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Abstract: The adequate automatic detection of driver fatigue is a very valuable approach for the
prevention of traffic accidents. Devices that can determine drowsiness conditions accurately must
inherently be portable, adaptable to different vehicles and drivers, and robust to conditions such as
illumination changes or visual occlusion. With the advent of a new generation of computationally
powerful embedded systems such as the Raspberry Pi, a new category of real-time and low-cost
portable drowsiness detection systems could become standard tools. Usually, the proposed solutions
using this platform are limited to the definition of thresholds for some defined drowsiness indicator
or the application of computationally expensive classification models that limits their use in real-time.
In this research, we propose the development of a new portable, low-cost, accurate, and robust
drowsiness recognition device. The proposed device combines complementary drowsiness measures
derived from a temporal window of eyes (PERCLOS, ECD) and mouth (AOT) states through a fuzzy
inference system deployed in a Raspberry Pi with the capability of real-time response. The system
provides three degrees of drowsiness (Low-Normal State, Medium-Drowsy State, and High-Severe
Drowsiness State), and was assessed in terms of its computational performance and efficiency,
resulting in a significant accuracy of 95.5% in state recognition that demonstrates the feasibility of
the approach.

Keywords: drowsiness detection; drowsiness measures; fuzzy inference system; Raspberry Pi;
embedded hardware; eyes closing detection

1. Introduction

Driver fatigue and drowsiness constitute one of the leading causes of traffic accidents,
being involved in 9.5% of crashes in the US [1] and 6% of fatal accidents in Brazil [2]. To alleviate these
figures, authorities, research groups, and automobile manufacturers have concentrated their efforts on
developing awareness campaigns, promoting the implementation and use of rest stops, and developing
automatic devices that assist drivers by detecting fatigue or drowsiness [3]. Particularly, automatic
devices have shown promising capabilities [4,5], offering alternative solutions to alert drivers depending
on the data obtained from multiple types of sensors.

There are three categories of drowsiness detection systems, based on the measures of these sensors [4]:
Vehicle-Based, physiological, and behavioral. Vehicle-based measures rely on monitoring car parts or
sensors (e.g., the steering wheel, pedals, or external cameras) to infer drivers’ level of fatigue or drowsiness
based on driving habit modifications (e.g., a variation in steering wheel micro-corrections) or abnormal
behavior (crossing lanes or leaving the road). Physiological measures include electroencephalography
(EEG), electrooculography (EoG), electrocardiography (ECG), and electromyography (EMG) signals,
and systems detect their deviation from the characteristics of the subject’s standard signals, and then
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analyze if the new state is related to drowsiness. Behavioral measures are mostly related to monitoring
the driver’s face, focusing on facial features like eyes, brows, mouth, head inclination, or facial expression
to determine the drowsiness level.

All three referred categories have some limitations that must be considered when developing
a drowsiness detection device [4–6]. Vehicle-based measurements are associated with vehicle
types, and are profoundly affected by many factors, such as: the driver’s habits, abilities,
and experience; road characteristics (quality, marking status, lighting, geometry); and climate
conditions. On the other hand, physiological measures are intrusive systems that demand that
the user be connected to electrodes, which in turn are connected to some electronic processing device
(even with the advances in wireless devices, the electrode would have to be on the subject). This setup
involves noise and artefacts that can deteriorate the signal quality and therefore decrease the drowsiness
detection accuracy. Additionally, EEG signals present a high variability among different subjects,
as well as among measures from the same subject over time [7], demanding a very robust signal
processing model to maintain the accuracy in continuous time. Limitations of the behavioral measures
are strictly related to the sensors employed (i.e., camera(s)), which are affected by ambient lightning
and vision obstruction (specifically when the subject uses glasses).

Among these different methods, behavioral measures are associated with lower cost, and are
non-invasive, adaptable to any vehicle, and independent of road conditions. Therefore, a versatile
and fully portable device which can function in real-time with an affordable price should be based on
those measures. Drowsiness detection systems that employ these strategies have shown outstanding
performance in experiments in both controlled laboratory and real conditions [8–10], given the
limitations that behavioral measures can present (related to the sensors).

