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Studies have shown that glycerophospholipids are involved in the pathogenesis
of chronic obstructive pulmonary disease (COPD). This study adopted targeted
metabolomic analysis to investigate the changes in serum glycerophospholipids in acute
exacerbation of chronic obstructive pulmonary disease (AECOPD) and their differential
expression in patients with different inflammatory subtypes. Patients with AECOPD
admitted between January 2015 and December 2017 were enrolled, and their clinical
data were collected. The patients’ gender, age, body mass index, and lung function
were recorded. Routine blood and induced sputum tests were performed. Liquid
chromatography-mass spectrometry was used to detect the serum glycerophospholipid
metabolic profiles and to analyze the metabolic profile changes between the acute
exacerbation and recovery stages as well as the differences between different
inflammatory subtypes. A total of 58 patients were hospitalized for AECOPD, including
49 male patients with a mean age of 74.8 ± 10.0 years. In the metabolic profiles,
the expression of lysophosphatidylcholine (LPC) 18:3, lysophosphatidylethanolamine
(LPE) 16:1, and phosphatidylinositol (PI) 32:1 was significantly reduced in the
acute exacerbation stage compared to the recovery stage (P < 0.05). The three
glycerophospholipids were used to plot the receiver operating characteristic curves to
predict the acute exacerbation/recovery stage, and the areas under the curves were
all above 70%. There were no differential metabolites between the two groups of
patients with blood eosinophil percentage (EOS%) ≥2% and <2% at exacerbation. The
expression of LPC 18:3, LPE 16:1, and PI 32:1 was significantly reduced in the acute
exacerbation stage compared to the recovery stage in the inflammatory subtype with
blood EOS <2% (P < 0.05). Abnormalities in the metabolism of glycerophospholipids
may be involved in the onset of AECOPD, especially in the non-eosinophilic subtype.

Keywords: glycerophospholipids, metabolomics, chronic obstructive pulmonary disease, acute exacerbation of
chronic obstructive pulmonary disease, inflammatory subtype

INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is characterized by persistent airflow limitation
and chronic airway inflammation. It is a common and frequently occurring disease with a global
incidence of 10% and has become a worldwide public health problem (Global Initiative for
Chronic Obstructive Lung Disease, 2020). The prevalence of COPD in China is 13.7% among
people aged 40 years and above, and the total patient population is approximately 100 million
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(Zurcher et al., 2020). Furthermore, COPD places a substantial
disease burden on individuals and families as well as the society
and the economy.

Acute exacerbation (AE) of COPD (AECOPD) refers to
the exacerbation of any symptoms (e.g., cough, sputum, and
wheezing) in COPD patients. It can be caused by bacterial
or viral infection, environmental pollution, cold weather, or
interruption of routine treatment. It is a leading cause of
hospital admission and death (Berenyi et al., 2020). AECOPD
often accelerates disease progression, and each AE worsens the
patient’s lung function, aggravates complications, and increases
the risk of re-hospitalization. Thus, the main goal of COPD
treatment is to reduce the frequency of exacerbations. At present,
the underlying mechanisms of AECOPD are unclear, and the
pathophysiology of the different subtypes is poorly understood.
Therefore, metabolomics can be helpful to further investigate the
mechanisms and classifications of this disease and explore its
biomarkers in greater depth (Kilk et al., 2018; Liang et al., 2019;
Ekroos et al., 2020).

Glycerophospholipids are major components of cell
membranes, storage materials for bioactive substances,
and precursors of informational molecules. They serve
important physiological functions in cell growth, migration,
signal recognition and transduction, and apoptosis.
Glycerophospholipid molecules can be modified by
phospholipase A2 to further produce metabolites such
as lysophospholipids. Recent studies have shown that
glycerophospholipids are involved in the pathogenesis of
lung infections (Mander et al., 2002), asthma, and COPD
(Telenga et al., 2014; Cruickshank-Quinn et al., 2018; Chen et al.,
2019; Gai et al., 2019; Liang et al., 2019) and are associated with
the lipid metabolic disorder of alveolar surfactants (Cruickshank-
Quinn et al., 2018; Ekroos et al., 2020). However, to date, the
differences in the glycerophospholipids profile in the AE stage
of COPD and among different inflammatory subtypes have been
poorly investigated.

