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ABSTRACT: Porcine notochordal cell-derived matrix (NCM) has anti-inflammatory and regenerative effects on degenerated
intervertebral discs. For its clinical use, safety must be assured. The porcine DNA is concerning because of (1) the transmission of
endogenous retroviruses and (2) the inflammatory potential of cell-free DNA. Here, we present a simple, detergent-free protocol:
tissue lyophilization lyses cells, and matrix integrity is preserved by limiting swelling during decellularization. DNA is digested
quickly by a high nuclease concentration, followed by a short washout. Ninety-four percent of DNA was removed, and there was no
loss of glycosaminoglycans or collagen. Forty-three percent of the total proteins remained in the decellularized NCM (dNCM).
dNCM stimulated as much GAG production as NCM in nucleus pulposus cells but lost some anti-inflammatory effects.
Reconstituted pulverized dNCM yielded a soft, shear-thinning biomaterial with a swelling ratio of 350% that also acted as an
injectable cell carrier (cell viability >70%). dNCM can therefore be used as the basis for future biomaterials aimed at disc
regeneration on a biological level and may restore joint mechanics by creating swelling pressure within the intervertebral disc.
KEYWORDS: decellularization, notochordal cell-derived matrix, intervertebral disc, nucleus pulposus, biomaterial, regeneration

1. INTRODUCTION
Intervertebral discs (IVDs) are an essential component of the
functioning spine in vertebrates: they provide resistance to
axial compression and allow for sufficient range of motion in 6
degrees-of-freedom. The nucleus pulposus (NP) comprises the
center of the IVD. It is rich in glycosaminoglycans (GAGs)
that create a swelling pressure by means of osmosis1 able to
withstand the axial load within the spine.2,3 In the NP, nucleus
pulposus cells (NPCs) are found in low numbers.4,5 Prior to
adolescence, morphologically distinct vacuolated notochordal
cells (NCs) can still be found in the human IVDs, which are
thought to maintain the proliferative and maintenance
capabilities of the NP.6−9 After childhood, these cells mostly
disappear, and the inherent regenerative capacity of the IVD is
greatly diminished.10,11 IVD degeneration slowly sets in, often
culminating in lower back pain in adults many years later.12

NCs are thought to secrete a distinct set of >60 stimulating
factors, leading to increased ECM production by NPCs,7,8,13,14

including connective tissue growth factor and transforming

growth factor β.15 NC conditioned cell culture medium
(NCCM) is able to inhibit senescence,16 as well as promote
ECM production in NPCs.7−9,17 Porcine NCCM has been
shown to outperform human NCCM,9 and porcine NC-
derived matrix (NCM) thus presents an intriguing regenerative
biomaterial for IVD degeneration therapy: it contains GAGs18

able to restore the swelling pressure within the IVD, as well as
the growth factors excreted by the NCs able to stimulate
biological regeneration.8,19,20

Extracellular DNA containing porcine endogenous retro-
viruses (PERVs) is problematic within the NCM.21 PERVs
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have been shown to infect human cells in vitro and thus pose a
risk for patients.22 Furthermore, fragmented cell-free DNA
may cause inflammation through several pathways23,24 and has
been linked to chronic diseases like arthritis.25 Prior to
utilization in a clinical setting, processing of the NCM to
remove DNA is thus pertinent. Several decellularization
protocols for porcine NP tissue have already been proposed,
involving lengthy immersion into buffer with detergents.26−28

Detergents, however, have been shown to alter the
composition and structure of decellularized tissues influencing
the cell viability of infiltrating cells and are cytotoxic
themselves.29,30 Crucially, detergents are known to deplete
tissues of sulfated GAGs critical for swelling properties and
potentially remove and/or denature bioactive proteins.31−34

Epitopes of Galα1-3-Galβ1-(3)4GlcNAc-R (α-Gal) are an
important point in tissue transplantation, as they may be
recognized by antibodies within the body, leading to graft
rejection,35 but also remodeling.36 However, recent studies
suggest a lack of α-Gal within the porcine NP.37 Thus, in this
study, we chose to first focus on the removal of DNA to
prevent transmission of endogenous viruses.

We therefore aimed to develop a simple detergent-free
decellularization protocol for porcine NCM for the purpose of
developing a bioactive functional biomaterial for cell delivery
in IVD regeneration via injection. We examined the effect of
decellularized NCM (dNCM) on bovine NPCs with respect to
ECM production and anti-inflammatory properties and
investigated dNCM’s biomaterial and cell-carrier properties.