Usually, systems based on behavioral measures comprise a recording device for driver image
acquisition, face recognition and identification of patterns indicating drowsiness, and an output signal
of alarm. To ensure accurate performance, the most critical component is the hardware that processes
the images and generates the alarm. Due to the high computing power demanded by computer
vision algorithms, most of the portable drowsiness detection systems reported in the literature [5,8–12]
are computer-based, employing a laptop for data processing. As a result, the cost of these systems
is elevated, and their application is limited to specific scenarios, not being adaptable to different
vehicle conditions.

Alternative processing hardware employed in these applications are smartphones [13–18] and
semi-custom hardware devices [19–21]. In smartphone applications, the camera of the phone records
the image of the subject, and drowsiness indicators are computed to generate the alarm signal.
Given the high computing power and storage space of smartphone devices, these applications
are capable of running, in real time (from 10 to 14 frames per second), complex algorithms like
ensemble of classifiers [14] or deep neural networks [16,18] for face and drowsiness indicators
recognition. On the other hand, due to hardware limitations, semi-custom hardware devices like
field-programmable gate arrays (FPGAs) [19] and digital signal processors (DSPs) [20,21] are limited
to methods which are less computationally expensive. In the case of one more complex drowsiness
detection methodology [21], the response of the system was able to process at a reduced speed of only
three frames per second (fps).

Given recent advances in the processing capacity of embedded hardware and single-board
computers like the Raspberry Pi [22], Nvidia Jetson Nano [23], Asus Tinker Board [24], or Rock64 [25],
such powerful hardware can represent a new step in the establishment of a low-cost drowsiness
detection standard tool for driver safety maintenance. In particular, Raspberry Pi single-board
computers are low-cost devices with impressive computing power, and have recently been applied
in drowsiness detection systems [26–30]. In [26–28], the drowsy state was recognized, establishing
a threshold for individual drowsiness indicators like percentage of eyelid closure (PERCLOS) [31]
or detecting eye closure for a predefined time, which can limit the performance of the model in
case of variations in the blinking frequency [8] or eye closure misclassifications. On the other hand,
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the application of convolutional neural networks in these devices is explored in [29,30], and due to the
high computing capacity demanded by these algorithms, it was acknowledged that the response in
real-time was limited, reporting a frame rate of 2.15 fps in [30]. This limitation led to an enhanced
server-based processing model in a mobile phone device, which achieved 4.47 fps. From these results,
authors in [26,27] tackled the limitations related to the variation of ambient lightning and vision
obstruction, based on the addition of an infrared (IR) illuminator and camera system.

Therefore, to design a low-cost portable device applicable to any vehicle, it is necessary to
overcome the limitations of the sensors employed in image acquisition. Additionally, it is necessary
to develop a processing model with a balanced demand of computing capacity, robustness to facial
features state misclassifications, and adaptable to characteristics from different subjects. In this sense,
the combination of varying drowsiness indicators (including various facial features) such as PERCLOS,
eye closing duration (ECD) [8], percentage of mouth yawn [9], and average mouth opening time
(AOT) [10] can improve the robustness of the system. The use of multiple indicators overcomes the
limitations of partially losing one of the facial features in the image, and of erroneous values from
individual measures.

One of the suitable algorithms for the combination of these different modalities is a fuzzy inference
system (FIS). Fuzzy inference systems are computationally inexpensive interpretable models which
can consider various drowsiness indicators without establishing strict thresholds. These advantages
were exploited in [32,33] for computer-based devices which evaluated only indicators extracted from
the eyes region (PERCLOS, eyelid distance changes, eye closure rate, or ECD) to recognize if the driver
was drowsy without addressing the problem of changes in the ambient illumination.