This study aimed to investigate the differences in the serum
glycerophospholipid metabolic profiles of AECOPD and among
different inflammatory subtypes to provide a basis for further
exploring the pathogenesis of AECOPD and identifying precise
therapeutic targets for different subtypes.

PATIENTS AND METHODS

Patients
A prospective study was conducted on 58 patients with AECOPD
who were admitted to the Department of Respiratory and Critical
Care Medicine at Peking University Third Hospital between
January 2015 and December 2016.

Inclusion criteria were as follows: (1) age >40 years; (2)
COPD diagnosis meeting the GOLD criteria (Global Initiative
for Chronic Obstructive Lung Disease, 2020); (3) stable-phase
pulmonary function report in the last 6 months; forced expiratory
volume in 1 s (FEV1)/forced vital capacity (FVC) ratio <70%
after bronchodilator inhalation and percentage of predicted FEV1
value (FEV1%pred) <80%; and (4) AECOPD meeting the GOLD

diagnostic criteria (Global Initiative for Chronic Obstructive
Lung Disease, 2020).

Exclusion criteria were as follows: (1) comorbidity with other
lung diseases such as active tuberculosis, bronchiectasis, asthma,
interstitial lung disease, pleural effusion from various causes, and
lung malignancies; and (2) intravenous or oral glucocorticoid
therapy for AEs within 28 days.

This study was approved by the Ethics Committee of Peking
University Third Hospital (approval number: LM2016032),
and written informed consent was provided by the patients
enrolled in the study.

Methods
Clinical Data Collection
Demographic information (e.g., gender, age, body mass index,
and smoking history), status of inhaled corticosteroids, number
of AEs in the past year, and stable-phase lung function parameters
in the past 6 months (e.g., FEV1%pred and FEV1/FVC) were
recorded for all patients. Patients’ AECOPD symptoms were also
recorded, and 2 mL of peripheral blood was collected for serum
phospholipid profiling. To further clarify the characteristics of
different AECOPD subtypes, serum glycerophospholipid assays
were performed on the first day of admission during the AE
stage and on the 10–14 days after treatment of AECOPD (before
discharge). In addition, patients were classified into different
inflammatory subtypes based on whether their peripheral blood
eosinophil percentage (EOS%) was ≥2% or <2%, and whether
sputum EOS% was ≥3% or <3% to compare the differences in
serum glycerophospholipid profiles (Figure 1).

Sputum Cytology
Patients were asked to rinse their oral cavity and posterior
oropharynx with 3% hypertonic saline prior to sampling.
Sputum was then produced spontaneously, or induced
sputum was collected. For the collection of induced sputum,
patients inhaled an aerosol of 3% saline and coughed up a
sufficient amount of sputum within 30 min. The sputum was
treated with 0.4% dithiothreitol (DTT, Millipore, Canada),
homogenized by shaking at 37◦C for 30 min, and stained for
cytological examination. The remainder was divided into 0.5 mL
portions and stored at −80◦C for glycerophospholipid testing
(Cao et al., 2006).

Serum Glycerophospholipid Profiling
Liquid chromatography-mass spectrometry (LC-MS) was
performed to determine serum glycerophospholipid profiles,
as described in our previous publications (Gai et al., 2019;
Liang et al., 2019). Briefly, the serum was separated from whole
blood and lipid extraction was carried out using the Waters
Acquity UPLC system, with a UPLC BEH C18 column (1.7 µm;
internal diameter, 100 × 2.1 mm). An AB Sciex 5500 QTRAP
mass spectrometer was used with the following specifications:
ion source, Turbo Ion Spray electrospray ionization; scan
mode, multiple reaction monitoring, with the following ion
source parameters: CUR = 40 psi, GS1 = 30 psi, GS2 = 30 psi,
IS = −4,500 V, CAD = MEDIUM, and TEMP = 350◦C. The
glycerophospholipid scanning strategy has been described in
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FIGURE 1 | Flowchart of study design. AECOPD, acute exacerbation of chronic obstructive pulmonary disease; EOS, eosinophil percentage.

