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Abstract

Contact between people with similar opinions and characteristics occurs at a higher rate

than among other people, a phenomenon known as homophily. The presence of clusters of

unvaccinated people has been associated with increased incidence of infectious disease

outbreaks despite high population-wide vaccination rates. The epidemiological conse-

quences of homophily regarding other beliefs as well as correlations among beliefs or cir-

cumstances are poorly understood, however. Here, we use a simple compartmental

disease model as well as a more complex COVID-19 model to study how homophily and

correlation of beliefs and circumstances in a social interaction network affect the probability

of disease outbreak and COVID-19-related mortality. We find that the current social context,

characterized by the presence of homophily and correlations between who vaccinates, who

engages in risk reduction, and individual risk status, corresponds to a situation with substan-

tially worse disease burden than in the absence of heterogeneities. In the presence of an

effective vaccine, the effects of homophily and correlation of beliefs and circumstances

become stronger. Further, the optimal vaccination strategy depends on the degree of homo-

phily regarding vaccination status as well as the relative level of risk mitigation high- and

low-risk individuals practice. The developed methods are broadly applicable to any investi-

gation in which node attributes in a graph might reasonably be expected to cluster or exhibit

correlations.

Introduction

Infectious disease outbreaks have been on the rise for several decades, and account for more

than one in eight deaths globally [1]. A comprehensive study of an infectious disease outbreak

such as the current COVID-19 pandemic must involve not only the biological properties of

the disease and its causal pathogen but also the societal circumstances affecting disease spread.

Classical differential equation models assume homogeneous mixing (i.e., random contacts) of

individuals and fail to account for the occurrence of increased interactions among people with

similar beliefs or circumstances, a clustering phenomenon known as homophily. Network
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models, on the other hand, allow for the study of the effect of homophily on disease outbreaks

by explicitly incorporating clustering of individuals with similar beliefs or circumstances into

social or physical interaction networks. Homophily among individuals who choose not to

vaccinate for a variety of reasons (religious beliefs, fear of side effects, etc.) has been widely

observed [2–4], and this type of homophily has been associated with both more frequent and

larger disease outbreaks than would be expected under homogeneous or random social mix-

ing [5–7]. Models that assume homogeneous mixing are therefore likely too optimistic and

underestimate the level of vaccination required to achieve herd immunity and avoid out-

breaks [8].

While the epidemiological implications of homophily regarding vaccination status have

been well-studied, the effect of homophily with respect to other beliefs or circumstances, such

as trust in the effectiveness of social distancing measures or risk status, has not received as

much attention [9]. Especially during a pandemic, when risk mitigation measures are imple-

mented globally, homophily regarding various beliefs or circumstances and population-wide

correlations between them may have profound effects on disease spread. The correlation

between social beliefs and partisan identification has been increasing in the United States [10],

and ideological overlap between the two major political parties has diminished [11]. Recent

polls by Gallup indicate that, in the United States, Democrats compared to Republicans are

more likely to engage in risk mitigation (wearing masks [12], avoid eating out [13], avoid flying

[14], etc.) and receive a COVID-19 vaccine [15]. Given the increases in both opinion polariza-

tion and correlations among opinions, as well as the effect homophily can have on disease

dynamics, further work on the epidemiological consequences of correlated and clustered

beliefs or circumstances is warranted.

Generating a network with a priori specified homophily and correlation among node attri-

butes (belief in the safety of a COVID-19 vaccine, belief in the effectiveness of social distanc-

ing, etc.) can be technically challenging. In this study, we present a novel technique for

applying binary attributes with a pre-defined correlation structure to a physical interaction

network that exhibits a pre-defined level of homophily for each attribute. Using this technique,

we investigate how homophily and correlations among several beliefs and circumstances affect

the spread of an infectious disease in a Watts-Strogatz small-world physical interaction

network (a community, a city, etc.) [16], and substantially influence the outcome of epidemio-

logical studies and their predictions (Fig 1). First, we consider a simple, agent-based compart-

mental infectious disease model in which each agent has two binary belief attributes:

confidence in vaccines and attitude toward social distancing measures. That is, a person either

agrees to be vaccinated or not, and a person either engages in enhanced risk reduction (social

distancing, mask wearing, etc.) or not. Then, in a more complex model developed specifically

for COVID-19 (which includes hospitalization, asymptomatic carriers and differential risk sta-

tus) [17], we add a third binary attribute distinguishing between high- and low-risk individu-

als. In the simple model, we focus on the frequency of an infectious disease outbreak (defined

as>1% becoming infected) as primary outcome measure, while in the COVID-19 model, we

focus on the number of deaths.

Results

The generic infectious disease model yielded several expected results. An increase in the pro-

portion of vaccinated, an increase in the proportion of distancers, an increase in the vaccine

effectiveness, and an increase in the level of distancing practiced all led to lower disease bur-

den, quantified by the disease outbreak frequency (S1 Fig) as well as the initial basic reproduc-

tive number R0 (S2 Fig). The two outcome measures were highly positively correlated;
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therefore, we focused primarily on the outbreak frequency, which in network models incorpo-

rates more information than R0.

Outbreaks occurred more frequently in interaction networks exhibiting homophily regard-

ing vaccination and social distancing than those without homophily (Fig 2 and S1 Fig). In

order to obtain a detailed understanding of the effect of homophily and correlation of opinions

on the outbreak frequency, we fixed the values of several model parameters: we considered a

situation where 2/3 of individuals vaccinate and 2/3 reduce their social contacts by 50%. As

expected, outbreaks occurred less frequently in the presence of a more effective vaccine

Fig 1. Graphical overview of a simulation run. (A) Generation of a physical interaction network, (B) Assignment of d correlated binary attribute

values to each node. If d = 2, the attributes represent e.g. attitude towards vaccines (color) and social distancing (shape), (C) Computation of the relative

clustering level (a measure of homophily) of each attribute, (D) Overview of the clustering algorithm used to assign attributes so that the network

exhibits a desired level of homophily for each attribute. Values to the right of each node indicate its dissimilarity index: the proportion of neighbors with

a different attribute value. (E) Vaccination of all nodes with a positive (blue) attitude towards vaccines and removal of those successfully vaccinated