The main objective of this work was therefore to develop a new portable, low-cost, accurate,
and robust drowsiness recognition device which incorporates complementary measures from eyes
(PERCLOS, ECD) and mouth (AOT). The proposed equipment is based on a fuzzy inference system and
deployed in a Raspberry Pi complemented with a NoIR camera and illumination system, which limits
the influence of variations in ambient illumination and vision obstruction in drivers wearing glasses.
The resultant device should be adaptable to any vehicle, indicating the drowsiness level of the user in
three states: Normal State, Drowsy State, and Severe Drowsiness State.

The remainder of this paper is organized as follows: Section 2 describes the materials and methods
employed to develop the hardware, software and processing algorithms; Section 3 describes the results
obtained from testing the proposed device and associated algorithms under different conditions;
finally, Section 4 provides the conclusions of the work.

2. Materials and Methods

The proposed Portable Fuzzy Drowsiness Estimation System (PFDESys) is defined as observed in
Figure 1.
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module (PERCLOS, ECD, and AOT); and the driver drowsiness level estimation. The Raspberry Pi is 
the base hardware to run all algorithms defined for each functional block. The following subsections 
detail the methods applied in each processing block, finishing with a subsection that describes the 
hardware of the device. 

 

Figure 1. Portable Fuzzy Drowsiness Estimation System (PFDESys).

The PFDESys is composed of five functional blocks: (i) a camera and infrared illumination system
for the acquisition of the driver image; (ii) a face detection module to define the possible area in which
the driver’s face is situated in the image; (iii) a module to determine the position of the facial features
(eyes and mouth) and their states (closed or open); (iv) drowsiness indicators calculation module
(PERCLOS, ECD, and AOT); and the driver drowsiness level estimation. The Raspberry Pi is the base
hardware to run all algorithms defined for each functional block. The following subsections detail the
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methods applied in each processing block, finishing with a subsection that describes the hardware of
the device.

2.1. Face Detection

Face detection is the first step when processing each driver’s image. In this work, we investigate
two approaches: a cascade classifier that employs Haar-like filter features as proposed in [34], and a
linear support vector machine (SVM) with histogram of oriented gradients (HOG) features, as proposed
in [35]. Those approaches were chosen due to their reduced computational cost compared to deep
learning approaches and proved accuracy.

The model proposed in [34] detects faces in an image with high velocity and accuracy, which is
why it has been extensively utilized in the image processing community, extending its use to object
detection applications. The algorithm defines a set of features derived from Haar filters that are applied
to the image on a defined scale. The algorithm provides a high-dimensional set of features that is
combined with an Adaboost model [36] to select a reduced number of those features and train a cascade
of successive linear classifiers that best separate faces from no-faces in the images.

The second approach for face detection evaluated in this work is based on a feature set known as
HOG features [35]. This feature extraction algorithm firstly divides the image into a grid of small cells,
and then computes, for each image cell, the histogram of the orientation of the gradients weighted by
their magnitude. Each cell histogram is stacked in a vector of features of high dimensionality after
normalizing the values over a measure of the spatial energy on more extensive regions of the image.
Face detection windows overlap with grids of HOG descriptors, providing a feature vector that can be
employed with any classifiers. In this case, a linear SVM classifier was used.

2.2. Facial Features State Determination

After obtaining the possible region of the frame in which the face is situated, the algorithm
reported in [37] is employed to determine the positions of facial landmarks. Facial landmarks describe
main facial elements such as nose, eyes, eyebrows, and mouth, among others, through a series of
marks as illustrated in Figure 2. The algorithm consists of a cascade of regression trees in which
each regressor updates the estimated landmark positions employing the previous value and the
intensity of a sparse set of pixels selected from the original estimate. The ensemble of regression
trees is trained by gradient boosting with a squared error function, which in addition to improving
the accuracy of the model assists in the selection of the sparse set of pixels in combination with the
prior probability of the distances between pairs of pixels. The model presents a response on the
order of milliseconds, being well suited for the application at hand. The training process used the
300-W dataset [38], which consists of 300 images obtained indoors and 300 in outdoor conditions
with spontaneous expressions, all manually annotated. This dataset includes face images collected
during several outdoor activities such as sports, parties, or protests, presenting large variations in
both illumination conditions (including poor illumination) and facial expressions. Therefore, it is
particularly useful for our application, given that it is required to robustly detect facial landmarks in
different illumination conditions when driving.