2. MATERIALS AND METHODS
If not otherwise stated, materials and chemicals were obtained from
Sigma-Aldrich/Merck (Amsterdam, Netherlands).
2.1. Porcine NCM Isolation. Porcine spines (12 weeks old) were

obtained from a local abattoir, according to local regulations. The
IVDs were opened under aseptic conditions. Porcine NP tissue from
IVDs of three spines was pooled into one batch, briefly mixed with a
sterile weighing spoon, and then aliquoted into 1−2 g (wet weight)
samples, yielding 100−200 mg of dry weight samples. Samples were
frozen overnight at −80 °C before freezedrying in a lyophilizer
(Labconco, Kansas City, US) for >72 h at ≤ −50 °C until completely
dry (devitalized) to produce NCM and further decellularized to
produce dNCM. A total of six batches were used in this study, half of
each batch for NCM and the other half for dNCM, to obtain paired
samples.
2.2. Decellularization of NCM to Obtain dNCM. Decellulariza-

tion was performed under aseptic conditions. Lyophilized NCM
samples were treated with 200 U/mL benzonase in 50 mM Tris-HCl
buffer, pH 7.5, 2.5 mM MgCl2 at 0.01 mL buffer/mg dry weight tissue
for 48 h at 37 °C on a roller at 2 rpm. The buffer volume was
restricted to prevent GAG-mediated swelling and dissociation of the
tissue during decellularization. Samples were then washed twice with
0.2 mL PBS/mg dry weight tissue for 30 min on a roller at 40 rpm.
For easier buffer aspiration, samples were centrifuged at 1000 g for 5
min. As much PBS as possible was removed in between washes and
prior to freezing and lyophilizing the samples for >72 h until
completely dry. NCM and dNCM were pulverized using a mortar and
pestle/microdismembrator (Sartorius, Goettingen, Germany), and
then UV-sterilized in a Petri dish for 2 × 5 min, 1 × 10 min (stirring
between) at 30 cm distance from a Philips TUVG30T8 UV lamp
(Philips, Amsterdam, Netherlands).
2.3. Biochemical Content and Structural Changes of

(d)NCM. Duplicate samples of NCM and dNCM were digested
overnight at 60 °C using 140 mg/mL papain in 100 mM phosphate
buffer, 5 mM L-cysteine, and 5 mM EDTA. The DNA concentration
was determined using the Qubit DNA assay (Qubit dsDNA HS assay,
Thermo-Fisher Scientific, Landsmeer, The Netherlands) following the

manufacturer’s instructions. DNA fragment lengths were examined on
a 1% agarose gel: 250 μL of digested sample was washed thrice with
ultrapure water and then concentrated to 20 μL using ultra-
centrifugation filters with a 30 kDa molecular weight cutoff for gel
electrophoresis38 (wash/concentration spins: 14 000 g for 10 min,
recovery spin: 1000 g for 1 min). To visualize cell nuclei, we
reconstituted NCM and dNCM powder to 10% w/v in PBS. Samples
were then embedded into Tissue-Tek (Sakura, Finetek USA,
Torrance, USA) on dry ice and thereafter stored at −20 °C. Sections
were stained with 4′,6-diamidino-2-phenylindole (DAPI) (100 ng/
mL in PBS) and imaged under an Axiovert 200 M microscope (Zeiss,
Jena, Germany) (200 ms excitation time). GAG content was
measured via the 1,9-dimethyl-methylene blue (DMMB) assay with
shark chondroitin sulfate as reference standard.39 Hydroxyproline
(HYP) content indicative of collagen was determined using the
chloramine-T assay.40 The total protein content was measured on
undigested, pulverized samples using the BCA assay (Thermo Fisher
Scientific) and residual amount of benzonase was determined with a
commercially available ELISA kit (Benzonase ELISA kit II). Samples
were dissolved to 5 mg/mL in RIPA buffer with 1% cOmplete
protease inhibitor (Roche, Mannheim, Germany) and incubated at 20
°C for 4 h, shaking at 300 rpm before centrifugation at 1000 g for 5
min. The supernatant was used for measurements of protein/
benzonase content. All contents were normalized to tissue dry weight
after decellularization. Structural changes throughout the decellulari-
zation process were visualized by alcian blue/haematoxylin staining of
unprocessed NCM, dNCM after washing and 10% w/v reconstituted
dNCM in PBS after second lyophilization and pulverization using
bright-field microscopy (Axiovert Observer Z31, Zeiss, Jena,
Germany).
2.4. Cytotoxicity of Benzonase. Neonatal human dermal

fibroblasts (passage 6−8) (HDF106-05, ECACC, Salisbury, United
Kingdom) were cultured in αMEM (Gibco, Landsmeer, The
Netherlands) supplemented with 10% fetal bovine serum (FBS,
Bovogen Biologicals, East Keilor, Australia), 1% penicillin/strepto-
mycin (Gibco) and 1% L-glutamine (Gibco) at 37 °C with 21% O2
and 5% CO2. We used fibroblasts as a generic cell type, standing in for
any potential cell type coming into contact with benzonase (NP cells,
AF cells, transplanted cells, etc.). Cell viability in the presence of
benzonase was tested using a 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT, Molecular Probes, Landsmeer,
The Netherlands) assay where cells were plated at 2.5 × 103 cells/well
in a 96-well plate. Benzonase concentrations were chosen to cover a
wide range of concentrations, because the actual concentration of
benzonase ending up in the IVD depends on the administered
amount of dNCM as well as its eventual distribution volume. Cells
were precultured for 48 h, before being incubated with various
concentrations of benzonase for 48 h prior to MTT application (0.4
mg/mL in culture medium) for 75 min. Crystals were solubilized with
250 μL of DMSO/well for 30 min shaking at 300 rpm prior to
absorbance measurements at 540 nm (690 nm reference) with a plate
reader (Synergy HTX, BioTek, Winooski, United States). Samples
were measured in triplicate and corrected for blank and background
absorption. Untreated cells served as viable control; cells treated with
30% DMSO in culture medium instead of benzonase served as a
nonviable control.
2.5. Bovine NP Cell Isolation and Alginate Bead Culture.

