function of time also in another group of
mammals, we analyzed three mouse species. An advantage in
this case is that post mortem artifacts are less likely to
influence the results than in the case of autopsy material of
humans and great apes. We determined differences in gene

expression levels for around 9,000 genes in the frontal cortex
of six outbred Mus musculus, three outbred M. spretus, and one
M. caroli. As shown in Figure 3A, the squared transcriptome
differences accumulated linearly with time among the mouse
species. To test if divergence rates differ for the genes with
high and low variation within species, we investigated the
25% of the 2,742 genes detected in all samples with the
highest and the lowest variation within M. musculus, respec-
tively, as was done in the primates. Figure 3B shows that genes
that vary more within M. musculus diverged faster among
mouse species than genes that vary less. As in the case of
primate species, imperfect matches of M. spretus and M. caroli
mRNAs to the array oligonucleotides may partly influence the
observed expression differences between species. Nonethe-
less, as for primates, the difference in divergence rates
between genes with high and low expression variation within
species is unlikely to be explained by hybridization differ-
ences since there is no indication that genes that vary more in
expression within species diverge faster between species with
respect to their DNA sequence. The correlation between
diversity and divergence for M. musculus and M. spretus for
genes detected in both species is highly significant (s= 0.29, p
, 0.001, n = 3,139), although in this case we cannot correct

Figure 3. Brain Transcriptome Change among Mice as a Function of

Time

Average expression differences within and between the mouse species
(A) and for genes with high (red) and low (blue) variation among M.
musculus individuals (B). Colors: red, comparisons between and with
M. musculus; blue, between and with M. spretus; purple, between M.
musculus and M. spretus. Vertical error bars for expression indicate
95% confidence intervals calculated by 10,000 bootstraps over genes.
Divergence times are according to She et al. (1990).
DOI: 10.1371/journal.pbio.0020132.g003
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for DNA sequence differences. A correlation between gene
expression differences within and between species was
recently demonstrated also in teleost fish (Oleksiak et al.
2002). Thus, in agreement with the neutral model, genes that
vary more within species tend to vary more between species
in three vertebrate groups.

A Test for Neutrality
One way to test whether gene expression differences

between species accumulate at a rate consistent with neutral
expectation is to compare them to the expression differences
observed for a class of genes that can reasonably be expected
to not be the direct targets of positive or negative selection.
Since expressed pseudogenes do not produce any functional
gene products, they can be viewed as such a class of genes.
Thus, if a substantial proportion of intact genes accumulate
expression differences faster than pseudogenes, this would
indicate that they are positively selected. Such an observation
would falsify a neutral model.

To test this, we considered the expression patterns in four
regions of the brain in three humans and three chimpanzees
using the Affymetrix U95 array set interrogating approx-
imately 40,000 genes (Philipp Khaitovich, unpublished data).
In order to identify all probe sets on these arrays that
interrogate expressed pseudogenes, we aligned the probe
sequences, as well as published lists of human pseudogenes, to
the human genome (see Materials and Methods). In total, 889
probe sets that overlap with pseudogenes were identified.
Thirty-three of these were detected (detection p-value , 0.05)
in at least one of four brain regions in either the chimpanzees
or the humans after masking all probes carrying DNA
sequence differences between the species. Of these, 28
contained at least one mutation that leads to a loss of
function in both humans and chimpanzees. We therefore
assumed that these pseudogenes were nonfunctional in the
common ancestor of humans and chimpanzees. Finally, we
checked whether these probe sets may crosshybridize with
any intact genes by aligning them to the human genome. This
left us with 23 expressed pseudogenes.

We compared the distributions of the squared differences
between the mean expression levels of each gene in humans
and in chimpanzees for the 23 pseudogenes and 12,647
intact genes for each of the four brain regions. In each
case, only the genes detected in a given brain region were
used for the calculation. In all four brain regions the

distribution of expression distances among intact genes did
not differ significantly from that among pseudogenes in
either a Kolmogorov-Smirnov test or a Wilcoxon rank sum
test. These tests would have been significant if more than
5% (1/23) of the genes had a distribution radically different
from that of the pseudogenes. When the data for four brain
regions were combined, no visual difference between the
two distributions was apparent (p ¼ 0.16 and p ¼ 0.69,
respectively) (Figure 4A).
Thus, we failed to detect any significant excess of intact