After obtaining the facial landmarks, the proposed model focuses on the recognition of opening
and closing of eyes and mouth. With this objective, markers for the right eye (38,39,41,42), left eye
(44,45,47,48), and mouth (62–64,66–68) are tracked for computing the distance between eyelids and
lips. Eyes are considered closed when the space between eyelids is less than 20% of the open eye area
(as defined in [39]), and the mouth is considered opened when its aspect ratio (mar = Height/Width) is
greater than 0.7, as defined in [10].

Given the different characteristics of subjects’ facial features (eyes and mouth) and opening area,
the developed system includes a setup step of at least one minute in which the subject is monitored
to determine a personalized threshold value of open eyes and mouth areas. When switching on the
device, the driver is prompted to maintain their position in front of the camera while continuing with
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the driving activities (leaving their mouth open at least twice for a small period). Then, for each frame
obtained during the selected time window (in our case the duration was defined as 1 min), the device
measures the mar metric and the space between eyelids (at a 30 fps rate, 1800 values for each eye and mar
are obtained). The average of 5% most significant distances (which indicates opened eyes and mouth)
is employed to calculate the thresholds that determine eyes or mouth openings. Therefore, the system
can adapt to different drivers without any variation in its accuracy for recognizing eyes closing or
mouth opening.
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2.3. Driver Drowsiness Indicators

The selected driver drowsiness indicators are based on the principle that a combination of
complementary measures can produce a more robust system, overcoming the limitations of each one
separately. The selected indicators are: PERCLOS [8], ECD [8], and AOT [10]. Each of those measures
is computed based on the states obtained for eyes (PERCLOS, ECD) and mouth (AOT).

PERCLOS is a prevalent indicator of drowsiness in behavioral-measures-based systems. It is
defined as the proportion of frames in which the driver has their eyes closed in a determined temporal
window [8]:

PERCLOS[i] =

∑i
j=i−n+1 f rame[ j]

n
(1)

where PERCLOS[i] indicates the value of PERCLOS for the selected window at instant i, n is the number
of frames obtained in the temporal window, and f rame[ j] is a binary value that indicates if the eye was
closed in frame j.

ECD is defined as the mean duration of intervals in which eyes are closed in a determined
temporal window:

ECD[i] =

∑p
j=1 Duration[ j]

p
(2)

where ECD[i] represents the values of ECD at time i, p is the number of intervals in a defined temporal
window, and Duration[ j] is the duration of the lapse between closing and reopening the eyes.

AOT is defined as the mean duration of intervals in which the subject kept their mouth open
during a specific time window. It can be expressed as:

AOT[i] =
1

Ny

Ny∑
j=1

t j (3)
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where AOT[i] defines the AOT magnitude at instant i, Ny is the number of yawns during the time
window, and t j is the duration of yawn j. Yawning is considered as the action of keeping the mouth
open for more than three seconds [10]. In our application, the yawning duration value begins after
those three seconds.

These indicators are complementary, in the sense that if one of them gives a false positive,
the others act as validators of the drowsiness condition. Moreover, the combination of PERCLOS
and ECD strengthens the robustness of the system to variations in blinking frequency and eye state
misclassifications [8].

2.4. Fuzzy Inference System Applied to Drowsiness Level Estimation

The combination of the three drowsiness indicators is performed by a Mamdani Fuzzy Inference
System [40]. Therefore, the proposed Drowsiness Level Estimation module provides a nonlinear and
interpretable mapping from the input indicators (PERCLOS, ECD and AOT) to the drowsiness level
output (Low-Normal State, Medium-Drowsy State, and High-Severe Drowsiness State). The three
indicators are calculated based on a temporal window size of one minute, computed each second.