(green) from the pool of susceptible individuals; the probability that an all-or-nothing vaccine awards protection equals its effectiveness, (F) Infection of

a randomly selected susceptible node (red), (G) Simulation of the spread of the infection and recording of outcomes. The likelihood of interaction (edge

weight) depends on whether nodes practice social distancing (circles) or not (triangles).

https://doi.org/10.1371/journal.pone.0260973.g001
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(Fig 3A). Contact networks in which those who vaccinate were also more likely to socially dis-

tance (correlation = 0.45) exhibited more outbreaks, while a negative correlation (−0.45)

between vaccination and distancing led to fewer outbreaks than a situation with no correlation

(Fig 3B). Contact networks in which those who vaccinate cluster were relatively more likely to

experience an outbreak, especially in the presence of a highly effective vaccine (Fig 3C). Simi-

larly, homophily in those who distance led to more outbreaks, but the effect was smaller (Fig

3D). Moreover, this effect became stronger as the correlation between vaccinated and distan-

cers increased, and was absent when the correlation was negative. Interestingly, homophily in

distancers led to slightly more outbreaks than no homophily in situations “without” a vaccine

(effectiveness = 0%). In this case, as expected, it did not matter if those who received the vac-

cine clustered or not.

After being vaccinated individuals may choose to increase their level of social contacts

because they believe they are immune, a phenomenon known as risk compensation [19]. We

considered a model scenario in which those who vaccinate increase their activity levels on

average by up to 41%. The release of an ineffective vaccine coupled with increased activity lev-

els led to more outbreaks than a situation without a vaccine (region to the left of the black line

in Fig 4). Presence (Fig 4A) or absence (Fig 4B) of clustering and correlation of those who vac-

cinate and those who distance did not affect the level of effectiveness needed so that a vaccine

is beneficial. Neither, did these findings depend on the particular choice of the proportion of

those who vaccinate and those who distance (S1 Table).

An important characteristic of COVID-19 is the increased risk of severe disease and death

for older adults and people with comorbidities [20]. A recent COVID-19 model captures this

differential risk by distinguishing between low-risk (2/3 of all individuals in the United States)

and high-risk individuals [17]. Here, we adapted this model to investigate the effects of both

increased contact between individuals of the same risk group, as well as differential vaccination

coverage and social distancing levels between risk groups. As the basic reproductive number

and the outbreak frequency both focus on disease transmission and fail to describe the differ-

ential risk of severe disease and death, for this analysis we focused instead on the number of

deaths due to COVID-19.

Fig 2. Comparison of outbreak frequency in networks with and without homophily. Contour plots were generated from 10,000,000 independent

simulation runs with four vaccine and social distancing parameters chosen uniformly at random (axes show parameter ranges). The difference in

outbreak frequency (where an outbreak was defined as>1% of the population eventually becoming infected) from a reference scenario of no vaccine

and no social distancing was calculated for two scenarios: social interaction networks with 50% homophily of those who vaccinate and of those who

practice distancing and networks without homophily (see S1 Fig). Data was binned and smoothed using a two-dimensional Savitzky-Golay filter [18]

(details in Methods). Each subplot shows the effect of variation of two parameters on the difference in outbreak frequency between the two different

homphilly scenarios (see S1 Fig). (A) vaccine coverage (x-axis) and vaccine effectiveness (y-axis), (B) vaccine coverage (x-axis) and proportion of those

who distance, (C) contact reduction (in %) by those who practice social distancing (x-axis) and proportion of those who distance (y-axis). An equivalent

analysis for the basic reproductive number is shown in S2 Fig.

https://doi.org/10.1371/journal.pone.0260973.g002
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Fig 3. Effect of homophily and correlation of opinions on outbreak frequency. (A) The relative outbreak frequency

is compared for different scenarios with respect to homophily and correlation of those who vaccinate and those who

distance, and for different levels of vaccine effectiveness. Reference level for comparisons is a vaccine with 0%

effectiveness and no homophily nor correlation of vaccinated and distancers. This reference level is set to 100%. (B)

For each level of vaccine effectiveness, the change in relative outbreak frequency is compared to the homogeneous case

of no homophily and no correlation, which is set to 100%, respectively. (C-D) Absolute difference in relative outbreak

frequency (from A) when comparing physical interaction networks where (C) vaccinated, (D) distancers cluster

(homophily = 50%) versus networks without homophily.

https://doi.org/10.1371/journal.pone.0260973.g003

Fig 4. Effect of increased activity levels by individuals who have received a vaccine. The outbreak frequency

(relative to the reference case of no vaccine, which is set to 100%) is shown for different levels of vaccine effectiveness

(x-axis) and increased average activity levels by those who received a vaccine (y-axis). A black line depicts the x,y-

coordinates at which the presence of the vaccine does not change the outbreak frequency. To the left (right) of this line,

the presence of the vaccine is detrimental (beneficial). Two different scenarios regarding homophily and correlation of

those who vaccinate and those who distance are considered: (A) 0% homophily and no correlation, (B) 50% homophily

of those who vaccinate and those who distance and 0.45 correlation. In both plots, a fixed proportion of 65% of all

individuals receive a vaccine and 65% of all individuals practice social distancing, i.e., reduce their social contacts by

50%. Data was binned and smoothed using a two-dimensional Savitzky-Golay filter [18] (details in Methods). See S1

Table for a sensitivity analysis where these proportions are varied.

https://doi.org/10.1371/journal.pone.0260973.g004
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In the case of a highly effective vaccine, clustering of those who vaccinate remained the

most important variable: with a perfect vaccine (100% effective), almost 600% more people die

when comparing 50% with 0% homophily of vaccinated individuals (Fig 5A and 5B). Cluster-

ing of distancers had only a small effect on mortality, and the direction of the effect was depen-

dent on the vaccine effectiveness: In the presence of a bad vaccine (effectiveness�40%),

slightly fewer people died when those who practiced social distancing clustered, while the

opposite was true in situations with a more effective vaccine (effectiveness�60%). If those

who vaccinated were also more likely to practice social distancing (correlation = 0.15), more

deaths occurred, while mortality was reduced if individuals who did not get vaccinated were

more likely to practice social distancing (correlation = −0.15). Whether or not high-risk indi-

viduals clustered had very little effect on the number of deaths. However, the correlations

between risk status, vaccination and social distancing proved important (Fig 5A–5C). With

increasing vaccine effectiveness, overall mortality decreased when high-risk individuals were

more likely to get vaccinated and practice social distancing, although the latter effect was

weaker.