our previous study (Gai et al., 2019). A total of 14 classes of
glycerophospholipids (129 species) were analyzed in this study:
phosphatidylcholine (PC, 21 species), alkylphosphatidylcholine
[PC(O), 15 species], phosphatidylcholineplasmalogen
(PCP, 8 species), phosphatidylethanolamine (PE, 12
species), alkylphosphatidylethanolamine (PEO, 4 species),
phosphatidylethanolamine plasmalogen (PEP, 2 species),
phosphatidylglycerol (PG, 2 species), phosphatidylinositol
(PI, 11 species), lysophosphatidylcholine (LPC, 11
species), lysophosphatidylethanolamine (LPE, 12 species),
lysophosphatidylserine (LPS, 5 species), lysophosphatidylglycerol
(LPG, 11 species), lysophosphatidylinositol (LPI, 9 species), and
lysoalkylphosphatidylcholine (LPCO, 6 species).

Statistical Methods
The metabolic profiles of glycerophospholipid levels in patients
with different COPD subtypes were compared using multivariate
statistics (Chong et al., 2018). Partial least squares–discrimination
analysis (PLS-DA) was performed for the patients’ samples, and
differential metabolites were screened using methods such as
estimation of variable importance in projection values, loading
weights, and correlation coefficients. The differential metabolites
that contributed to subtyping were further subjected to one-
way analysis of variance and Bonferroni multiple comparisons
to validate the results obtained by above statistics. Data and
statistical analyses were performed using the SPSS 19.0 package.
Normally distributed measurement data are expressed as x̄ ± s,
and the χ2-test was performed for the comparison of constituent
ratios. The intensity of LPC, LPE, and PI were evaluated using the
receiver operating characteristic (ROC) curve method. P ≤ 0.05
was considered statistically significant.

RESULTS

General Information
Fifty-eight patients with AECOPD were included (mean age,
74.8 ± 10.0 years; mean FEV1%pred, 42.6 ± 18.2%; and
FEV1/FVC, 49.2± 10.4%; Table 1).

Metabolic Profile Changes During the AE
and Recovery Stages
Among the 58 patients included, serum was collected from 23
patients to compare the glycerophospholipid metabolic profiles
between the AE and recovery (7–10 days after admission) stages.
PLS-DA indicated that the global glycerophospholipids tends
to be distinguishable from the metabolic profiles of AE and
recovery stages. The volcano plots (Figure 2A) showed that
there were three differential glycerophospholipid metabolites
after false discovery rate (FDR) correction with significant
changes: LPC 18:3, LPE 16:1, and PI 32:1. Table 2 shows the

TABLE 1 | General information of patients with AECOPD.

Variable Value

Male/female 49/9

Age (years) 74.8 ± 10.0

BMI (kg/m2) 22.1 ± 4.9

Current smokers 20 (34.5%)

Former smokers 33 (56.9%)

Never smokers 5 (8.6%)

Smoking (pack-years) 39.1 ± 31.1

COPD duration (years) 14.6 ± 12.0

AEs in the past year 1.57 ± 1.36

Concomitant respiratory failure 25 (41.7%)

ICU on admission (%) 11 (19.0%)

Need for non-invasive ventilation on admission (%) 11 (19.0%)

Need for invasive ventilation on admission (%) 2 (3.4%)

FEV1%pred 42.6 ± 18.2

FEV1/FVC (%) 49.2 ± 10.4

Blood EOS count (/109/L) 0.04 (0.00, 0.14)

Blood EOS ratio (%) 0.50 (0.10, 2.10)