genes that diverged faster in expression than pseudogenes.
This indicates that the fraction of gene expression differences
between the species that are fixed by positive selection is
small. Interestingly, there was also no detectable excess of
intact genes that diverged slower than pseudogenes. This may
seem unexpected, since the expression of many intact genes
might be thought to be stabilized by negative selection and
therefore to change more slowly than pseudogenes. This may
indicate that purifying selection as well is a weak force
affecting gene expression. However, it should be noted that
the small number of expressed pseudogenes analyzed limits
the power to detect positive and negative selection. A
targeted effort to study expressed pseudogenes in closely
related species would be a worthwhile undertaking.

A Test for Positive Selection
The fact that the overall accumulation of expression

differences conforms to a selectively neutral model does not
mean, of course, that all expression differences between
species are selectively neutral. As for nucleotide changes,
some changes in gene expression will have had phenotypic
consequences and some of these will have become fixed due
to positive selection. To identify such gene expression
differences, we propose to use the ratio of divergence
between species to diversity within species, akin to the tests
suggested for quantitative genetic traits (Charlesworth 1984;
Lynch and Hill 1986; Turelli et al. 1988) and in agreement
with recent suggestions by Rifkin et al. (2002) or Hsieh et al.
(2003). However, to do this it is necessary for each gene
considered to distinguish the gene expression diversity
caused by genetic differences between individuals from the
diversity caused by environmental factors. This is crucial
since the environmental component is likely to be much
larger than the genetic component. For example, under strict
neutrality and no environmental influence, we expect a

Figure 4. Comparison between Intact

Genes and Pseudogenes

(A) shows the distributions of expression
divergence between humans and chim-
panzees for intact genes and pseudo-
genes.
(B) shows the distributions of the ratio of
expression divergence between humans
and chimpanzees and expression diver-
sity within humans for intact genes and
pseudogenes.
DOI: 10.1371/journal.pbio.0020132.g004
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divergence to diversity ratio that is equal to the ratio of time
of divergence of the species to the average time to the
common ancestors of the individuals sampled within a
species. This would be about 1:10 for humans and chimpan-

zees (Chen and Li 2001; Lander et al. 2001). However, the
observed ratio is approximately 1:3, suggesting that the
environmental component is on the order of three times
bigger than the genetic component. Studies of gene expres-
sion differences among individuals with different genetic
relatedness will eventually allow an estimation of the genetic
component of expression variation.
Since we are unable to tease apart genetic and environ-

mental contributions to expression diversity, we instead used
pseudogenes to estimate the distribution of divergence to
diversity ratios observed in the absence of selection and
compared these ratios to intact genes. No significant differ-
ence was found (Kolmogorov-Smirnov test, p = 0.388;
Wilcoxon rank sum test, p = 0.134), and both distributions
appeared to center around roughly the same values (Figure
4B). Note that this observation has to be taken cautiously
since it is based on a small number of pseudogenes and the
gene expression diversity is calculated from only three human
individuals. Nevertheless, this result indicates that there is no
drastic difference between the expression patterns of intact
genes and expressed pseudogenes, since our tests would have
been significant if 5% or more of the genes had had a
radically different divergence to diversity ratio than that
observed among the pseudogenes.

Transcriptome Evolution among Brain Regions
Different anatomical brain structures appeared at different

times during vertebrate evolution. These time points can be
viewed as divergence times between brain regions extending
millions of years back in the past (Figure 5A). If gene
expression changes between different brain regions have a
large random component, gene expression differences
between brain regions within species could potentially be
used as a molecular clock to time the divergences of tissues.
To investigate whether this may be the case, we compared
expression patterns for Brodmann’s area 44, the prefrontal
cortex, the anterior cingulate cortex, the primary visual
cortex, the caudate nucleus, and the cerebellum in three adult
human and three adult chimpanzee males (Philipp Khaito-
vich, unpublished data). All comparisons were performed
between brain regions within the same individual. This has
two advantages. First, such comparisons are unaffected by
nucleotide sequence variation between and within species.
Second, environmental differences and post mortem changes
have little effect when expression differences within one
individual are studied. In Figure 5B, we plot the average
squared distances between the six brain regions in humans
and chimpanzees against the time when these brain regions
emerged during vertebrate evolution (Butler and Hodos 1996;
Nieuwenhuys et al. 1998) for 2,297 and 2,525 genes detected
in all human and all chimpanzee samples, respectively. It can
be seen that the expression differences increase approx-
imately linearly with time over more than half a billion years.
To investigate if this finding holds also in another mamma-
lian species, we used published expression data for 1,346
genes with detectable expression in eight brain regions in the
mouse (Su et al. 2002). In this case as well there is an
approximately linear relationship between transcriptome
differences and evolutionary divergence times (Figure 5C).
If gene expression differences between the brain regions

were largely adaptive, one would expect them to correlate
with tissue function and not with evolutionary divergence