Empirical studies in multiple countries indicate that older people have fewer daily physical

interactions than younger people [21, 22]. As older people make up a large proportion of the

group of high-risk individuals it makes sense to assume a lower contact rate, or alternatively a

higher contact reduction rate for high-risk individuals compared to low-risk individuals. In

Fig 5. Relative mortality in the COVID-19 model compared to the homogeneous case of no homophily and no

correlation. (A) For each line, the vaccine effectiveness and one homophily or correlation variable is fixed at a negative

(−0.15 correlation; yellow diamond), positive (0.15 correlation or 50% homophily; green cross) or zero value (black

circle), and average mortality is calculated across all other values and compared to the homogeneous case of no

homophily and no correlation (dotted line; relative mortality = 100%). (B-C) Relative mortality is shown when

three variables and the vaccine effectiveness are fixed. Red (blue) indicates higher (lower) mortality than in the

homogeneous case of no homophily and no correlation. In (B) the three most influential variables from (A) are fixed,

while in (C) the three correlations are fixed.

https://doi.org/10.1371/journal.pone.0260973.g005
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addition to this inherent demographic difference, during the current pandemic contact reduc-

tion may be enhanced by additional social-distancing choices related to the higher perceived

risk a COVID-19 infection presents for this vulnerable population. Without high-risk contact

reduction, deaths can be averted by prioritizing the vaccination of high-risk individuals (Fig

5). To study the level of additional high-risk contact reduction at which the optimal vaccina-

tion strategy changes, we compared COVID-19-related mortality under three scenarios: high-

risk individuals are more, equally, and less likely to vaccinate than low-risk individuals. As

expected, a reduction of contacts by high-risk individuals led to fewer deaths under all scenar-

ios (Fig 6A). The rate at which deaths decreased varied significantly, however: if high-risk indi-

viduals strongly reduced their contacts, vaccination of proportionately more low-risk

individuals led to fewer deaths (Fig 6B).

We expected to find a single value for the additional contact reduction of high-risk individ-

uals at which the correlation between who vaccinated and risk group did not matter. Instead,

we found a range of values for which both negative and positive correlations yielded fewer

deaths than no correlation. That is, a homogeneous vaccination strategy across risk groups

(correlation = 0) was never optimal. For instance, in a situation with 80% vaccine effectiveness

and 50% homophily of those who vaccinate and of high-risk individuals, we found that if high-

risk individuals have 75% fewer interactions than low-risk individuals, both increased vaccina-

tion of low- or of high-risk individuals (correlation = 0.45) led to 34% fewer deaths than a

homogeneous vaccination strategy (Fig 6B). As with other model results, the level of homo-

phily of vaccinated individuals mattered, as the switch-point for optimal vaccination strategy

was lower at 0% homophily of vaccinated versus 50% homophily. Furthermore, the switch-

point was higher at lower vaccine effectiveness (Fig 6C). Interestingly, in the case of 0%

homophily of vaccinated, 50% homophily of high-risk individuals, and a weak vaccine

Fig 6. Level of contact reduction by high-risk individuals influences vaccination priorities. (A) The average

mortality at a given additional contact reduction by high-risk individuals is shown for three different scenarios:

negative (−0.45; yellow), zero (black) and positive (0.45; green) correlation between vaccinated and high-risk

individuals. (B) Relative mortality compared to the case of no correlation (black line in A), at 50% homophily of both

high-risk individuals and individuals who vaccinate. Black dashed lines and a gray triangle highlight the three

intersection points of the three curves. (A-B) homophily of those who vaccinate and of high-risk individuals: 50%,

vaccine effectiveness: 80%. Background colors indicate the prioritization (high-risk or low-risk individuals) that leads

to lower overall mortality. (C) The location of the intersection points from (B) is shown for all combinations of

homophily of those who vaccinate (0% vs 50%) and of high-risk individuals (0% and 50%), as well as two levels of

vaccine effectiveness: 50% (gray) and 80% (blue). S4 Fig contains the full curves for all eight considered combinations.

https://doi.org/10.1371/journal.pone.0260973.g006
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(effectiveness = 50%), if high-risk individuals reduced their contacts by 81% more than low-

risk individuals, then the distribution of the vaccine across the risk groups did not affect mor-

tality. This was the only parameter setting of those we considered that matched our original

expectation.

Discussion

Contact between similar people occurs at a higher rate than among dissimilar people, a cluster-

ing phenomenon known as homophily [23]. While there is plenty of evidence that people with

a negative view of vaccines cluster [4, 24, 25], we still lack empirical data on the degree of

homophily regarding social distancing in response to the COVID-19 pandemic. There are,

however, studies examining the average number of daily contacts stratified by age that show

increased activity levels between people of similar age, which, given the strong correlation

between COVID-19 risk status and age, suggests the presence of homophily regarding risk sta-

tus. The correlation between policy views and partisan identification has been increasing [10],

with more people now on the left or the right and fewer holding a mix of positions [11]. Recent

polls by the Gallup agency indicate that an individual’s willingness to receive a COVID-19 vac-

cine [15] and to practice social distancing (wear a mask [12], eat out [13], fly [14], etc.) differs

substantially by age as well as political party affiliation. Older people (age 65+), who are more

likely at high risk, practice more social distancing and are slightly more willing to get vacci-

nated against COVID-19. Democrats are much more likely to receive the vaccine and to prac-

tice social distancing, which suggests a positive correlation between these two attributes

considered in our study. We do not have accurate estimates for the degree of homophily or the

correlation among different attitudes related to the spread of an infectious disease generally, or

COVID-19 specifically. We therefore studied the spread of a disease across a social network

under different possible scenarios for homophily and correlation of beliefs or circumstances.

We found that the presence of homophily in opinions regarding whether to vaccinate or

not, and whether to practice social distancing or not, as well as a large overlap between those

who distance and those who vaccinate, can dramatically increase the probability of a disease

outbreak, especially in the presence of a highly effective vaccine. Accordingly, any results

obtained using classical differential equation models, which inherently assume homogeneous

mixing and account for neither homophily nor correlation in opinion patterns, likely present

lower bounds on the expected severity of an outbreak. Furthermore, if opinions are positively

correlated and if real interaction networks exhibit even a modest degree of homophily, as the

Gallup surveys suggest they do, our current social context corresponds to a scenario with a

substantially worse disease burden than a homogeneous scenario (Figs 3 and 5, S3 Fig).