Cell-free NCM when injected into the IVD has been shown to induce
IVD regeneration by bioactively stimulating endogenous NPCs via
soluble matrix-associated growth factors.20,41 Alginate beads are a
common method to culture cartilaginous cells, like NPCs, in a 3D
environment. We designed our experiment similarly to our previously
published study for comparison:42 by adding pulverized dNCM into
the medium, we allow its remaining soluble growth factors to diffuse
into the alginate beads and investigate their effects onto encapsulated
NPCs.

Bovine NP cells were harvested from mature bovine tails (24−36
months old) obtained from a local slaughterhouse according to local
regulations. Discs were opened under aseptic conditions and the NP
of each disc carefully removed. NP tissue was first digested in 0.1%
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Pronase (Roche) for 90 min at 37 °C, and then in 0.025% collagenase
II (Worthington Biochemical Corporation, Lakewood, United States)
for 16 h at 37 °C. Next, the cell suspension was filtered through a 70
μm pore-size cell strainer. For the alginate bead culture, cells were
suspended in 1.2% alginate at 3 × 106 cells/mL. The cell suspension
was aspirated into a syringe through a blunt 18 gauge (G) needle and
dropped through an 23 G needle into a 102 mM CaCl2-solution.
Beads were then washed thrice with 0.9% NaCl-solution prior to
culturing.

Alginate beads were cultured in low-glucose Dulbecco’s modified
Eagle medium (DMEM) (Gibco) supplemented with 1% penicillin/
streptomycin, 1% ITS-X (Gibco), 25 μg/mL ascorbic acid-2-
phosphate, 40 μg/mL L-proline, and 1.25 mg/mL AlbuMAX
(Roche). NCM or dNCM powder was added at 3 mg/mL to the
culture medium. This concentration was chosen to mimic protein
levels used in previous studies with NCM.42 Pro-inflammatory
conditions were created by adding 5 ng/mL human IL-1β (Peprotech,
Hamburg, Germany) during every media change throughout the
entire culture duration as described before.42 Medium was changed
2−3 times per week. Beads were cultured for 28 days at 10% CO2 and
5% O2 at 37 °C. Medium was exchanged 2−3 times per week.
2.6. Bioactivity and Anti-inflammatory Properties of

Decellularized NCM. ECM production by bovine NPCs within
the alginate beads was assessed using the DNA, GAG, and HYP assays
as mentioned before. Additionally, expression of key target genes
(Table 1) relating to matrix anabolic/catabolic, and anti-inflammatory
effects of NCM were monitored. Gene expression was normalized to
HPRT using the 2−ΔΔCT method.43

2.7. Histology. Alginate beads were fixed for 1−2 h in 3.7%
formalin with 102 mM CaCl2 and immersed in 30% sucrose for >4 h.
Samples were then embedded as mentioned above. Sections were cut
to 10 μm thickness with a cryotome (CM1950, Leica, Amsterdam,

The Netherlands) and mounted onto Superfrost glass slides (Thermo
Fisher Scientific). For details on detected structures and probes used,
see Table 2.
2.8. Swelling Capacity of dNCM. Ten percent w/v dNCM in

0.9% NaCl-solution was kept in media mimicking the healthy and
degenerate discs (Table 3). The pH was adjusted to pH 7.1 and pH
6.8 for the healthy and degenerate conditions, respectively.

Gels were submerged in media and weighed at predetermined time
points. Swelling was calculated relative to initial wet weight:

=
m m

m
swelling

( )
100%t 0

0 (1)

Table 1. Key Genes Monitored for Change in Gene Expression in Presence/Absence of (d)NCMa

gene accession number primer pair sequences (5′ → 3′) product size (bp)