Figure 5. Transcriptome Change among Brain Regions as a Function of

Evolutionary Time

(A) Schematic evolutionary tree for six human brain regions: B.44,
Brodmann’s area 44; PFC, prefrontal cortex; ACC, anterior cingulate
cortex; PVC, primary visual cortex; CN, caudate nucleus; and CB,
cerebellum. Numbers indicate approximate divergence time in
millions of years (Butler and Hodos 1996; Nieuwenhuys et al. 1998).
(B) Average expression differences among brain regions in humans
(red) and in chimpanzees (blue).
(C) Average expression differences among brain regions in M.
musculus. Error bars for expression indicate 95% confidence intervals
calculated from 10,000 bootstrap replications over genes.
DOI: 10.1371/journal.pbio.0020132.g005
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time. Our data show that tissues that diverged recently have
very similar gene expression profiles irrespective of the
differences in function. For instance, the transcriptome of
Brodmann’s area 44 in the left hemisphere (Broca’s area) is
very similar to that of the prefrontal cortex in both humans
and chimpanzees, although it is known to be involved in
speech processing in humans while it must have another
function in chimpanzees (Kandel et al. 2000). This is what we
would expect if the time since divergence rather than the
extent of functional differences determined the magnitude of
transcriptome change. Thus, although a number of expres-
sion differences between brain regions surely correspond to
functional differences, our findings suggest that a sizeable
proportion of the differences are functionally neutral.

A noteworthy finding is that the accumulation of expres-
sion differences between brain regions within a species is
much slower than the accumulation of expression differences
within a brain region between species. In fact, the expression
differences that have accumulated among the primate species
over 20 million years (see Figure 1A) are approximately as
extensive as those that have accumulated among brain
regions over 500 million years (see Figure 5B). This is likely
to result from the fact that all expression differences seen
between brain regions within an individual are caused by
changes in regulatory networks established during develop-
ment by cells that carry the same genome. In addition,
expression differences between brain regions reflect the
different cell-type compositions of these regions. In contrast,
transcriptome differences between species are the result of
changes in regulatory networks and cellular composition of
tissues, as well as nucleotide sequence differences between
species that affect promoters and other genomic elements
that determine transcript levels. Our results show that the
latter type of changes are much more common than the
former.

A possible alternative explanation for the correlation
between differences in gene expression and evolutionary
divergence time among brain regions could be that differ-
ences in gene expression do not correlate with evolutionary
divergence time, but instead with divergence time during
fetal development. Our observations would then result from
the fact that both developmental divergence times and
expression differences correlate with evolutionary diver-
gence. A correlation between developmental and evolu-
tionary divergence times has been hypothesized before (for
a review, see Gould 1977). In fact, gene expression analyses
now provide a quantitative approach to address this question
and may also provide a tool to date the evolutionary
emergence of brain regions that cannot be discerned in the
fossil record.

Conclusions
We show that a neutral model of evolution can predict the

main features of transcriptome evolution in the brains of
primates and mice. A neutral model is also in agreement with
published observations in Drosophila (Rifkin et al. 2003) and
fish (Oleksiak et al. 2002). Although selective scenarios that
explain some or even most of these observations can be
found, the combined evidence presented leads us to conclude
that a neutral model is the most adequate null model for
transcriptome evolution. This suggests that the majority of
gene expression differences within and between species are

not functional adaptations, but selectively neutral or nearly
neutral. The main challenge now is to develop a mathematical
model of transcriptome evolution that allows quantitative
predictions of transcriptome changes. Such a model, com-
bined with experimental data estimating the normal variation
of gene expression within a species and the relative
contributions of genetic and environmental factors to this
variation, should allow adaptive gene expression changes to
be identified. Further work is also needed to reveal whether
proteome evolution is also dominated by changes that are
largely selectively neutral.
Finally, the finding that gene expression differences can be

used as a molecular clock to date tissue divergences opens the
prospect of reconstructing the evolutionary history of organs
and tissues based on gene expression measurements in a
single species.