Our study produced several results relevant to policy makers. First, whether vaccination of

low- or high-risk individuals should be prioritized depends on the relative contact rate of low-

versus high-risk individuals. If high-risk individuals have substantially fewer contacts (Fig 6C),

prioritizing the vaccination of low-risk individuals reduces overall mortality compared to

homogeneous vaccination or vaccination of high-risk individuals. The reason for this is likely

that increased vaccination of low-risk individuals, who are more socially active, can prevent

outbreaks and reduce mortality of the vulnerable, less-vaccinated population. An empirical

study in eight European countries revealed that prior to the pandemic older adults (65+)

already had on average 41.8% fewer contacts than those age 65 and under [21] (S2 Table).

Together with the increased perceived risk COVID-19 presents to the high-risk group, these

individuals might indeed practice enough social distancing so that prioritizing the vaccination

of low-risk individuals is optimal. Policy makers therefore might consider a heterogeneous

approach, in which vaccination of high-risk individuals is prioritized in communities where
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social distancing among the high-risk population is less prevalent. Our findings highlight the

importance of accurate estimates of the contact and risk reduction practiced by individuals of

different risk groups. Second, the optimal vaccination strategy in our model was affected by

the homophily among those who vaccinate. For a given vaccine effectiveness, the level of addi-

tional contact reduction at which the optimal vaccine strategy switches from prioritizing high-

risk to prioritizing low-risk individuals is higher in the presence of homophily (Fig 6C).

Third, if vaccinated individuals engage in risk compensation, i.e., increase their activity lev-

els, the level of effectiveness a vaccine needs to possess so that it does not lead to a worse dis-

ease burden increases in the presence of homophily and correlation, but only marginally.

Finally, we note that almost all effects (both positive and negative) described in this study

became stronger as the effectiveness of the vaccine increased. This may be partially due to the

fact that situations with a vaccine effectiveness of 100% are on average closest to the herd

immunity threshold of R0 = 1 (S2 and S3 Figs), as previous studies suggest the effect of homph-

ily on outbreak probability is strongest when vaccination coverage is close to this threshold [5,

26]. Nevertheless, our results are counter-intuitive in this respect: While a more effective vac-

cine is certainly better in general, relative differences in outcomes and any negative effects due

to the presence of homophily and/or correlation will be larger with a more effective vaccine.

We considered binary attributes and only second-order interactions among the attributes

for two reasons: First, statistical methods for generating correlated Bernoulli random variables

are well-established; and second, higher-order correlations lack an intuitive interpretation.

Extending the model to include more binary attributes or higher-order interactions is straight-

forward using the algorithm we developed here. More complex scenarios could incorporate

multinomial random variables with more than just two possible discrete values, random vari-

ables from other discrete distributions, or continuous random variables with appropriate sup-

ports. Simulating random variables from a joint distribution with a specified covariance

structure can be technically challenging for many distributions, and research on this topic is

ongoing [27–29]. The method we used to apply correlated random variables to nodes in a net-

work to achieve appropriate homophily is readily extendable to multinomial random variables.

The use of continuous random variables, however, would probably require a completely differ-

ent algorithmic approach and a new measure of homophily. Further work in this area would

expand the types of node attributes that could be modeled, and the types of correlations and

homophily that could be studied.

There are theoretical limitations to the combinations of probabilities and correlations that

can be generated (S5 Fig). While the expected correlation is always 0, the range of compatible

correlation values for given probabilities is not symmetric around 0 (e.g., two attributes, each

with a high probability, can be strongly positively but not strongly negatively correlated).

These limitations necessarily influenced the choices of probabilities and correlations we used

in this study. In all analyses, we chose correlation values of equal magnitude so results could

be compared in the positive and negative direction. Further, we compared correlations of mag-

nitude 0.45 (0.15) when looking at two (three) binary attributes to ensure we investigate inter-

action networks where there are at least some individuals with each of the possible 4 (8)

combinations of attributes. This means we studied only the effect of moderate and weak

correlations. Stronger correlations will likely lead to stronger effects but exhibit the same

directionality.

Homophily, the main property studied in this paper, can be considered as a type of cluster-

ing that is based on node characteristics. Small-world networks such as those used in this

study also exhibit a more traditional type of “structural” clustering, measured using e.g. the

local clustering coefficient [16, 30]. This type of clustering captures the idea that friends of a

friend are likely to be friends and is based on edge characteristics. Most nodes in a small-world
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network cannot be assigned to a single cluster as there exists high levels of overlap among the

clusters. It would interesting to explore how the presence of homophily affects the spread of

disease through social interaction networks with more defined structural clusters, e.g., mim-

icking the separation of a community into sub-communities.

Perfect isolation by those who practice social distancing led to higher R0 values than very

high levels of distancing (S2F Fig). Similarly, in the case of a highly effective vaccine very high

vaccine coverage (80%) led to more outbreaks than slightly lower coverage (S2D Fig). Both

these counter-intuitive observations only occurred in the presence of homophily, and they are

likely model artifacts: The activity level of each individual corresponds to the probability that

this individual is chosen as the initially infected seed case. If the activity level of distancing

individuals is nonzero (e.g. 75% reduction), then there remains a small chance that an individ-

ual who distances is chosen as the seed case. If this happens, passage of the virus is unlikely in

the presence of homophily, i.e. when the distancers cluster together. At perfect isolation (100%

reduction), solely non-distancers, who in the presence of homophily cluster together, are cho-

sen as seed cases. Similar reasoning explains the second observation. Note that these counter-

intuitive observations did not occur when considering the relative outbreak frequency as this

measure, contrary to R0, takes into account the probability that an outbreak actually occurs.

This is another reason why we used the relative outbreak frequency as the primary outcome

measure in the generic infectious disease model.

In our model, two people who practice social distancing are less likely to interact than two

people, one of whom practices social distancing and one of whom does not. This may not be a

realistic assumption, as cautious individuals may avoid others who do not practice social dis-

tancing, and therefore interact more frequently with other social distancers (e.g., forming

social bubbles). Detailed information regarding social distancing patterns under COVID-19 is

currently lacking, however, and patterns may be heterogeneous across cultures and demo-

graphic groups. We therefore implemented a simple model for social interactions but

acknowledge that our model could be extended to more realistic scenarios once more data

become available.