HPRT NM_001034035 FW: GAGGCATTGTGTCAGAGAGA 128
RV: CTGTATTGAAAAGGAACTGTTGAC

COL2A1 NM_001113224 FW: TGGCTGACCTGACCTGAC 187
RV: GGGCGTTTGACTCACTCC

COL1A2A NM_174520 FW: TGAGAGAGGGGTTGTTGGAC 142
RV: AGGTTCACCCTTCACACCTG

ADAMTS-5 NM_001166515 FW: TCACTGCCTACTTAGCCCTGAA 125
RV: GCTCCAACCGCTGTAGTTCAT

MMP-13 NM_174389 FW: CTTGTTGCTGCCCATGAGTT 197
RV: TTGTCTGGCGTTTTGGGATG

ACAN NM_173981 FW: CCAACGAAACCTATGACGTGTACT RV: GCACTCGTTGGCTGCCTC 107
IL-1β NM_174093 FW: AGCATCCTTTCATTCATCTTTGAAG 88

RV: GGGTGCGTCACACAGAAACTC
IL-8 NM_173925.2 FW: TGCTTTTTTGTTTTCGGTTTTTG 71

RV: AACAGGCACTCGGGAATCCT
IL-6 NM_173923 FW: GGGCTCCCATGATTGTGGTA 69

RV: GTGTGCCCAGTGGACAGGTT
TNFα NM_173966 FW: ACACCATGAGCACCAAAAGC 130

RV: GCAACCAGGAGGAAGGAGAA
aAnnealing temperature of all primer pairs was 60 °C. HPRT: Hypoxanthine Phosphoribosyltransferase 1, COL2A1: collagen II alpha1 chain,
COL1A2A: collagen I pro-alpha2 chain, IL-1b/6/8: interleukin-1b/6/8, TNFa: tumor necrosis factor α, ADAMTS-5: a disintegrin and
metalloproteinase with thrombospondin motifs 5, MMP13: matrix metalloproteinase 13, FW: forward primer; RV: reverse primer; bp: base pairs.

Table 2. Probes Used for Immunohistochemistry

detection of detecting molecule supplier concentration/dilution

nucleus DAPI Thermo Fisher Scientific 1 μg/mL
collagen I rabbit anticollagen I Abcam (ab34710) 1:200 (= 5 μg/mL) in 1% normal goat serum (Gibco)

goat antirabbit Alexa-555 Molecular Probes (A21428) 1:200 (= 10 μg/mL) in PBS
collagen II mouse IgG2a anticollagen II Acris (AM00618PU-N) 1:200 (= 1 μg/mL) in 1% normal goat serum

goat antimouse-IgG2a Alexa-555 Molecular Probes (A21137) 1:300 (= 6.67 μg/mL) in PBS

Table 3. Composition of Healthy and Degenerate Disc
Environment-Mimicking Medium

component

healthy disc
environment-

mimicking
medium

degenerate disc
environment-

mimicking
medium supplier

low glucose DMEM 4.99 g/500 mL 4.99 g/500 mL Gibco
sodium bicarbonate 0.425 g/500 mL 0.213 g/500 mL Sigma
N-methyl-glucamine HCl

(NaCl homologue for ad-
justing medium osmolarity)

92.5 mmol/L
(450 mOsm/
kg)

47.5 mmol/L
(350 mOsm/
kg)

Sigma

penicillin/streptomycin 1% v/v 1% v/v Gibco
L-ascorbic acid 25 μg/mL 25 μg/mL Gibco
L-glutamine 1% v/v 1% v/v Gibco
ITS-X 1% v/v 1% v/v Gibco
L-proline 40 μg/mL 40 μg/mL Sigma
albuMAX 1.25 mg/mL 1.25 mg/mL Gibco
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with mt, wet weight at time point t, and m0, initial wet weight.
2.9. Rheological Properties of dNCM. The rheological

properties of 10% dNCM in 0.9% NaCl-solution (n = 3) were
measured in a parallel platen configuration (gap width 0.6 mm,
diameter 25 mm), at 37 °C, using a rheometer (Ares 3000, TA
Instruments, Asse, Belgium). Ten percent w/v dNCM was chosen to
match NCM’s natural tissue composition, 0.9% NaCl was chosen to
mimic clinical use. First a frequency sweep (0.1 rad/s to 100 rad/s, at
1% strain) was performed, followed by a strain sweep (0.1 to 100%, at

1 rad/s). The complex viscosity η* was obtained from the measured
dynamic viscosities η′ and η′′ via the formula

| *| = +( ) ( )2 2 (2)

2.10. Injectability of dNCM. Injectability testing was conducted
with human bone marrow-derived mesenchymal stromal cells
(hBMSCs) (Lonza, Cohasset, United States).44 hBMSCs were
cultured in high glucose DMEM (hgDMEM) supplemented with
10% FBS (Bovogen Biologicals), 1% penicillin/streptomycin, 1%
nonessential amino acids, and 1 ng/mL basic fibroblast growth factor

Figure 1. Tissue composition pre- and postdecellularization. GAG = glycosaminoglycans, NCM = notochordal cell-derived matrix, dNCM =
decellularized notochordal cell-derived matrix. Six batches of three spines each were used; half of each batch was decellularized to obtain paired
samples. Two samples from each batch were taken for analysis. Horizontal line indicates median, whiskers indicate 95% confidence intervals. n = 6,
** = p < 0.01. GAG, glycosaminoglycans; NCM, notochordal cell-derived matrix; dNCM, decellularized notochordal cell-derived matrix.