Materials and Methods

Tissue samples and microarray data collection. For the primate
samples, approximately 200 mg of gray matter was collected from
post mortem brain samples from prefrontal cortex region corre-
sponding to Brodmann’s area 9 in the left hemisphere from six male
humans who were 45, 45, 63, 65, 70, and 70 years old; five male
chimpanzees that were 7, 12, 12, 12, and approximately 40 years old;
one 16-year-old male orangutan; five approximately 10-year-old male
rhesus macaques; and five approximately 15-year-old male crab-
eating macaques. All individuals had no history of brain-related
diseases and suffered sudden deaths without associated brain damage.
For the mouse samples, approximately 50 mg of gray matter was
collected from the frontal cortex regions of six M. musculus (three of
which are previously described in Enard et al. 2002), three M. spretus,
and one M. caroli individuals. All mice were outbred, older than 14
weeks, and healthy. Total RNA was isolated using the TRIzol reagent
(GIBCO, San Diego, California, United States) according to manu-
facturer’s instructions and purified with Quiagen RNeasy kit
(Quiagen, Valencia, California, United States) following the ‘‘RNA
cleanup’’ protocol. RNAs were of high and comparable quality as
gauged by the ratio of 28S to 18S ribosomal RNAs visualized on
agarose gels and by the signal ratios between the probes for the 39 and
59 ends of the mRNAs of GAPDH and b-actin genes used as quality
controls on Affymetrix microarrays (Affymetrix, Santa Clara,
California, United States).

For Affymetrix microarrays, labeling of 5 lg of the RNA,
hybridization, staining, washing steps, and array scanning were
carried out following Affymetrix protocols. Expression data were
collected using Affymetrix HG U95Av2 arrays for the primate
samples and Affymetrix MG U74Av2 arrays for the mice samples.
The Affymetrix CEL files containing expression data for the different
regions of the mouse brain, including amygdala, cerebral cortex,
hippocampus, hypothalamus, cerebellum, olfactory bulb, and two
regions of spinal cord were provided by John Hogenesch.

Arrays containing 51,000 cDNAs corresponding to approximately
40,000 UniGene clusters were manufactured in the laboratory of W.A.
as described elsewhere (Anonymous 2003). Labeling, hybridization,
staining, washing, and array scanning were carried out as described
by Cortes-Canteli et al. (2004) with slight modifications. All samples
were hybridized twice with dye reversal, using a mixture of all samples
as a common reference. All primary expression data were submitted
to the Array Express database (http://www.ebi.ac.uk/arrayexpress/).

Masking of sequence differences between humans and chimpan-
zees. In order to exclude all oligonucleotide probes that did not match
perfectly between humans and chimpanzees, we aligned all Affymetrix
target sequences (http://www.affymetrix.com/analysis/index.affx) first
to the human genome (build 33) and then to a draft version of the
chimpanzee genome (the assembly was given courtesy of David Jaffe in
June 2003). Using BLAT (Kent 2002), we matched chimpanzee
sequences with Affymetrix target sequences containing the 16
oligonucleotide probes and determined the best hit using a scoring
function. The chimpanzee sequence was then aligned to the human
genome to determine whether the best match coincided with the
match obtained from alignment of Affymetrix target sequences with
the human genome. To identify insertion and deletions (indels), we
compared the alignment of the Affymetrix target sequence to the
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human genome and to the chimpanzee genome, and differences in the
indel structure relative to the target sequence were identified as indels.
We then identified all oligonucleotide probes within target sequences
that matched the chimpanzee sequence perfectly. These probes were
used for the analysis while the rest of the probes were masked.

