

https://doi.org/10.1093/pnasnexus/pgaf152 Advance access publication 9 May 2025

Review

Conformational modulation of intrinsically disordered transactivation domains for cancer therapy

Thibault Vosselman 📵 a, Cagla Sahin 📵 a,b, David P. Lane a, Marie Arsenian Henriksson 📵 a,*, Michael Landreh 📵 a,c,* and Dilraj Lama 📵 a,*

Edited By Philip Furmanski

Abstract

Intrinsically disordered proteins are implicated in many diseases, but their overrepresentation among transcription factors, whose deregulation can cause disproportionate expression of oncogenes, suggests an important role in cancer. Targeting disordered transcription factors for therapy is considered challenging, as they undergo dynamic transitions and exist as an ensemble of interconverting states. This enables them to interact with multiple downstream partners, often through their transactivation domains (TADs) by the mechanisms of conformational selection, folding-upon-binding, or formation of "fuzzy" complexes. The TAD interfaces, despite falling outside of what is considered "classical" binding pockets, can be conformationally modulated to interfere with their target recruitment and hence represent potentially druggable sites. Here, we discuss the structure–activity relationship of TADs from p53, c-MYC, and the androgen receptor, and the progresses made in modulating their interactions with small molecules. These recent advances highlight the potential of targeting these so far "undruggable" proteins for cancer therapy.

Keywords: disorder, transactivation domain, conformational modulation, cancer

Introduction

Today, we have a good understanding of how different cancers originate and a wide array of treatment options at our disposal, yet many cancers are still marked by poor prognosis for patient survival due to their intricate biology with high complexity. Lack of early detection tools and absence of efficient treatment often form the foundation for these cases. As a result, cancers consistently rank among the main causes of death worldwide, accounting for ~30% of all mortalities due to noncommunicable diseases (1). Interestingly, it is estimated that a significant proportion (~70%) of the proteins that are linked to aberrant cellular control in cancer are disordered, either in specific regions or over their entire sequence (2). This class of proteins termed intrinsically disordered proteins (IDPs) are ubiquitous and play pivotal roles in regulating a wide range of cellular processes (3). The recent progress made in understanding the molecular basis of their involvement in driving tumor initiation, progression, and metastasis has made them a major interest for cancer drug development efforts (2-5).

IDPs lack a stable tertiary structure and hence do not contain a defined 3D conformation under physiological conditions. The absence of structural definition renders them highly dynamic and allows these proteins to undergo rapid transitions between various structural states in response to environmental cues or molecular interactions (6). Their flexibility enables IDPs to engage in specific yet transient interactions with a wide variety of binding

partners. They also exhibit a heterogeneous dispersal of structural conformations when not in direct proximity to protein interactors. In extension, their conformational flexibility allows IDPs to be highly adaptive to changes in the cellular environment and molecular modifications (7). Logically, this "shape-shifting" ability makes IDPs extremely challenging to target through conventional structure-based drug-design approaches that require the presence of a stable binding site, and therefore often have been considered to be undruggable (2–5). It is, however, a compelling avenue for exploration as the proteome space for therapeutic interventions will be dramatically widened when the disordered class of proteins can be rationally targeted. Hence, strategies for the discovery or design of small molecules that can specifically modulate their conformational landscape offer exciting possibilities for drug development. Here, we discuss how the structural flexibility and protein binding activity of disordered transactivation domains (TADs) present in transcription factors can be modulated using small molecules to target cancer.

Disordered TADs in cancer

Transcription factors regulate gene expression by recognizing specific DNA sequences and forming multiprotein complexes. Their overactivation or deregulation can lead to disproportionate transcription of genes involved in the development of tumors, making them promising candidates for the development of

^aDepartment of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-171 65 Stockholm, Sweden

bStructural Biology and NMR Laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark

^cDepartment of Cell and Molecular Biology, Uppsala University, Husargatan 3, SE-751 24 Uppsala, Sweden

^{*}To whom correspondence should be addressed: Email: marie.arsenian.henriksson@ki.se (M.A.H.); Email: michael.landreh@icm.uu.se (M.L.); Email: dilrai.lama@ki.se (D.L.)

therapeutics (8-10). Within the modular architecture of a transcription factor, disordered regions act as flexible scaffolds that contain binding sites for other proteins, which stimulate the activation of associated genes. These domains, commonly referred to as TADs, can engage in a multitude of interactions with different protein binders (9). The intrinsic disorder of the TAD is therefore a common and indispensable structural property that regulates the biological activity of cancer-related and targeted transcription factors such as p53, c-MYC, and the androgen receptor (AR).