Figure 2. (A) DNA fragments in nondecellularized and decellularized notochordal cell-derived matrix (NCM and dNCM, respectively). Samples
1−6 exhibited a slight smear of DNA fragments <400 base pairs (bp) long. (B) DAPI staining of porcine nucleus pulposus and reconstituted
dNCM. Scale bar: 100 μm, excitation time: 200 ms. (C) Alcian blue/haematoxylin staining of various stages during the decellularization process
demonstrating removal of cell nuclei (arrow heads), and later loss of matrix and tissue structure after washing and pulverization of dNCM,
respectively. Scale bar: 200 μm.
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(bFGF, Peprotech) and passage 6 was used for the experiment.
Reconstituted dNCM in 0.9% NaCl solution was combined with
hBMSCs to yield final concentrations of 10% dNCM with 1, 5, and 10
million cells/mL. Samples were aspirated through an 18G blunt
needle into a sterile syringe and ejected through a 27G needle into a
dialysis membrane tube (15 kDa MWCO, Carl Roth). Samples were
incubated for 24 h in hgDMEM (Gibco) with 10% FBS (Gibco), 1%
penicillin/streptomycin, and 8.2% 20 kDa PEG to prevent swelling as
described previously.45 A LIVE/DEAD staining was performed with
calcein-AM/propidium iodide (1 μg/mL/10 μg/mL, respectively)
(Invitrogen) for 1 h in serum-free hgDMEM. Samples were removed
from the dialysis bags and transferred to a six-well plate and then
covered with a coverslip. Pictures were acquired on a Apotome
microscope (Zeiss). Cell viability was quantified using ImageJ.
Samples were prepared in triplicate, with at least two fields examined
per sample.
2.11. Statistics. Statistics were performed in R (v3.6.3). A

Shapiro−Wilkes test was used to test for normality of distribution,
and a Levene’s test for homogeneity of variances. A t-test was used to
determine statistical differences in DNA content between NCM and
dNCM. A Wilcoxon two-sample paired test was performed for
differences in GAG, HYP, and protein content between NCM and
dNCM. Differences in gene expression were analyzed with a Kruskal−
Wallis test followed by a Dunn’s post hoc test. Alginate bead
biochemical composition was investigated with a one-way ANOVA
test and Tukey posthoc testing for normally distributed data, or a
Kruskal−Wallis test followed by a Dunn’s post hoc test for non-
normally distributed data. Viability after injection for different cell
concentrations was analyzed with a one-way ANOVA test and Tukey
posthoc testing. Differences in dNCM swelling dependent on media
were investigated by a t-test. A cutoff of p < 0.05 was used to
determine statistical significance.

3. RESULTS
After decellularization, we found a reduction in DNA content
of 93.9 ± 3.1% to ≈85 ng/mg tissue (Figure 1). DNA
fragments were <400 bp in size (Figure 2A) and could not be
detected microscopically after staining with DAPI, in contrast
to nondecellularized NCM (Figure 2B). During the decellula-
rization procedure, the initially cohesive tissue structure of
NCM is fragmented (Figure 2C). Crucially, no statistically
significant loss in GAG and HYP content was seen; median
GAG content reduced from 615 μg/mg (interquartile range
(IQR): 540−660 μg/mg) to 416 μg/mg (IQR: 384−468 μg/
mg) (median 68% GAGs remain), whereas median HYP
content slightly increased from 2.5 μg/mg (IQR: 2.0−2.8 μg/
mg) to 3 μg/mg (IQR: 0.8−3.2 μg/mg). Median total protein
content reduced from 137 μg/mg (IQR: 111−152 μg/mg) to
59 μg/mg (IQR: 45−63 μg/mg), i.e., 43% of protein content

remained within the dNCM (Figure 1). Despite the high
benzonase concentration used, most benzonase was removed
from dNCM (Figure 3A). No loss in cell viability of fibroblasts
was observed in the presence of benzonase concentrations
600× higher than that measured per milligram of dNCM
(Figure 3B).

The effect of NCM and dNCM was studied in conditions
mimicking the normal and degenerate disc environment by
stimulating bovine NP cells with IL-1β. In terms of the
bioactivity of dNCM, we observed an overall anabolic response
in response to NCM and dNCM with regard to protein
content (Figure 4) and gene expression (Figure 5) in the 28-
day culture with bovine NPCs encapsulated in alginate beads.

No significant increase in DNA/bead in nontreated cells was
seen over 28 days. NCM-treatment significantly increased
DNA content/alginate bead with circa three times the amount
of DNA/bead of nontreated cells and twice of dNCM-treated
bovine NP cells. dNCM stimulated the same amount of sGAG
production as NCM, both groups being significantly higher
than nontreated cells. The GAG/DNA ratio tends to be higher
for the BM and dNCM groups than the NCM group (Figure
4). At the gene expression level, collagen I and II expression
were significantly reduced in dNCM-treated cells after 28 days
compared to cells in base medium. On the protein level,
however, dNCM-treated cells exhibited less collagen II
deposition than NCM-treated groups, but still more than the
base medium group (Figure 6). Collagen I was mostly present
in the base medium group and was less visible in NCM- and
dNCM-treated groups. Furthermore, aggrecan gene expression
was not affected across all groups, whereas dNCM- and NCM-
treated groups tended toward lowered expression of catabolic
genes MMP13 and ADAMTS-5.