One essential aspect of the proposed system’s design is the specification of the limits that determine
if a person is drowsy or not. In the literature, there is no consensus about these values for each of
the metrics, defining the drowsiness threshold based on experimental results without any clinical
validation. Table 1 presents, as an example, the different drowsiness thresholds for the PERCLOS
indicator. This disagreement among experts makes the use of a fuzzy inference system even more
critical, as FIS is known for being able to deal with these uncertainties. The values of the fuzzy sets
corresponding to each variable were set considering the selected window size, experimental results,
and reference values in the literature.

Table 1. Drowsiness thresholds reported in the literature for percentage of eyelid closure (PERCLOS).

Drowsiness Threshold Window Size FPS Reference

0.02 1, 2 min 25 [32]
0.3, 0.25 4–5 [41]

0.2 25 [42]
0.2 8, 10 s 25 [8]
0.4 24–25 s 25 [12]

0.15, 0.18 30 s 7 [9]

The developed FIS is defined by the membership functions shown in Figures 3–6 and a set of rules
illustrated in Figure 7. The three output drowsiness levels (Low-Normal State, Medium-Drowsy State,
and High-Severe Drowsiness State) are represented by singleton fuzzy sets (Figure 6). The rules were
defined following the principle that the selected indicators (PERCLOS, ECD, and AOT) complement
each other, allowing the system to reduce the effect of individual false positives and eye state
misclassifications. Therefore, a Medium drowsiness level is produced by two eye states indicators
increasing their level to medium, one of them increasing its level to high, or a combination of AOT at a
high level and any of the other indicators at medium. Particularly, AOT influences an increment in
the output drowsiness level when its level is high due to undesired effects on the metric produced by
driver activities such as conversation or singing.

The fuzzy operator employed for AND connective and the Mamdani implication was the minimum;
the maximum was chosen as the aggregation operator. The minimum of maximum was selected as the
defuzzification method to provide the final classification output, given that the output membership
functions are singletons.
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2.5. Hardware

The main hardware component is the Raspberry Pi 3 Model B [43], which possesses a Quad Core
1.2 GHz Broadcom BCM2837 64 bit processor combined with a memory of 1 GB. The device operates
as a minicomputer that executes the operating system Raspbian [44] (an operating system based on
Debian and optimized for that hardware) that allows the developed software to be integrated in Python
language and processes each frame with the other components. The device relies on a 5 V power
source with 3 A, and an SD card with 16 GB of storage capacity to run the operating system.

Infrared (IR)-sensitive cameras, combined with proper external IR illumination, can generate
excellent images for environments with little or no lightning and eliminate reflections caused by
drivers’ glasses [45]. Therefore, this type of camera was selected to produce a system robust to ambient
lightning variations and vision obstruction. The camera utilized in our device is the NoIR v2 of 8 MP,
built for the Raspberry Pi hardware, combined with an external IR illumination of 48 LEDs that require
a power source of 12 V and 1 A. The camera and IR illumination system are designed to be located on
the dashboard above the steering wheel, with a direct vision of the driver.

3. Results and Discussion

The proposed model was evaluated through two different analyses. The first investigation was
directed to the examination of the processing capacity of the portable hardware to analyze real-time
images and the effects of continuous work on the device’s response. The second analysis focused
on the determination of the performance obtained by the proposed model in recognizing different
drowsiness states. In both cases, the portable device’s results were compared with those of a processing
model deployed in a laptop, offering a benchmark comparison of the response of the model in a more
powerful hardware setup. In this way, it was possible to compare how the drowsiness recognition
accuracy of the model was affected by variations in the hardware computing capacity.

The laptop was equipped with an integrated webcam model Camera L 80WK HD 720P, an Intel
Core I7-7700HQ processor, and 16 GB of RAM. The metrics were computed each second, employing
samples with a one-minute window size. In each hardware setup, the model was developed in Python
3.6, running in the Anaconda environment on the Microsoft Windows 10 Operating System for the
laptop and in the Raspbian Operating System for the Raspberry Pi.