Microarray data analysis. Affymetrix microarray image data were
analyzed with Affymetrix Microarray Suite v5.0 using default
parameters. Arrays were scaled to the same average intensity using
all probes on the array. Detected genes were defined as those with a
detection p-value less than or equal to 0.05. For calculation of the
expression values, data were processed with the Bioconductor ‘‘affy’’
software package (Ihaka and Gentleman 1996) using the quantile
normalization procedure (Bolstad et al. 2003). cDNA arrays were
analyzed using the TM4 software package (Saeed et al. 2003). Detected
genes were defined as those with a spot intensity exceeding the
background intensity by more than 2-fold. All slides were normalized
to the common reference using the LOWESS normalization
algorithm. For calculation of diversity and divergence, signal to
reference ratio measurements were transformed into standardized
signal intensities by multiplying them by the average reference
intensity for each gene. Divergence was defined as the squared
difference between the mean expression of two groups of samples
averaged over (all detected) genes. Diversity was defined as the
expression variance within a group of samples.

Correlation significance test. We measured the divergence between
human and chimpanzee by looking at the squared difference between
the mean expression values in humans and chimpanzees. This
estimate of divergence includes the errors in our estimates of the
two means, which is proportional to the variance in each of the
species, and thus to the diversity in each species. Therefore, even if no
correlation between divergence and diversity existed, our measured
divergence and diversity estimates would correlate, and the smaller
the divergence is relative to diversity, the stronger the correlation
would be. To estimate if the observed correlation is larger than that
expected from this effect alone, we performed a randomization test,
in which we computed how much correlation between diversity and
divergence would be generated from the above effect even if no
correlation between diversity and divergence exists. To be conserva-
tive, we first generated a distribution that deliberately underesti-
mated the real divergence between humans and chimpanzees. This
was done by first generating a distribution of the expected observed
differences (X) in gene expression between humans and chimpanzees
if the real divergence is zero. Then using this distribution and the
observed distribution of differences (Z), we generated a distribution
(Y) that-added to values from X-would give Z. In order to under-
estimate the divergence, we generated Y assuming that the correla-
tion of X and Y is one. We then generated random samples in the
following way: For each gene (g), we chose a random difference of
expression (d) from our generated distribution. We then drew six
samples from a normal distribution whose mean is zero and whose
variance is the diversity in humans for gene g, and three samples from
a normal distribution whose mean is d and whose variance is the
diversity of chimps for gene g. For these expression values we then
calculated the correlation between diversity and divergence. We

repeated the whole procedure 1,000 times. None of these random-
izations generated a correlation that is as strong as the observed one.
To make sure that the whole test is conservative, we generated 100
datasets of three types, all of which had a similar diversity, but had a
‘‘real’’ divergence distribution of (1) zero, (2) the underestimated
divergence, or (3) the measured divergence, and had uncorrelated
diversity and divergence. We then performed the whole test described
above, doing just one randomization test. If the test was not
conservative, one would expect the correlation in the dataset to be
higher than the correlation after randomization in 50% of the cases.
Instead, the correlation after randomization was higher in 98, 98, and
99 cases respectively-showing that our test is indeed conservative.

Expressed pseudogenes. We retrieved sequences of all pseudo-
genes as determined by Torrents et al. (2003), Zhang et al. (2003), and
the VEGA project (http://vega.sanger.ac.uk). These sequences, as well
as the Affymetrix target sequences, were mapped to the human
genome (build 34) using BLAT (Kent 2002), and the best hit was
determined using the following parameters: match,þ1; mismatch,�3;
gap-opening penalty only for gaps � 20, �5; and gap extension, �1.
Next, using BLAT, we determined the Affymetrix target sequences
where the best-matching sequence did not overlap with the genomic
region of a known gene (http://genome.ucsc.edu). Thus, we identified
889 probe sets that overlapped with a pseudogene, but not with a
known gene. Combined with gene expression data collected in four
brain regions (anterior cingulate cortex, Broca’a area, caudate
nucleus, cerebellum; Philipp Khaitovich, unpublished data) in three
humans and three chimpanzees, 33 of these probe sets had detectable
expression levels in at least one brain region in either three
chimpanzees or three humans. For these probe sets, we checked
whether at least one of the identified interruptions of the human
pseudogene was also present in the chimpanzee, indicating that the
pseudogene was already nonfunctional at the time of the chimpan-
zee–human divergence. This left us with 28 probe sets that were
checked for crosshybridization with other genes by aligning
oligonucleotide probes from these probe sets to the human genome.
Finally, we were left with 23 expressed pseudogenes that did not
match perfectly to any other gene by more than seven out of 16
probes in the probe set.
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