p53

The tumor suppressor p53 is one of the most extensively studied and prominent examples of a TAD-containing protein with direct involvement in carcinogenesis (11). It has a crucial role in protecting the genomic stability and as such been described as the "guardian of the genome" (12). The protective effects take place through direct involvement in the cellular response to both internal and external stress signals, including DNA damage (13). p53 is a predominantly disordered protein except for the folded DNA-binding domain and the helical tetramerization domain (Fig. 1A, D, and G). The disordered N-terminal region contains a TAD followed by a proline-rich domain. The TAD in p53 can be further divided into two subdomains (TAD1 and TAD2) that interact with various transcriptional cofactors, allowing the precise regulation of target gene expression involved in cellular processes such as cell cycle arrest, DNA repair, and apoptosis (11-15).

c-MYC

The proto-oncoprotein c-MYC is another prominent example of a cancer-related TAD (16). It is a master regulator of gene expression and modulates cellular processes including cell proliferation, differentiation, metabolism, and controlled cell death (17). Unlike p53, c-MYC is a fully disordered protein, and the domain composition can be broadly categorized into an N-terminal TAD, a central region, and a C-terminal DNA-binding domain (Fig. 1B, E, and H). The disordered N-terminal TAD contains three functionally important and evolutionary conserved motifs termed MYC Box 0 (MBO), MYC Box I (MBI), and MYC Box II (MBII). The MYC boxes mediate the recognition of several transcriptional cofactors, which have an important role in gene expression that is quintessential for tumor formation (18, 19). In line with its central role in proliferation, deregulation of c-MYC is a common characteristic across a broad spectrum of human cancers (20).

AR

The same principle as in p53 and c-MYC can be found in the AR, a member of the nuclear hormone receptor family of transcription factors (21). Deregulation of AR is strongly linked to prostate cancer biology, making it a major therapeutic target in this disease (22, 23). In addition, it is also emerging as an important factor in breast cancer pathology, glioblastoma, and several other types of human malignancies in which AR-signaling facilitates tumor growth (24, 25). This receptor is a multidomain protein with a considerably large intrinsically disordered N-terminal TAD, followed by the folded DNA- and ligand-binding domains, which are separated by a short hinge region (Fig. 1C, F, and I). The TAD contains two transcriptional activation units called TAU-1 and TAU-5 that are responsible for regulating the AR transcriptional activity by recognizing coactivators, corepressors, and driving interdomain interactions (26).

TADs can engage their protein interactors in diverse modes

The classical "lock-and-key" mechanism of interaction can effectively describe the recognition between two relatively rigid and structurally ordered biomolecules (Fig. 2). However, the highly disordered structures of TADs make it challenging to decipher how they specifically recognize and interact with their binding partners. TADs can undergo "folding-upon-binding" and acquire specific structures induced by their binding partners (27-34). They can also adopt multiple interconverting conformations in the bound complex resulting in what is termed as "fuzzy interactions" (35-42). These two models are postulated to be the main mechanisms for how TADs engage with their interactors (Fig. 2).

Folding-upon-binding typically represents acquisition of a well-defined secondary structure by the unstructured polypeptide in response to binding interactions with another molecule (27-30). This disorder-to-order transition offers a window to analyze and characterize the end-state structure of disordered region through traditional structural biology techniques (31). However, the folding-upon-binding model cannot explain when this structural transition occurs. One possibility is that the association is initiated in a fully disordered state and that folding is induced by interaction with the binding partner. This theory is referred to as the "induced folding" approach (27, 32, 33). The "conformational selection" hypothesis, on the contrary, suggests that this conformational change is not initiated by the interaction, but instead that the structural repertoire of disordered polypeptides provides both folded and unfolded conformational states in solution. Binding occurs when the prefolded structural conformations are selected by the binding partner to initiate the interaction (33). A possible third model is an amalgamation of the two theories, where the initial interaction is formed via "conformational selection," followed by optimization of the bound-state structure through "induced folding" (34).

Fuzzy interactions are defined as interactions in which disordered regions do not adopt well-defined 3D conformations in the bound state, but instead contain a significant amount of heterogeneity. In other words, they maintain their structural plasticity in the final complexes, which is also referred to as "fuzzy complexes" (35). An interesting postulation concerning this type of interaction is whether two IDPs could interact through a fuzzy complex, while both remain partially flexible. Currently, four different types of fuzzy complex models have been described based on the conformational property and dynamics of the interacting segments (36). These include "polymorphic" complexes in which the bound fragment adopts alternative conformations in the complex (37), "clamps" in which a disordered segment serves as linker between two folded elements in the complex (38), "flanking" complexes in which disordered segments provide supplementary contact points for binding (39), and "random" complexes in which varying short-length recognition motifs are connected by multiple disordered segments (40). Despite this categorization, it is important to note that these subtypes of fuzzy interactions are not mutually exclusive but can occur in parallel with each other within the same complex (36).