AECOPD, acute exacerbation of chronic obstructive pulmonary disease; FEVl ,
forced expiratory volume in 1 s; FEV1%pred, FEVl expressed as a percentage of the
predicted value; FVC, forced vital capacity; EOS, eosinophil. All data with a normal
distribution are shown as the mean ± standard deviation. Non-normally distributed
data are expressed as median (25–75%).
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FIGURE 2 | (A) Volcano plot showing glycerophospholipids with significant differences between the AE and recovery stages of COPD. The x-axis is the logarithm to
the base 2 of the ratio of a given phospholipid in the AE and recovery stages, and the y-axis is the logarithm to the base 10 of the P-value of that phospholipid in
different subgroups. The phospholipids that showed significant changes were LPC 18:3, LPE 16:1, and PI 32:1. (B–D) Histograms showing all LPC, LPE, and PI in
the metabolic profiles between the AE and recovery stages (*P <0.05). AE, acute exacerbation; RS, recovery stage. (E–G) ROC curve analysis of the main differential
glycerophospholipids during COPD recovery (LPC, LPE, and PI). ROC curve analysis was performed using the main differential glycerophospholipids above as the
test variables and the recovery phase as the state variable. The areas under the curve (AUCs) for LPC 14:0, 16:0, LPC 16:1, LPC 17:0, LPC 18:0, LPC 18:1, LPC
18:2, LPC 18:3, LPC 20:3, and LPC 22:5 were 82.0, 84.5, 79.6, 80.5, 80.7, 83.0, 66.7, 76.4, 74.5, and 68.1%, respectively. The AUCs of LPE 16:0, LPE 16:1, LPE
18:0, LPE 18:1, LPE 18:3, LPE 20:3, LPE 20:5, and LPE 22:5 were 72.4, 76.4, 69.2, 67.9, 73.5, 73.2, 72.4, and 70.1%, respectively. The AUCs of PI 32:0. PI 32:1,
PI 34:1, PI 36:1, PI 36:2, PI 36:3, PI 36:4, PI 38:2, PI 38:3, PI 38:5, PI 38:6, PI 40:4, PI 40:5, and PI 40:7 were 72.6, 74.3, 75.4, 75.0, 63.9, 78.4, 81.1, 61.4, 69.8,
80.2, 62.6, 74.1, 63.1, and 66.0%, respectively.

names and fold changes of the differential metabolites identified
after data comparison (P <0.05). Figures 2B–D show the
histograms of all LPC, LPE, and PI species in the metabolic
profiles obtained between the AE and recovery stages (∗P <0.05).
An ROC curve analysis was performed with the three most
significantly differential glycerophospholipids as the test variables
and recovery stages as the state variable. The area under the
curves (AUCs) for LPC 14:0, LPC 16:0, LPC 16:1, LPC 17:0, LPC
18:0, LPC 18:1, LPC 18:2, LPC 18:3, LPC 20:3, and LPC 22:5
were 82.0, 84.5, 79.6, 80.5, 80.7, 83.0, 66.7, 76.4, 74.5, and 68.1%,
respectively. The AUCs of LPE 16:0, LPE 16:1, LPE 18:0, LPE 18:1,
LPE 18:3, LPE 20:3, LPE 20:5, and LPE 22:5 were 72.4, 76.4, 69.2,
67.9, 73.5, 73.2, 72.4, and 70.1%, respectively. The AUCs of PI
32:0. PI 32:1, PI 34:1, PI 36:1, PI 36:2, PI 36:3, PI 36:4, PI 38:2,
PI 38:3, PI 38:5, PI 38:6, PI 40:4, PI 40:5, and PI 40:7 were 72.6,
74.3, 75.4, 75.0, 63.9, 78.4, 81.1, 61.4, 69.8, 80.2, 62.6, 74.1, 63.1,
and 66.0%, respectively.

Differences in the Metabolic Profiles of
Patients With Different Inflammatory
Subtypes During the AE Stage
Routine blood tests were conducted for 58 patients with
AECOPD; the results showed that blood eosinophils
accounted for <2 and ≥2% of the total white blood

cells in 42 and 16 patients, respectively (Supplementary
Table 1). PLS-DA and FDR correction indicated that
there were no differential metabolites between the

TABLE 2 | List of differential metabolites in the AE and recovery stages.

Metabolites FC (AE/recovery) log2 (FC) Corrected P-value

LPC 16:0 1.226 0.294 0.011

PI 36:4 1.860 0.895 0.012

LPC 14:0 1.786 0.837 0.012

LPC 16:1 1.765 0.819 0.012

LPC 17:0 1.425 0.511 0.012

LPC 18:1 1.423 0.509 0.012

LPC 18:0 1.229 0.298 0.012

PI 36:3 1.644 0.717 0.014

PI 38:5 1.825 0.868 0.021

LPC 18:3 2.166* 1.115 0.027

LPE 16:1 2.093* 1.066 0.027

PI 34:1 1.402 0.487 0.027

LPC 20:3 1.585 0.664 0.041

PI 32:1 2.178* 1.123 0.048

*Three main differential metabolites analyzed using a fold change of two.
AE, acute exacerbation; FC, fold change; LPC, lysophosphatidylcholine; LPE,
lysophosphatidylethanolamine; PI, phosphatidylinositol.
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two groups of patients with peripheral blood EOS%
≥2 and <2%.