We modeled vaccine effectiveness using an all-or-nothing approach: either the vaccine pro-

vides full protection or it has no effect. A “leaky” vaccine that reduces the infection and/or the

transmission probability for all vaccinated people by a certain percentage represents an alter-

native approach, however the model predictions may be insensitive to how vaccine effective-

ness is implemented [31]. Modeling vaccine factors such as age-varying effectiveness requires

the specification of further parameters, therefore to enhance the interpretability of our model

we chose not to incorporate this additional level of complexity.

Conclusion

People interact more frequently with people of similar age and with similar attitudes or

beliefs, a phenomenon known as homophily. Surveys found that individuals at high-risk for

severe COVID-19 infection are more likely to practice social distancing and get vaccinated

once a vaccine is available, and positive attitudes toward social distancing and vaccination

seem positively correlated. The current social context in which the COVID-19 pandemic is

playing out is therefore characterized by homophily and correlations among beliefs and cir-

cumstances. We developed a novel technique for generating interaction networks with sev-

eral binary attributes with a defined correlation structure and defined degrees of homophily.

This technique is readily extendable to multinomial random variables, and can provide a

foundation for more complex studies involving attributes with more flexible probability

distributions.
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Using a simple generic infectious disease model as well as a more complex, previously

developed model tailored specifically to COVID-19, we studied the spread of a virus in interac-

tion networks with various levels of homophily and correlations among beliefs and circum-

stances. The current social context corresponds to a scenario with a substantially worse disease

burden than a scenario without homophily and correlations. Differential equation models,

which by default assume homogeneous mixing of the population, likely underestimate the real

disease burden. Several of our study results may be relevant to policy makers, as we showed

that the optimal distribution strategy of a limited vaccine depends on the relative average con-

tact rate of low- versus high-risk individuals, as well as the level of homophily between those

who are vaccinated.

Materials and methods

Physical interaction network

We used an agent-based disease model to study the spread of a generic infectious disease as

well as COVID-19 throughout a physical interaction network of N = 1000 individuals, mod-

eled as a Watts-Strogatz small-world network [16]. In these networks, each vertex represents

an individual and each edge represents a possible contact between two individuals. The aver-

age degree of each vertex was k = 14: the average number of contacts per day per individual

found in a seminal multinational study (S2 Table) [21]. We randomly rewired each edge with

a probability of 5%, which is known to yield a high local clustering coefficient and low average

path length, characteristic of small-world networks [16, 32].

Modeling beliefs and circumstances

In the generic infectious disease model, we considered two binary attributes: attitude toward

vaccination (1 = individual vaccinates, 0 = individual does not vaccinate), and attitude toward

social distancing (1 = individual engages in risk reduction such as reduced interactions, mask

wearing, increased hand washing, etc., 0 = individual does not engage in risk reduction). In

the three-attribute COVID-19 model, we added risk status as a third variable (1 = individual is

at high risk for COVID-19 due to age (65 and older) or known comorbidities, 0 = individual is

not in the COVID-19 high-risk group).

Generating binary attributes with a defined correlation structure

Exact forms for the distributions of correlated bivariate (d = 2) and trivarate (d = 3) Bernoulli

random variables have been developed in the literature [33], and we relied on those results.

We specified expectations pi, i = 1, . . ., d, and the covariance matrix ∑ and calculated a multi-

variate Bernoulli probability distribution of d correlated Bernoulli random variables. In the

simplest case for d = 2 (two binary attributes), if

p1 ¼ EX1 ¼ PðX1 ¼ 1Þ;

p2 ¼ EX2 ¼ PðX2 ¼ 1Þ;

s12 ¼ E½ðX1 � p1ÞðX2 � p2Þ�;

r12 ¼
s12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðX1ÞvarðX2Þ
p ;

where pi 2 [0, 1], ρ12 2 [−1, 1], and var(Xi) = pi(1 − pi), the bivariate joint probability
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distribution can be represented as:

P00 ¼ PðX1 ¼ 0;X2 ¼ 0Þ ¼ ð1 � p1Þð1 � p2Þ þ r12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2ð1 � p1Þð1 � p2Þ

p
;

P10 ¼ PðX1 ¼ 1;X2 ¼ 0Þ ¼ 1 � p2 � P00;

P01 ¼ PðX1 ¼ 0;X2 ¼ 1Þ ¼ 1 � p1 � P00;

P11 ¼ PðX1 ¼ 1;X2 ¼ 1Þ ¼ P00 þ p1 þ p2 � 1:

For a third random variable, X3, with random variables X1 and X2 as above:

p3 ¼ EX3 ¼ PðX3 ¼ 1Þ;

s13 ¼ E½ðX1 � p1ÞðX3 � p3Þ�;

s23 ¼ E½ðX2 � p2ÞðX3 � p3Þ�;

y123 ¼ E½ðX1 � p1ÞðX2 � p2ÞðX3 � p3Þ�:

The multivariate distribution in three dimensions is given by
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;

where� indicates the Kronecker product of two matrices. For all simulations in this study, we

considered θ123 = 0. For d> 3 correlated binary attributes (not considered here), more compu-

tationally tractable algorithms have been developed [34–36], although the number of parame-

ters required to fully specify the distribution is 2d − 1, and therefore grows exponentially.

One difficulty associated with generating correlated binary random variables has to do with

the compatibility of the expectation vector and the covariance matrix. If p = [p1, p2, . . .pd] is a

vector of expectations for d Bernoulli random variables, and ∑ is a covariance matrix, not all

combinations of p and ∑ are compatible. For d = 2, an example of compatible correlation val-

ues which will result in a positive definite covariance matrix for fixed p is shown in S5 Fig.