Fuzzy complexes lack the stable bound conformation and therefore cannot generate the same amount of enthalpy to compensate for the loss in conformational entropy. Thus, they often have lower strengths than complexes formed through folding-upon-binding (41). This can be advantageous in systems where interactions must be transient and reversible to ensure that a signaling cascade is turned on or off, for example, in gene

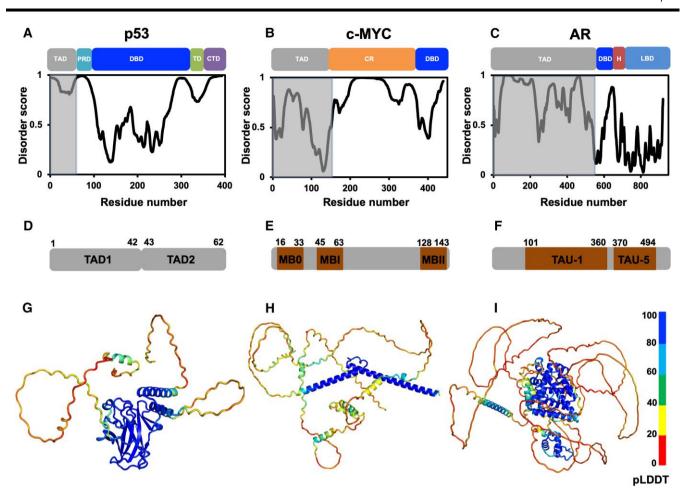


Fig. 1. Domains, disorder, TADs, and structure models. A)-C) First row: domain architecture of p53 (TAD, transactivation domain; PRD, proline-rich domain; DBD, DNA-binding domain; TD, tetramerization domain; CTD, C-terminal domain), c-MYC (TAD, transactivation domain; CR, central region; DBD, DNA-binding domain), and AR (TAD, transactivation domain; DBD, DNA-binding domain; H, hinge; LBD, ligand-binding domain), respectively. Second row: sequence-based disorder prediction generated using the VSL2 algorithm from the Predictor of Natural Disorder Regions (PONDR) server is shown below each protein. The TAD regions are highlighted in gray background on each of the plots. D)-F) Subdomains (TAD1 and TAD2), functional motifs (MBO, MBI, and MBII), and transcription units (TAU-1 and TAU-5) of the TAD from p53, c-MYC, and AR, respectively. The residue range of the subdomains, MB motifs, and TAU units are indicated. G)-I) AlphaFold-generated models of full-length p53 (UniProt ID: P04637), c-MYC (UniProt ID: P01106), and AR (UniProt ID: P10275), respectively. The residues in the modeled structures are color-coded based on their predicted local distance difference test (pLDDT) scores, whose range from low to high is considered as a good predictor of disorder to order in a structure (14,).

transcription. Another advantage of intrinsic disorder is described via the "fly-casting hypothesis" (42). This model proposes that the extended conformations of unfolded structures like TADs, which have a larger radius than folded domains, enable initial contact with binding partners when they are further away from one another. They then pull their target closer, allowing complex formation to proceed and adopt specific mode of engagements as discussed above.

Structurally characterized protein interactions of TADs

The disordered nature of TADs makes it challenging to explore their structural properties, and our current knowledge is predominantly derived from bound-state structures of TAD fragments with their binding partners. Such complexes of p53 and c-MYC extracted from the Protein Data Bank (PDB) are listed in Table 1. Further, representative examples from the list are described in the section below, which highlight the heterogeneous nature of their bound conformations and how they can be exploited for therapeutic interventions. It is interesting to note that thus far, no structure of TAD from the AR with its binding partners has been experimentally determined.

p53

The TAD1 of p53 is recognized by the murine double minute 2 (MDM2) protein, an E3 ubiquitin ligase that tags p53 for ubiquitination and subsequent proteasomal degradation (11). Crystal structures of the folded domain of MDM2 in complex with a 13-residue segment (residues 17–29) from the p53 TAD1 revealed that the peptide docks into a hydrophobic cleft on MDM2 and adopts a helical conformation (Fig. 3A). The specificity of the complex formation is driven primarily by a triad of p53 amino acids (F19, W23, and L26), which inserts into the MDM2 pocket and induces a helical structure in the almost entirely disordered TAD1 (43). A solution state structure of TAD2 from p53 has been reported in complex with the TAZ2 domain of histone acetyltransferase p300, an enzyme that stabilizes p53 and promotes local unwinding of the chromatin for gene transcription (48). The complex determined using NMR spectroscopy revealed that TAD2 formed an α -helix between residues 47 and 55 in the bound state (Fig. 3B).