Nineteen patients also underwent sputum examination:
based on sputum cell counts, 6 patients were classified as
sputum eosinophilic (≥3%) and 13 as non-eosinophilic (<3%)
types. PLS-DA showed differences in phospholipid metabolic
profiles between the two groups, but no significantly differential
metabolites were identified after FDR correction.

Changes in Metabolic Profiles Between
AE and Recovery Stage of Different
Inflammatory Subtypes
Among the 58 patients included, serum was collected from 23
patients to compare the glycerophospholipid metabolic profiles
between the AE and recovery stages, including 8 patients with
blood EOS ≥ 2% and 15 patients with EOS% < 2%. In patients
with EOS% < 2%, the concentrations of LPC 14:0, LPC 16:0,
LPC 16:1, LPC 18:0, LPC18:1, LPC18:3, LPC 20:3, LPE 16:0, LPE
16:1, LPE 18:0, LPE 20:3, LPE 22:5, PI 32:1, PI 34:1, PI 36:1,
PI 36:3, PI 36:4, PI 38:3, PI 38:5, PI 40:4, and PI 40:7 were
significantly lower in the AE stage than in the recovery stage
(∗P < 0.05) (Figures 3A–C). In patients with EOS% > 2%, only
the concentrations of LPC 14:0,LPC 16:1, LPE 16:1, and PI 36:1
were significantly lower in the AE stage than in the recovery stage
(∗P < 0.05) (Figures 3D–F). These findings indicated that the
changes in LPC, LPE, and PI between the AE and recovery stages
were mainly manifested in AECOPD patients with EOS% < 2%.

DISCUSSION

COPD is a highly heterogeneous disease presenting with
different phenotypes. In this study, metabolomic analysis of
glycerophospholipids was conducted among patients in the
acute and recovery stages of COPD and also for different
inflammatory subtypes, involving 129 phospholipids from 14
classes. Comparison of the metabolic profiles between the AE
and recovery stages of COPD revealed significant decreases
in LPC18:3, LPE 16:1, and PI 32:1 levels, suggesting the
involvement of abnormal glycerophospholipid metabolism in the
onset of AECOPD.

Glycerophospholipids are important components of the cell
membrane and were thought to be related to cell structure and
storage compartments. However, it has recently been discovered
that glycerophospholipids can participate in mediating airway
inflammation through its cleavage by phospholipase A2 to
produce lysophospholipids and, hence, become involved
in signaling and immune responses. Lysophospholipids
are monoacyl hydrolysates of diacyl glycerophospholipid
precursor molecules and are so called due to their detergent-like
ability to lyse erythrocytes (Makide et al., 2014). In addition
to altering the physical structure of cellular lipid bilayers,
lysophospholipids can regulate cell signaling pathways by
binding directly to membrane G-protein-coupled receptors and
indirectly affecting membrane receptors. The main physiological
lysophospholipids include LPA, LPS, LPG, and LPC. Recent
studies have found that glycerophospholipids are physiologically

FIGURE 3 | Histogram showing LPC, LPE, and PI species in the metabolic profiles between the AE and recovery stages in different inflammatory subtypes. (A–C) In
patients with EOS% <2%, the concentrations of LPC 14:0, LPC 16:0, LPC 16:1, LPC 18:0, LPC 18:1, LPC 18:3, LPC 20:3, LPE 16:0, LPE 16:1, LPE 18:0, LPE
20:3, LPE 22:5, PI 32:1, PI 34:1, PI 36:1, PI 36:3, PI 36:4, PI 38:3, PI 38:5, PI 40:4, and PI 40:7 significantly decreased in the AE stage compared to the recovery
stage (*P < 0.05). (D–F) In patients with EOS% > 2%, only the concentrations of LPC 14:0, LPC 16:1, LPE 16:1, and PI 36:1 were significantly decreased in the AE
stage compared to the recovery stage (*P < 0.05).
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active intercellular and intracellular lipid mediators involved
in the pathogenesis of lung infections (Mander et al., 2002),
asthma, and COPD (Sevastou et al., 2013; Drzazga et al.,
2014; Telenga et al., 2014; Cruickshank-Quinn et al., 2018;
Chen et al., 2019).