Explicit bounds on the correlations for the case of d = 2 and d = 3 have been derived [37]. In

general, as d increases, the probability that randomly chosen p and ∑ are compatible decreases

quickly. For Figs 3, 4 and 6 (two binary attributes), where we considered a fixed proportion of

individuals who get vaccinated (p1 = 2/3) and who practice social distancing (p2 = 2/3), the

compatible range was [−0.5, 1] (S5 Fig) and we considered correlation values −0.45, 0, and

0.45. In Fig 4 (three binary attributes), the probability an individual gets vaccinated is p1 = 2/3,

the probability an individual practices social distancing is p2 = 2/3, and the probability an indi-

vidual is high-risk is p3 = 1/3. Here, the range of compatible correlation values was smaller,

and we compared all combinations of second-order correlations of −0.15, 0, and 0.15.
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Quantifying the homophily of binary attribute assignments in an

interaction network

Given an assignment of a binary attribute (opinion or circumstance) X* Bernoulli(p) to all N
vertices (individuals) in a graph (interaction network), we counted the proportion of edges

(interactions) between two vertices with the same attribute value (shared opinion or circum-

stance). Let this proportion be denoted by ϕ 2 [0, 1]. Clearly, E½�� ¼ p2 þ ð1 � pÞ2. Homo-

phily is characterized by more interactions between individuals with shared attribute values

than expected by random chance. We quantified the degree of homophily using the relative

clustering of the binary attribute assignment,

homophilyð�Þ ¼
1 � �

1 � E �½ �
¼

1 � �

1 � ðp2 þ ð1 � pÞ2Þ
< 1:

For example, if we assume that p = 2/3 of all N individuals get vaccinated, under a random

expectation E½�� ¼ 5=9 of all interactions will involve two individuals with the same vaccina-

tion status. Therefore, ϕ = 7/9 corresponds to 50% homophily.

The relative clustering value can be negative. However in this study we only considered

non-negative levels of clustering since ‘heterophily’, the attraction by people with differing

attribute values and/or the repulsion by people with same opinions or circumstances, seems

unrealistic for the three binary attributes whose clustering effect we investigate here: who vac-

cinates, who practices social distancing and who is a high-risk individual. Furthermore, in a

fully connected interaction network homophily is always strictly less than 1 unless all individu-

als have the same opinion. However, in the limit as the network size N approaches infinity

while the average degree remains fixed, homophily can be chosen to be arbitrarily close to 1.

Generating opinion patterns with a defined level of homophily and a

defined correlation structure

We followed a two-step procedure to obtain an assignment of d binary attributes Xi* Ber-

noulli(pi), i = 1, . . ., d to all N vertices in an interaction network with a predefined correlation

structure between the attributes, as well as a predefined homophily for each attribute (Fig 1B–

1D).

1. To each vertex, we assigned a d-dimensional attribute vector with a defined correlation

structure, by drawing from an appropriate multivariate Bernoulli probability distribution as

described above.

2. We randomly picked one of the attributes that still exhibited lower than desired homophily.

Then, we picked two vertices whose attribute vectors differed in only this attribute, and

swapped their attribute values. This ensured that the correlation structure remained

unchanged. We repeated this process until we reached the desired level of homophily for

each attribute.

To ensure convergence of the latter process towards higher values of homophily, we defined

the dissimilarity index of a vertex with respect to an attribute, denoted d(v, a), as the propor-

tion of neighbors of this vertex with a different attribute value. We then preferentially picked

vertices with a high dissimilarity index to swap attribute values.

To speed up the convergence process, we used (d(v, a))16 rather than the simple dissimarilty

index d(v, a) to choose which two vertices to swap attribute values. This modification pre-

vented the algorithm from converging to homophily values lower than desired, i.e., it ensured

that we quickly reached high levels of homophily such as 50%. It did however slightly modify
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the resulting patterns of binary attributes as it led to fewer vertices with very high dissimilarity

indices and relatively more vertices with intermediate index values. However, lower-sample-

size simulations where we compared results obtained with an exponent of 16 to exponents of 1

and 4 revealed no qualitative differences in our findings (S6 Fig).

Effect of attribute values: Vaccination, social distancing and high-risk

individuals

Once attribute values were assigned to each individual, each vaccinated person was removed

from the pool of susceptibles with a probability corresponding to the considered vaccine effec-

tiveness (that is, we consider an all-or-nothing vaccine). Moreover, note that as we study the

spread and potential outbreak of an infectious disease in a local community, which typically

happens within a few days to weeks, we do not consider vaccination as a dynamic process. In

other words, the proportion of vaccinated individuals is fixed for each simulation and vaccina-

tions take place prior to the beginning of the simulation.

Further, each individual was assigned a base activity level a 2 [0, 1] describing how likely

that individual was to seek contact with any neighbor in the interaction network on any given

day. Throughout the paper, we used a ¼ 1=
ffiffiffi
2
p
� 0:71, assuming that all individuals have

fewer physical contacts that allow disease transmission than prior to a pandemic (due to e.g.

mask wearing, work-from-home orders, etc.). The activity level of those individuals who prac-

tice social distancing was further reduced by rdistancing 2 [0, 1]. Note that this is a vertex-based

attribute, implying that the probability of interaction between two people who practice social

distancing was rdistancing � rdistancing lower than the probability of an interaction between two

non-distancers. Also, note that while we primarily talk about social distancing throughout the

paper, which can be easily understood in a network context, our abstract implementation of

contacts does not require us to explicitly specify and separately model different types of risk

mitigation. Rather, mask wearing, increased hand washing, social distancing, etc. all propor-

tionately reduce the risk that a susceptible is infected through physical contact with an infec-

tious individual, compared to a pre-pandemic level. The activity level of an individual should

thus be interpreted as the combined effect of all risk mitigation efforts.

In Fig 4, we further considered the possibility of increased activity levels due to a potentially

false belief of immunity following vaccination. We modeled this by introducing another ver-

tex-based parameter rincrease 2 [0, 1/a − 1], where the base activity level of vaccinated individu-

als is multiplied by 1 + rincrease.

In the COVID-19 model, we added risk status as a third binary attribute, and considered

homophily and correlation of this attribute in addition to vaccination and social distancing.

High-risk individuals have a higher chance of a symptomatic, severely symptomatic, or deadly

infection [17]. In Fig 6, we considered a continuum of scenarios where all high-risk individuals

practice a certain increased level of distancing, modeled by multiplying the base activity level

with rdistancing 2 [0, 1] as before. In these analyses, the set of distancers coincides with the set of

high-risk individuals and we did not consider differential distancing levels between individuals

with the same risk status.