3.1. Computational Performance of the Model in Real-Time

The objective of this analysis was to verify the computational performance offered by the proposed
model in combination with the portable hardware. Additionally, we wanted to compare this response
with the one produced by a standard hardware setup (a laptop). We also wished to assess the effects of
continuous working time on the processing capacity of the device. The evaluation was conducted
using ten sample videos of approximately 50 min of users during work activities in front of the camera.
Figures 8 and 9 illustrate the mean frames per second of the two face recognition models and the two
hardware setups.
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The difference between hardware setups is evident when comparing Figures 8 and 9. On the one hand,
the laptop configuration was able to maintain the average number of processed frames per second over 32
for both facial recognition models. On the other hand, the Raspberry Pi was limited to values between
7–9.5 and 7–7.3 for the Haar-features-based and HOG models, respectively. This remarkable difference
is a result of the massive computing power demanded by those facial recognition models (the most
time-consuming stage of the processing model). Another effect observed is a small tendency (in all cases)
to decrease the fps with time. Although a more profound analysis should be implemented to derive more
accurate conclusions related to this issue, it can be stated that the continuous processing imposes a limit
on the processing capacity, with probable overheating in both laptop and Raspberry Pi devices.
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When comparing the Haar and HOG models, it can be seen that for both hardware setups,
the HOG model presented a reduction in the fps values, with fewer variations than the fps of the Haar
model (see Table 2). Specifically, the Haar model offered an average of 35.93 and 8.75 fps for laptop and
Raspberry Pi setups, respectively, with standard deviations of 1.31 and 0.59. Remarkably, the Raspberry
Pi setup, even with a much slower response, presented less variability in the fps rate, reducing a
standard deviation of 0.72. The HOG model resulted in smaller values, with 34.70 fps for the laptop and
7.21 fps for the Raspberry Pi. The standard deviation, on the other hand, was lower when compared to
the Haar models, with 0.70 and 0.07 for both hardware setups. Particularly, during the experiments,
it was perceived that for the Haar model, face rotation of more than 30◦ resulted in instability in the
face recognition, while the HOG model was more robust in this aspect.
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Table 2. Real-time response of face detection models in different hardware.

Model Haar HOG

Hardware Setup Mean fps Standard Deviation Mean fps Standard Deviation

Laptop 35.93 1.31 34.70 0.70
Raspberry Pi 8.75 0.59 7.21 0.07

To improve the fps rate in the Raspberry Pi (our proposed portable model), we explored a
computing performance improvement strategy based on the experimental evidence that the facial
recognition is the stage in which the algorithms take a longer time. Therefore, the size of the image
employed in the facial recognition stage was reduced, maintaining the aspect ratio. After obtaining the
coordinates of the region of the smaller image in which the face is situated, these values were resized to
represent the equivalent region in the original image resolution (area of the original image that contains
the face). This strategy produced the improvements in computing performance described in Table 3.
As expected, rescaling the image had an inversely proportional influence on the fps rate of the system,
with steady increments when reducing the reduction factor until doubling the performance (15.94 fps
for the Haar model and 14.77 for the HOG model) for a reduction factor of 0.5. The standard deviation
generally presented a small increment for both models, indicating that smaller images produced more
pronounced variations of the fps.

Table 3. Performance obtained with fps enhancement strategies.

Model Haar HOG

Reduction Factor Mean fps Standard Deviation Mean fps Standard Deviation

Original 8.75 0.59 7.21 0.07
0.7 10.58 0.52 9.6 0.11
0.6 12.14 0.7 11.17 0.16
0.5 15.94 0.66 14.77 0.29

These results confirm our conclusions related to the face recognition models. In all cases, the mean
fps of the Haar model was superior to the mean fps of the HOG model by around 1 fps, but with a more
significant standard deviation. By reducing the image to half its original size, the performance doubled.