IL-1β treatment was provided to study the effect of dNCM
under pro-inflammatory conditions. IL-1β did not affect DNA
content nor GAG production (Figure 4) but decreased
collagen type I and type II immunostaining intensity across
groups (Figure 6), indicative of decreased deposition. In terms
of NCM-dependent modulation of the inflammatory response,
no significant differences in gene expression were found
between nonstimulated cells and cells stimulated with IL-1β.
NCM-treated groups exhibited significantly lower levels of IL-8
expression at day 28 compared to dNCM-treated cells (Figure
5). NCM significantly reduced the gene expression of IL-1β
and TNFα compared to untreated groups. Stimulation with IL-
1β in the medium abrogated any differences in interleukin
expression between groups. Furthermore, a significant

Figure 3. (A) Benzonase content in decellularized notochordal cell-derived matrix (dNCM) was <0.3 ng/mg dry weight and mostly below the
detection limit (red line) of the ELISA kit used. Horizontal line indicates median, whiskers indicate 95% confidence intervals. n = 6, ** p < 0.01.
(B) MTT assay results indicated cell viability is reduced in the presence of benzonase relative to untreated control, but does not scale with
benzonase concentration. n = 3, average ± standard deviation plotted.
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inflammatory effect of dNCM was seen only in combination
with IL-1β-stimulation for IL-6 gene expression after 28 days.

Reconstituted dNCM swelled up to 300% relative to its
starting weight (Figure 7) in free swelling conditions. Swelling
capacity was unaffected by media mimicking the healthy and
degenerate IVD environment.

We further found that the 10% w/v dNCM suspension had a
low storage modulus (≈100−200 Pa) and decreasing viscosity
with increasing shear (Figure 8). Injection of MSCs within
dNCM through a clinically relevant 27-gauge needle did not
adversely affect cell viability, with >77% median viability
observed when injecting 10 × 106 cells/mL, and >80% for
lower cell concentrations (Figure 9).

4. DISCUSSION
In this study, we aimed to create an effective detergent-free
decellularization protocol for the notochordal-cell-rich NP
maintaining its bioactive effects. In contrast to previous
protocols, we did not aim to preserve the tissue structure
and create a scaffold for tissue engineering purposes, but aimed
to create a bioactive NCM-derived injectable material that
preserves GAGs and proteins and may act as a cell vehicle for
further disc regeneration approaches. Previously published
protocols for decellularization of the porcine NP rely on
immersion and perfusion of the isolated tissue in detergent-
containing buffers to lyse cells. In doing so, however, the tissue
may lose its integrity26 and some components may be lost over
time, the amount lost depending on the specific protocol used.

As an alternative cell-lysis method, we lyophilized the tissue.
To preserve as much tissue as possible, we prevented
uncontrolled swelling of the tissue in buffer limiting tissue
dissociation. To this end, we restricted the buffer volume to
0.01 mL/mg of tissue dry weight, effectively creating an
incompletely swollen gel during the decellularization process.
Similar to a recent previously published protocol,28,37 with our
protocol, overall GAG and collagen content were not of
statistically significant difference with decellularization despite
differences in median values. A high GAG/collagen ratio of
≈27 ± 5 is characteristic for NCM9 and was only slightly
reduced in dNCM to ≈21.3. At the same time, DNA content
was reduced by 94%, to ≈85 ng/mg of dry weight.

In terms of residual DNA content after decellularization,
amounts <50 ng of DNA/mg of tissue dry weight with <400
bp in length and lack of visibility in H&E or DAPI stains has
been proposed as a positive outcome control measure.46−48

The measured total DNA content in the dNCM is higher at
85.3 ng/mg dry weight but is undetectable using DAPI and
becomes detectable only after concentration on an agarose gel.
Extracellular DNA has been implied in the severity of
inflammation,23−25 but the amounts found in healthy
individuals’ plasma vary greatly depending on the quantifica-
tion method and lie either below or above the published limit
for successful decellularization.49 As such, this proposed limit
may not reflect a universally applicable goal,38 especially
considering the immunoprotected state of the NP within the
avascular IVD.50 Compared to the previously published
protocols, we achieved a similar or greater reduction in DNA
content when accounting for different normalization methods
used (wet/dry weight). Considering the total genome length of
PERVs at 9 kbp51 and individual gene length at >600 bp,52 the
probability of infection by using decellularized NCM
containing DNA fragments of <400 bp in length is minimal.
The previously published studies26−28 did not concentrate
samples to ensure visualization or indicate fragment sizes
found or they investigated only the presence of larger fragment
sizes, hindering comparisons in this aspect. Additionally, we
measured the remaining trace amounts of nuclease in the
decellularized tissue and evaluated its cytocompatibility. Less
than 1% of initial benzonase input was detected in all samples
after decellularization and was consistent, and 600× higher
benzonase concentrations did not affect cell viability. The
delivered amount to the disc depends on the formulation and
volume of dNCM injected into the disc. Even levels 6× those
found in 100 mg/mL dNCM (=10% w/v, mimicking water
content in NCM) were tolerated. The effect of benzonase on

Figure 4. DNA and GAG content per alginate bead with encapsulated
bovine NPCs. The effects of added NCM, dNCM (both
supplemented at 3 mg dry weight/mL), and pro-inflammatory
stimulus IL-1β (5 ng/mL) onto DNA and GAG levels were
investigated. (A) Significant increases in DNA content were found
for cells treated with NCM, but not dNCM after 28 days compared to
day 0. (B) However, sGAG production by cells was equally increased
in both treatment groups compared to base medium group after 28
days. (C) Relative increase in sGAG/DNA amounts highlights the
promotion of proliferation over sGAG production in NCM-treated
cells. No effect of IL-1β could be observed here. All n = 5, average ±
standard deviation, � = p < 0.05, ** = p < 0.01, *** = p < 0.001,
**** = p < 0.0001. BM, base medium; NCM, notochordal cell-
derived matrix; dNCM, decellularized NCM; NPC, nucleus pulposus
cell; GAG, glycosaminoglycan.
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the overall application of dNCM in potential clinical settings is
anticipated to be minimal.