LPC is a lysophospholipid with a relatively high concentration
in human blood and is produced by the hydrolysis of
PC by phospholipase A2; conversely, LPE is produced by
the hydrolysis of phosphatidylethanolamine by phospholipase
A2. Based on our study results, lipid metabolites, such as
LPC, LPE, and PI, were significantly reduced in AECOPD
patients. Cigarette smoking is a major cause of COPD.
Glycerophospholipids, which are complexes composed of 90%
phospholipids and a small amount of protein, are important
components of lung surfactants, which may be damaged
following smoke exposure (Schurch et al., 1992; Goerke,
1998; Berry et al., 2011). They are secreted into the alveoli
by airway epithelial cells to reduce alveolar surface tension
and block pathogen invasion. Cruickshank-Quinn et al. used
LC-MS to study smokers with COPD and found abnormal
expression of several serum glycerophospholipids, among which
LPC and PI were significantly negatively correlated with
FEV1%pred and FEV1/FVC; moreover, they also performed
integrated transcriptome/metabolome analysis and showed that
the expression of LPC, PI, PE, and LPE gradually decreased
with worsening lung function outcomes (Cruickshank-Quinn
et al., 2018). Halper-Stromberg et al. (2019) performed LC-MS
analysis of bronchoalveolar lavage fluid (BALF) from COPD
patients and showed that the concentrations of lipid metabolites,
such as LPC, LPE, and PI, were significantly reduced in
COPD patients, and that these metabolites negatively correlated
with FEV1/FVC. Furthermore, the level of lipid metabolites in
BALF correlated with COPD outcomes more closely than that
of serum metabolites. These findings suggest that LPC, LPE,
and PI are associated with COPD, which is consistent with
our results. The lipid metabolism disorder involving alveolar
surfactants in patients with COPD (Cruickshank-Quinn et al.,
2018; Ekroos et al., 2020) may be a potential therapeutic target
for future studies on the restoration of alveolar surfactants.
Exposure to cigarette smoke can induce alveolar surfactant
dysfunction, alveolar epithelial cell apoptosis, and emphysema.
These manifestations may be particularly prominent during
AEs. Fatty acids undergo dynamic transformations in the
body. The acyl group at the sn-2 site of PC is subjected
to continuous deacylation and reacylation, leading to its
repeated inversion and re-modification in a process called the
Lands cycle (Wang and Tontonoz, 2019). PC is hydrolyzed
by phospholipase to form LPC, and lysophosphatidylcholine
acyltransferase (LPCAT) is a key enzyme of the Lands cycle.
LPCAT is involved in catalyzing the conversion of LPC
and acyl-CoA into PC and free CoA, thereby reducing the
concentration of endogenous LPC (Wang and Tontonoz,
2019). COPD patients have a high expression of LPCAT
gene, which correlates with the severity of FEV1%pred lung
function (Cruickshank-Quinn et al., 2018). In addition, chronic
airway inflammatory diseases, such as COPD, often involve
abnormalities in phospholipase metabolism, which contribute

to the differences in phospholipid expression (Wymann and
Schneiter, 2008; Azimzadeh Jamalkandi et al., 2015).