Simulation of the disease spread

To simulate the spread of the generic infectious disease, we implemented a simple stochastic

compartmental disease model and distinguished between susceptible (S), infected/infectious

(I) and removed/recovered (R) individuals. In the COVID-19 model, the infectious compart-

ment was split into several compartments enabling a more accurate description of the course

of COVID-19 progression: exposed/pre-symptomatic (E), asymptomatic (A), symptomatic (I),
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and severely symptomatic requiring hospitalization (H). To account for mortality, an addi-

tional removed compartment of individuals who have died from COVID-19 (D) was intro-

duced [17]. In both models, time is discrete; one unit of time corresponds to one day. The

simulation starts with a single seed case: a susceptible who becomes infected. In the generic

infectious disease model, the seed case starts in the infected compartment, while in the

COVID-19 model the seed case starts in the exposed compartment. The probability that any

susceptible becomes the seed case is proportional to the activity level of that individual.

Each day, any susceptible can become infected through contact with an infectious neighbor

on the interaction network. The probability of physical contact is the product of the activity

levels of the susceptible and the infectious individual. If there is contact, then disease transmis-

sion occurs with transmission probability β. In the generic disease model, β = 10%. In the

COVID-19 model, β varies over the course of the infection, is higher for symptomatic versus

asymptomatic individuals and peaks at the onset of possible symptoms (details are described

in [17]). Given the inherent uncertainty of COVID-19-related parameters, we sampled the

transmission-related parameters from the same uniform probability distributions as in [17]:

the peak transmission probability (provided contact occurs) for symptomatic individuals is βI
2Unif([5%, 40%]) and for asymptomatic individuals βA 2 Unif([0%, βI]).

In the generic infectious disease model, infectious individuals eventually recover from the

disease, and the per-day probability of recovery is γ = 10%. In the COVID-19 model, infectious

individuals start in the exposed compartment, while risk-group-dependent parameters and

probabilities determine the transitions through the different infectious compartments.

Infected individuals eventually recover or die. We used the same probability distributions and

parameters governing these transitions as in the original model description (Tables 1 and 2 in

[17]). In particular, we assumed that high-risk individuals have a 1 to 5 times lower rate of

truly asymptomatic infections, a 4 to 10 times higher hospitalization rate (when symptomati-

cally infected), as well as a 4 to 10 times higher death rate (when hospitalized) [38, 39]. Because

of the short time frame of the simulations (weeks to months), we did not consider reinfections;

recovered or dead individuals were removed from the simulation.

The more complex COVID-19 model includes additional parameters specific to SARS-

CoV-2 and COVID-19, such as the proportion of asymptomatic infections and the infection

fatality rate. We used the same values and sampled unknown parameters from the same uni-

form probability distributions as in the original model description [17].

Outcome measures

In each simulation run of the generic infectious disease model, we recorded two outcomes: the

initial basic reproductive number and a conditional outbreak probability. First, we computed

the initial basic reproductive number R0 as the total number of secondary infections caused by

the seed case, i.e., the initially infected individual. For this calculation, if on a given day a sus-

ceptible individual was “infected” by m� 1 people where one these people was the seed case,

then we added 1/m to the initial basic reproductive number. Second, we defined an outbreak

as a situation where more than 1% of the population became infected (that is, at least 10 fol-

low-up infectious occurred in a contact network of N = 1000 individuals) and recorded the

proportion of cases where the infection of an initial susceptible leads to an outbreak. This can

be considered a conditional outbreak probability,

Pðoutbreak j initial infection occurredÞ:

Subsequent multiplication with Pðinitial infection occurredÞ yields a measure of the out-

break frequency.

PLOS ONE Effect of homophily and correlation of belief systems on infectious disease outbreaks

PLOS ONE | https://doi.org/10.1371/journal.pone.0260973 December 2, 2021 15 / 20

https://doi.org/10.1371/journal.pone.0260973


The probability that, in a given time interval, an initial infection occurs is proportional to

the total number of contacts by susceptible individuals, the community incidence rate and the

virus attack rate. Since we did not make absolute predictions but instead considered relative

comparisons of the outbreak frequency, only the total number of contacts by susceptible indi-

viduals matters, which is given by

Tsusceptible ¼ NkðpVDð1 � eVÞaVaD þ pV �Dð1 � eVÞaV þ p �VDaD þ p �V �DÞ:

Here, N is the total number of agents in the physical interaction network, k = 14 is the aver-

age number of connections per individual, eV 2 [0, 1] is the vaccine effectiveness (a proportion

of eV vaccinated individuals is no longer susceptible), aD = 1 − rdistancing 2 [0, 1] is the relative

activity level of distancers, aV ¼ 1þ rincrease 2 ½1;
ffiffiffi
2
p
� is the relative increase in activity levels

among the vaccinated population (only considered in Fig 4), and pVD; pV �D ; p �VD and p �V �D are the

proportions of the total population that are vaccinated (V) or not ( �V ) and practice social dis-

tancing (D) or not ( �D), calculated as described in the subsection “Generating binary attributes

with a defined correlation structure”. The total number of contacts by all individuals is given

by

Tall ¼ NkðpVDaVaD þ pV �DaV þ p �VDaD þ p �V �DÞ:

With this, we have

Pðinitial infection occurredÞ ¼ Tsusceptible=Tall;

and the main outcome metric used in Figs 2 and 3, S1–S3 Figs, the outbreak frequency, is

given by

Pðoutbreak j initial infection occurredÞPðinitial infection occurredÞ:

In Fig 4, we considered a modified version of this outbreak frequency. Here, we analyzed

the tradeoff between having a vaccine (with a certain effectiveness) and a subsequent increase

in social contexts by the vaccinated. We compared the outbreak probability in the presence of

a vaccine for various scenarios (specified by eV 2 [0, 1] and aV 2 ½1;
ffiffiffi
2
p
�) to a situation without

a vaccine, which corresponds to eV = 0, aV = 1, and defined this ratio as the relative outbreak

frequency.

In the COVID-19 model, we recorded the total number of individuals who eventually died

from the disease as an additional outcome measure. The outbreak probability and the initial

basic reproductive number are unaffected by who is a high-risk individual. The severity of

COVID-19 depends on risk status [20], and total mortality is the only outcome measure of the

three we recorded that allows us to analyze the effect of homophily and correlation regarding

risk status. Therefore, we focused solely on this measure for the COVID-19 model.