The overall loss of NCM’s tissue structure observed after
washing reflects the loss in GAGs and increase in the porosity
of the tissue. Once pulverized and condensed, GAG loss is
somewhat compensated. Although tissue structure disruption
is usually avoided for decellularization, in our application, we
are more interested in injectability and maintaining the soluble
bioactive factors of dNCM more so than its structure.

None of the previous studies decellularizing porcine NP
examined total protein content or composition after
decellularization, but still report enhanced matrix production
by either NP cells27 or human adipose-derived stem cells.53

Collagen and GAGs are known to influence cell adhesion and
behavior,54,55 but additionally, notochordal-cell-rich tissues like
canine or porcine NCM exhibit many bioactive factors.15,17

These factors counteract NP degeneration, potentially by

stimulating TGF-β-related pathways and preventing ECM
degradation.15 According to our results, the total protein
content does not reflect the combined proliferative and
anabolic response of NP cells to dNCM treatment. With the
protocol presented in this study, ≈43.2% of proteins remain in
the dNCM, stimulating 71% as much DNA production, but
comparable GAG production as NCM. Collagen deposition is
affected differently between NCM- and dNCM-treated NPCs
as well.

dNCM may therefore have an altered set of functional
proteins responsible for lower proliferative stimulation
compared to NCM. NCM is characterized by soluble and
matrix-associated pelletable components.17 In our decellulari-
zation protocol, the matrix composition is kept intact while
cells are destroyed via lyophilization. Larger molecules such as
proteoglycans, GAGs, and collagen cannot easily diffuse out of
the tissue during our protocol’s short washing step. However,

Figure 5. Gene expression of bNPCs in response to NCM/dNCM treatment after 28 days. Significant reduction of collagen I (COL1A2A) and
collagen II (COL2A1) gene expression in cells treated with dNCM after 28 days was observed. Aggrecanase (ADAMTS-5) and collagenase
(MMP13) gene expression tended to be lower in NCM- and dNCM-treated groups, whereas aggrecan (ACAN) gene expression remained
unaffected. Significant reduction in IL-1β, IL-8, and TNFα expression was observed in the NCM-treated group after 4 weeks, but not in dNCM-
treated groups. IL-6 tended to increase in the presence of NCM and dNCM, as well as IL-1β. n = 5, average ± standard deviation plotted. � = p <
0.05, ** = p < 0.01. NPC, nucleus pulposus cell; NCM, notochordal cell matrix; dNCM, decellularized NCM; BM, base medium.
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NCM’s unbound smaller solutes would be free to diffuse out
during enzyme incubation and the washout procedure.
Proteins may be differentially washed out because of their
physicochemical characteristics like size, hydrodynamic radius,
charge, and protein−protein interactions,56−58 whereas
susceptibility to UV degradation stems from their amino acid
composition.59,60 Future proteomic studies may identify
compositional changes between NCM and dNCM.

Compared to NCM, dNCM also may not possess an anti-
inflammatory effect anymore. As previously published,42 NCM
tended to lower IL-1β and TNFα gene expression in
stimulated bovine NP cells (Figure 5) and in vivo in
degenerate IVDs of experimental dogs.20 Cells treated with
dNCM tend to express inflammatory markers on par with
nontreated cells, except for a significant increase in IL-6
expression, a trend also seen in NCM-treated cells. Overall, the
observed effect of IL-1β is small on gene and protein levels and
point to a batch of bovine NPCs less responsive to the applied
pro-inflammatory stimulus compared to our previous studies.42

A combination of pro-inflammatory mediators, e.g., TNF-α,
could have been used to synergize with IL-1β and elicit a
stronger and more robust cell responses.61 Importantly,
although it does not shield NPCs from inflammatory stimuli,
dNCM also does not cause additional harm to them. The
overall stimulation of proliferation, collagen deposition, and
GAG production renders dNCM a useful therapeutic agent for
IVD regeneration. On the matrix level, GAG deposition by
NPCs outweighs collagen II deposition in their importance to
NP swelling pressure and restoration of biomechanics.62

We aimed to use the decellularized NCM as an injectable
vehicle for IVD degeneration treatment. Although pepsin
digestion and collagen refibrillation is commonly used to

Figure 6. Bovine NPCs deposited different collagen types under different conditions. Collagen II deposition was enhanced in the presence of
NCM, but not dNCM compared to untreated groups (top). Collagen I production was highest in untreated groups (bottom). IL-1β decreased
collagen production across all groups. Scale bar: 500 μm. One second excitation time for collagen detection. BM, base medium; NCM, notochordal
cell-derived matrix; dNCM, decellularized NCM.