In vitro studies have shown that LPC may exhibit pro-
inflammatory or anti-inflammatory physiological effects in
different pathophysiological conditions. As a representative
of pro-inflammatory lysophospholipids, LPC is involved in
regulating T-cell function and immune activity, inducing the
processing and secretion of IL-1β, and increasing the expression
of cytokine-induced interferon gamma (IFN-γ) and transforming
growth factor β1 (TGF-β1) (Drzazga et al., 2014). In addition,
LPC-dependent NADPH oxidase can stimulate the production
of reactive oxygen species, which promotes the conversion of
pro-cytokines to their mature, biologically active forms (IL-
1β, IL-18, and IL33) (Schilling and Eder, 2010). Furthermore,
in addition to their pro-inflammatory effects, polyunsaturated
LPCs, such as LPC 20:4, LPC 20:5, and LPC 22:6, can act
as potent anti-inflammatory agents against the activity of
immune responses induced by saturated LPC (Riederer et al.,
2010; Hung et al., 2012). LPCs can also downregulate the
formation of pro-inflammatory mediators (IL-5, IL-6, NO,
12-hydroxyeicosatetraenoic acid, and LPC16:0-induced PGE2)
and upregulate the expression of anti-inflammatory mediators
(IL-4 and IL-10) by reducing leukocyte extravasation and
plasma leakage, thereby achieving anti-inflammatory effects
(Hung et al., 2012). Thus, the different biological activities of
LPCs are related to the body’s internal environment, including
hypoxia, oxidative stress, T-cell immune homeostasis, and
differences in phospholipase metabolism (Murakami et al., 2014);
importantly, these activities can vary with the length and
saturation of the acyl chain, which also affects the biological
properties and activity of the resultant molecules (Drzazga
et al., 2014). Our results showed that LPC was decreased
in AECOPD, and the mechanism underlying this reduction
deserves further study.

Our study showed that LPE was also lower in the
AE stage compared to the recovery stage, but the exact
mechanism is unclear. Hung et al. found that unsaturated
LPE has anti-inflammatory effects (Hung et al., 2011).
In their study, zymosan A was used to induce acute
peritonitis in mice, and treatment with polyunsaturated
acyl-LPE could effectively reduce peritoneal inflammation
in mice, while also reducing the formation of LTC4, which
is a lipid mediator involved in vascular permeability.
Furthermore, the levels of pro-inflammatory mediators
(IL-1b, IL-6, TNF-α, and NO) decreased, whereas those
of the anti-inflammatory mediator IL-10 increased. Taken
together, these results suggest that LPE may have an anti-
inflammatory effect. In addition, lysophosphatidyl transferase
may be a regulatory factor (Eto et al., 2020). AECOPD is
a complex and systemic disease state, and the mechanisms
underlying the action of LPC, LPE, and PI in COPD deserve
further investigation.

Different inflammatory subtypes can be identified in
AECOPD (Yun et al., 2018). The present study defined the
eosinophilic subtype as the ratio of peripheral blood EOS
to leukocytes ≥ 2% and sputum EOS ≥ 3%. We found that
COPD patients with the peripheral blood eosinophilic subtype
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had a shorter duration of COPD, lower rate of concomitant
respiratory failure on admission, lower rate of non-invasive
ventilation during hospitalization, shorter hospital stay, and
fewer AEs in the past year than the sputum EOS < 3% subtype.
This finding suggests that there may be a correlation between
peripheral blood EOS levels and AECOPD severity in COPD
patients (Kostikas et al., 2018). However, this study did not
find significant differences in the levels of glycerophospholipid
metabolites between the inflammatory subtypes, which may be
due to the small sample size. Nevertheless, the results showed that
the changes in LPC, LPE, and PI between AE and the recovery
stage were more significant in subtypes with blood EOS% < 2%
than in those with blood EOS% > 2%. This result indicates that
LPC, LPE, and PI may play a role in non-eosinophilic COPD and
warrants further study.

This study has some limitations. First, this study had a small
sample size since it was primarily an exploratory study. Second,
the peripheral blood glycerophospholipid levels measured in this
study is a systemic response to chronic airway inflammation
and cannot fully represent the local environment in the
bronchi and lungs. The next step is to increase the sample
size, combine sputum and BALF specimen analysis to further
verify its relationship with AECOPD, and conduct in-depth
mechanistic studies.

In conclusion, the present metabolomics study used LC-
MS to detect the metabolic profiles of serum phospholipids
in AECOPD and different subtypes of COPD. LPC, LPE, and
PI were significantly reduced in AECOPD and could be used
as biomarkers and potential therapeutic targets for treating
AECOPD. Metabolomic analysis of glycerophospholipids may
become an important research tool that could give rise to new
drug targets and new biomarkers for COPD subtypes. Thus,
the treatment of AECOPD is expected to evolve rapidly toward
phenotypic specificity and individualization.
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