Quantitative analysis

All model analyses were run entirely in Python 3.7. The contour plots in Figs 2 and 4, S1 and

S2 Figs were generated by binning the data using a 20x20 equidistant grid, and subsequent

smoothing using a 2-dimensional Savitzky-Golay filter [18]. To avoid over-smoothing, we

chose a small window size of 3 and used only linear functions. Similarly, we used a one-dimen-

sional Savitzky-Golay filter with window size 33,333 and linear functions to obtain a general-

ized moving average of the 333,333 data points generated for each correlation value in Fig 6

and S4 Fig.
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Each data point in Figs 3 and 5, S3 and S6 Figs represents an average value across all con-

ducted simulation runs (10,000,000 in Fig 3 and S3 Fig, and 1,000,000 in Fig 5 and S6 Fig),

where those parameters shown on respective axes received a fixed value.

Supporting information

S1 Fig. Outbreak frequency in networks with and without homophily. Contour plots were

generated from 10,000,000 independent simulation runs with four vaccine and social distanc-

ing parameters chosen uniformly at random (axes show parameter ranges). The outbreak fre-

quency Black (where an outbreak was defined as>1% of the population eventually becoming

infected) from a reference scenario of no vaccine and no social distancing was calculated for

two scenarios: Black (A-C) social interaction networks with 50% homophily of those who vac-

cinate and of those who practice distancing and (D-F) networks without homophily. Data was

binned and smoothed using a two-dimensional Savitzky-Golay filter [18] (details in Methods).

Each subplot shows the effect of variation of two parameters on the relative outbreak fre-

quency. (A,D) vaccine coverage (x-axis) and vaccine effectiveness (y-axis), (B,E) vaccine cover-

age (x-axis) and proportion of those who distance, (C,F) contact reduction (in %) by those

who practice social distancing (x-axis) and proportion of those who distance (y-axis). A com-

parison of the outbreak frequency under the two scenarios is shown in Fig 2, an equivalent

analysis for the basic reproductive number in S2 Fig.

(TIF)

S2 Fig. Basic reproductive number in networks with and without homophily. Contour plots

were generated from 10,000,000 independent simulation runs with four vaccine and social dis-

tancing parameters chosen uniformly at random (axes show parameter ranges). The basic

reproductive number is shown for (A-C) social interaction networks with 50% homophily of

those who vaccinate and of those who practice distancing and (D-F) networks without homo-

phily. Data was binned and smoothed using a two-dimensional Savitzky-Golay filter [18]

(details in Methods). (G-I) Comparison of the basic reproductive number in networks with

and without homophily. Each subplot shows the effect of variation of two parameters on the

basic reproductive number (A-F) or difference thereof between the two scenarios(G-I): (A,D,

G) vaccine coverage (x-axis) and vaccine effectiveness (y-axis), (B,E,H) vaccine coverage (x-

axis) and proportion of those who distance, (C,F,I) contact reduction (in %) by those who

practice social distancing (x-axis) and proportion of those who distance (y-axis).

(TIF)

S3 Fig. Effect of homophily and correlation of opinions on the basic reproductive number.

(A) The basic reproductive number (R0) is compared for different scenarios regarding homo-

phily and correlation of those who vaccinate and those who distance, and for different levels of

vaccine effectiveness. (B) For each level of vaccine effectiveness, the change in R0 is compared

to the homogeneous case of no homophily and no correlation, which is set to 100%, respec-

tively. (C-D) Absolute difference in R0 (from A) when comparing physical interaction net-

works where (C) vaccinated, (D) distancers cluster (homophily = 50%) versus networks

without homophily.

(TIF)

S4 Fig. Degree to which the level of contact reduction by high-risk individuals influences

vaccination priorities under various scenarios. The average absolute mortality (first and

third row) at a given additional contact reduction by high-risk individuals is shown for three

different scenarios: negative (−0.45; yellow), zero (black) and positive (0.45; green) correlation

between vaccinated and high-risk individuals. In addition, the relative mortality compared to
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the case of no correlation (black line) is shown (second and last row). Black dashed lines and a

gray triangle highlight the three intersection points of the three curves. Different situations are

considered: 50% (first two rows) vs 80% (last two rows) vaccine effectiveness, 0% (first two col-

umns) vs 50% (last two columns) homophily of those who vaccinate, and 0% (first and third

column) vs 50% (second and last column) homophily of high-risk individuals. For all eight

scenarios, a direct comparison of the location of the gray region in between the intersection

points is shown in Fig 6C.

(TIF)

S5 Fig. Compatible choices for the expectation and correlation of two Bernoulli random

variables. The possible range of correlations between two Bernoulli random variables with

expectations p1 (colors) and p2 (x-axis) is shown for four fixed choices of p1.

(TIF)

S6 Fig. Robustness of the results for various exponents in the homophily algorithm. The

change in (A-C) relative outbreak frequency and (D-F) basic reproductive number R0 com-

pared to the homogeneous case of no homophily and no correlation is shown for different sce-

narios regarding clustering and correlation of those who vaccinate and those who distance, as

well as for different levels of vaccine effectiveness. The exponent used in the homophily algo-

rithm (see Methods) is 1 in A and D, 4 in B and E, and 16 in C and F.

(TIF)

S1 Table. Required effectiveness for a vaccine not to yield more outbreaks given an

increased activity level by those who receive the vaccine. For different proportions of those

who vaccinate and those who distance (50%, 65%, 80%) and two scenarios regarding homo-

phily and correlation (none versus high homophily and correlation), N = 200, 000 simulations

were conducted for each considered level of increased activity by those who vaccinated (10%,

20%, 30%, 40%) with randomly chosen vaccine effectiveness, U([0%, 100%]), in addition to

200, 000 simulations each without a vaccine. Using a one-dimensional Savitzky-Golay filter

with window size 20, 000 and linear functions, we obtained smoothed plots of the outbreak

probability against the vaccine effectiveness for each increased activity level by vaccinated, and

inferred the respective vaccine effectiveness (green cell values) at which the outbreak frequency

under scenarios with a vaccine and increased activity levels by the vaccinated equaled the out-

break frequency without a vaccine (see the black line in Fig 4 for an example).

(TIF)

S2 Table. Average daily contacts per country and age group. Data from [21]. The most

recently available census estimate from the United Nations Demographic Statistic Database was

used for a weighted average of the contact rate across different age groups. The average contact

reduction (last column) is calculated as one minus the ratio of average daily contacts by older

people (fourth column) over the average daily contacts by younger people (third column).

(TIF)
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