Figure 7. Hydration of 10% dNCM in 0.9% NaCl over time in media
mimicking (non-)degenerative conditions found in the IVD (see
Table 3 for media composition). n = 3, average ± standard deviation
plotted.

ACS Biomaterials Science & Engineering pubs.acs.org/journal/abseba Article

https://doi.org/10.1021/acsbiomaterials.2c00790
ACS Biomater. Sci. Eng. 2022, 8, 3912−3923

3919

https://pubs.acs.org/doi/10.1021/acsbiomaterials.2c00790?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsbiomaterials.2c00790?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsbiomaterials.2c00790?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsbiomaterials.2c00790?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsbiomaterials.2c00790?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsbiomaterials.2c00790?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsbiomaterials.2c00790?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsbiomaterials.2c00790?fig=fig7&ref=pdf
pubs.acs.org/journal/abseba?ref=pdf
https://doi.org/10.1021/acsbiomaterials.2c00790?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


produce gels from decellularized matrices,63 translation to in-
patient use for IVD degeneration treatment may be hindered
by the reversible inactivation of the pepsin, which regains its
activity in acidic environments,64 such as the degenerated IVD.
Pepsin may be irreversibly inactivated at pH ≥8;65 however,
this will affect not only pepsin but the decellularized ECM
proteins and potential encapsulated cells as well. From our
understanding, the increase to pH 8 did not occur when ECM-
derived gels were prepared via pepsin digestion. Additionally,
pepsin is a nonspecific protease66 and thus potentially reduces
the remaining bioactivity of dNCM by digestion of the matrix-
associated growth factors. Alternatively, reconstitution of
dNCM to 10% w/v results in a suspension that could be
described as a viscoelastic liquid.67 ,68 With a stiffness of
≈100−200 Pa, reconstituted dNCM falls within the stiffness
range of decellularized ECM hydrogels obtained by collagen
refibrillation.63 As such, this material does not exhibit
meaningful load-bearing properties for use in the IVD.

Swelling is a central feature of the healthy NP
biomechanics,69 and therefore NP biomaterials that aim to
restore healthy motion segment mechanics in the spine.70 We
tested the swelling capacity of dNCM by reconstituting it to
10% w/v in 0.9% NaCl in media mimicking the healthy and
degenerate IVD environment. dNCM’s hydration capacity
stems from the GAGs within2 and could contribute to
reestablishing a swelling pressure within the disc. The
predominant swelling mechanism for dNCM may stem from
interaction of GAGs with water directly rather than the
dissolved ions, as the swelling degree is not influenced by
osmolarity of the medium (Figure 7).

Importantly, reconstituted dNCM exhibits a shear-thinning
behavior (Figure 8), making it suitable for injection.71 Cell
implantation for DDD treatment and IVD regeneration has
been widely investigated and discussed.72,73 Mesenchymal
stem cells (MSCs) have been previously tested for their
therapeutic potential in IVD regeneration.72 We therefore
investigated the potential of dNCM as a vehicle for cell

transplantation by injection and found median viabilities >77%
for administration of up to 10 × 106 cells/mL, i.e., no drop in
cell viability according to FDA standards.74 Higher cell
concentrations experience higher shear stress during injec-
tion75,76 and competition for nutrients postinjection within the
IVD.72 Lower cell concentrations are thus more favorable for
clinical application but require highly potent cells for adequate
novel matrix deposition and/or stimulation of resident NPCs.

While being a step closer to clinical translation, dNCM still
has its limitations: IL-6 has been reported to induce IVD
degeneration through YAP/β-catenin signaling.77 Previous
studies already indicated an overall beneficial effect of NCM
in vivo,20 despite the increase in gene expression of IL-6
observed in vitro in this and the previous study.42 Production
of IL-6 on protein level in the presence of dNCM and its
potential effect onto NPCs should therefore be investigated.
For later clinical application, quantification of α-Gal epitopes
within the dNCM is necessary because of its role in tissue
remodeling and graft rejection.78,79 Adaptation of an ELISA for
α-Gal-quantification80 remained unsuccessful on NCM tissue
(data not shown). With the current protocol, α-Gal digestion
can be achieved by the addition of α-galactosidase con-
currently or sequential to tissue incubation with benzonase to
yield an immunogenically better compatible material for use in
human patients. We are currently exploring alternatives for
detecting these glycan residues pre-/post-decellularization.

5. CONCLUSION
In this study, we developed a short, detergent-free, and easy
protocol to decellularize porcine NCM. The anabolic
stimulatory effect onto NPCs was kept after processing, and
material properties show that reconstituted dNCM is a suitable
vehicle for cell delivery into the disc, that may restore swelling
pressure within the disc. dNCM can be further combined with
load-bearing biomaterials for mechanical and biological
restoration of the IVD. dNCM therefore holds great potential
as a biomaterial for future IVD regeneration.
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