3.2. Accuracy of the Drowsiness Recognition System

To evaluate the accuracy of the proposed model, four acquisition experiments were designed
based on video streams of approximately 50 min from two subjects (two videos by subject) of 24
and 28 years old, each without preexisting medical conditions. The recorded videos were scripted
and contained simulations of different combinations of eyes and mouth states that defined different
drowsiness conditions. The acquisition setup emulated the position of the subject and the inclination
of the camera when installed in a car. Given those specific conditions, the simulations can be compared
to the real drowsiness level provided by the fuzzy inference system, producing an assessment of the
accuracy of the proposed device. The video resolution was set to 640 × 480. Table 4 summarizes the
total number of different drowsiness states included in the experiments, divided into segments with a
size of approximately 1 min.

Table 4. Testing drowsiness data.

Drowsiness Level Segments of Approximately 1 min Duration

Normal State 100
Drowsy State 60

Severe Drowsiness State 40
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The accuracy of the model was evaluated by comparing the subject’s state in each moment
(segments of the experiment in which the subject simulated drowsiness symptoms) with the FIS output.
The results of this assessment for the laptop- and Raspberry-Pi-based models are presented in Figure 10.

When analyzing the results of the proposed model in the portable hardware configuration, it can
be stated that the proposed system presented a high accuracy (95.5%). Remarkably, the recognition
errors were produced by misclassifications of Normal State segments as Drowsy State segments (five
for the Raspberry Pi and three for the laptop) and Drowsy State segments as Severe Drowsiness
State segments (four for the Raspberry Pi and one for the laptop). Although these errors indicate
some limitations of the proposed system in some specific segments, they are not as relevant as a
misclassification of drowsiness states into the normal state (not present in our model), which would fail
the purpose of the device (to alarm the subject when tired). Additionally, the high accuracy obtained
for the two subjects in the four experiments confirms the relevance of the adaptation stage included in
the system setup. Through this process, different threshold values were defined for each test when
determining eyes closure and mouth opening, adjusting the device to different conditions.
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There was a 2.5% difference between the results of the laptop and the Raspberry Pi in terms of
total accuracy. Notably, the laptop-based model recognized both Normal and Drowsy States with
higher accuracy. Both approaches were able to accurately identify the segments representing Severe
Drowsiness. Those results indicate that the differences in frames processed per second (see Section 3.1)
did not produce a significant difference in the performance of the model.

An example of the output of the portable model for a given user is illustrated in Figure 11. Items (a),
(b), and (c) are the magnitudes of PERCLOS, ECD, and AOT per second, respectively. The graph
represented in (d) is the subject’s estimated Drowsiness Level. The time segment begins with the driver
in an alert state, transitioning to a simulated drowsy state after the 40th second.

Note that in our proposed system we are monitoring only facial features, which might prevent
the accurate recognition of the drowsiness state in some specific situations that can generate total facial
occlusion or head-turning. Additionally, cases where the driver presents a behavior deviating from
their usual one when driving (e.g., an extremely high number of blinks in a short time or frequently
opening their mouth) can generate imprecisions in the recognition. Nevertheless, as described in
Sections 2.3 and 2.4, the selected facial features are complementary, and the FIS is designed to avoid
false-positive drowsiness detection from only one of the measures. To generate a more robust system
based on behavioral measures, one can add the detection of head inclination and turning.
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Extended Performance Validation

To extend the analysis of the system’s performance and to validate its adaptability to different
users, new tests were performed over a more significant set of subjects, with a broader range of
ages and genders, following the same protocol (50 min duration). Eight new subjects were included,
with six males and four females in total: two in the range of 20 to 30 years; one in the range of 30 to
40 years; one in the range from 40 to 50 years; two in the range from 50 to 60; and two in the range of
70 to 80 years. The tests were applied using laptops, but emulating the limitations of the Raspberry Pi
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setup by eliminating frames from the stream and designing the system to process images only in the
corresponding time instants (frames per second reduced to 14). The resulting quantities of ~1-min
segments from these experiments were: 500 of Normal State, 300 of Drowsy State, and 200 of Severe
Drowsiness State. The obtained accuracy of the system in this extended dataset is shown in Figure 12.
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When applied on a larger number of subjects, the performance of the model dropped slightly
for the laptop setup (from 98.0% total accuracy to 97.1%) and more significantly for the emulated
Raspberry Pi setup (from 95.5% total accuracy to 93.5%). In general, the tendency of the model
was maintained when misclassifying examples, mistakenly assigning Drowsy State labels to Normal
State ones (19 samples for the laptop and 35 for the emulated Raspberry Pi), and Severe Drowsiness
State labels to Drowsy State examples (10 and 26 cases for the laptop and emulated Raspberry Pi,
respectively). For both setups, an outstanding performance for Severe Drowsiness State recognition
was observed, with only one example misclassified as Drowsy State for the emulated Raspberry Pi.
These preliminary results validate the model’s capacity to accurately recognize the drowsiness level of
subjects of different ages in laboratory conditions. Extensive tests should be conducted to validate the
model in real driving situations, including even more subjects.

4. Conclusions

This paper introduced the development of a low-cost portable device that assesses the drowsiness
level of a driver. The device is based on an IR illuminator and a camera that streams the image
acquired to a Raspberry Pi 3 Model B, resulting in a device which is robust to variations in the ambient
lighting condition and vision obstruction. The processing model combines measures obtained from
the eyes and mouth (PERCLOS, ECD, and AOT) and provides the drowsiness level as the output of
a fuzzy inference system (Low-Normal State, Medium-Drowsy State, and High-Severe Drowsiness
State). Two different facial features recognition methods were evaluated: one that employed a cascade
classifier and Haar-like filter features and another that applied a linear support vector machine SVM
with HOG features.

The proposed device was tested in four experiments comprising two subjects in different simulated
drowsiness conditions with approximately 50 min duration. The average accuracy of the system in
recognizing different drowsiness states was 95.5%. The processing model was also implemented in a
laptop to compare the effects of reducing the computational power (using the Raspberry Pi) for the
portable hardware. The difference in the recognition accuracy was only 2.5%, even with a difference in
the mean number of frames processed by the hardware of approximately 17 frames. Additional tests
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were implemented with more subjects, covering a broader age range, resulting in a significant accuracy
of 97.1% and 93.5% for the laptop and emulated Raspberry Pi based models, respectively.

The main advantages of the proposed device are: adaptability to different drivers’ facial features,
low cost, robustness to changes in ambient illumination and vision occlusion, and freedom in the
design (allowing the device owner to modify the fuzzy membership functions domains and temporal
window for the calculation of PERCLOS, ECD, and AOT). This last feature allows the adjustment of
the device to specific conditions desired for the application, such as a faster response of the output
(by decreasing the temporal window size) or new drowsiness indications (modifying the limits of the
fuzzy membership functions).

As future work, the model should be evaluated on real driving conditions and a more significant
number of subjects in order to validate the conclusions obtained in this work on a practical application.
Additionally, we intend to investigate the enhancement of the fps obtained from the portable model
(the fps obtained by the Raspberry Pi was far from the fps rate achieved with the laptop-based setup).
This improvement can be explored by different approaches. In the first case, more powerful portable
hardware devices can be evaluated, like the Raspberry Pi 4, Nvidia Jetson Nano, Asus Tinker Board,
or Rock64 embedded systems. Secondly, the possibility of coupling the Raspberry Pi with a neural
stick such as the Intel Neural Compute Stick 2 could be explored, which, for a medium increment
in the price, would make it possible to explore deep-learning-based image processing in real time.
We also intend to set up the proposed model in real vehicles to assess the effects of actual driving
conditions on its operation. Given the lack of information in the literature about specific thresholds
for the drowsiness measures (PERCLOS, ECD, AOT), and the divergences between the research that
reported such information, it would be interesting to conduct a broader investigation that helps to
unify the decision criteria. Additionally, the monitoring of head inclination and turning in the system
could be included, which could enhance the system’s robustness by adding a measure not limited to
facial features without modifying the proposed hardware.
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