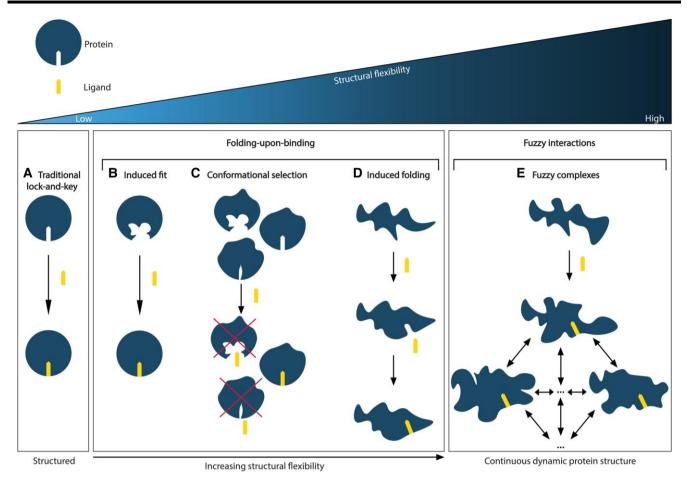


Fig. 2. Schematic representation of protein interaction functionality on a rigid-to-dynamic scale. Top row: schematic representation of protein and ligand. Low to high structural flexibility as indicated. A) The traditional "lock-and-key" principle conceptualizes the interaction between protein and ligand where the ligand represents the "key" and the binding site in the protein structure represents the "lock." B) The induced fit concept displaying structural alteration of the ligand-binding site in the protein structure as response to the binding partner being in its proximity and initiating interaction.

C) Conformational selection of the fitting structural conformation of the protein by the binding partner. D) Depiction of induced folding of the dynamic protein structure of IDPs when the disordered protein interacts with its binding partner. E) Fuzzy complex formation of IDPs, the disordered protein structure maintains structural plasticity in final complexes with binding partners.

The structure of the full-length p53 TAD (TAD1+TAD2) has also been solved using NMR in complex with the TAZ2 domain of CREB-binding protein (CBP), which is a paralog of p300 (50). Here, the p53 TAD interacts in a bipartite manner with two interaction motifs that fold into helical segments upon binding TAZ2. The intervening regions between these helical motifs are unstructured and flexible (Fig. 3C). We recently showed that fusion of p53 to an engineered folded domain from a spider silk protein (termed NT*) resulted in increased expression and stability compared with wt p53 (59). Structural characterization using NMR and molecular dynamics (MD) simulations indicated the formation of a fuzzy complex where the TAD from p53 bound to a hydrophobic patch in the NT* domain through multiple nonspecific interactions (Fig. 3D). Interestingly, trapping the TAD in this manner resulted in stronger induction of p53 downstream targets, indicating that the transient, fuzzy interaction is sufficient to distort the finely tuned MDM2-p53 axis.

These complexes demonstrate the versatility provided by the disordered nature of p53 TAD to recognize diverse binding partners. The availability of high-resolution structural information has enabled the development of small molecule antagonist such as Nutlin and AMG232 that disrupt interaction between p53 and MDM2 (61). These molecules occupy the p53 TAD1 binding pocket

on MDM2 and hence promote p53 stabilization by preventing its ubiquitination and degradation (62). Further, the p53–MDM2 structure was used to design and develop the first-in-class "stapled-peptide" compound (ALRN-6924) and a dual inhibitor of MDM2 and MDMX (a MDM2 homolog) to enter clinical trials (63, 64). Stapled peptides mimic the bound conformation of p53 TAD1 (Fig. 3E) through nonnative covalent linkers between the sidechains of amino acids at rationally selected positions in the peptide sequence (64–66). Such modifications have been effective in stabilizing the active helical conformation of the disordered TAD1 peptide in solution (64–66). Trapping the peptide in this manner reduces the entropic cost of recognition which the disordered TAD1 requires while undergoing structural remodeling in the process of binding MDM2/MDMX.

c-MYC

Like p53, peptide derivatives from different regions of c-MYC TAD have been subjected to structure determination in complex with their binding partners. Protein phosphatase 1, a serine threonine phosphatase, and its regulatory subunit PNUTS are required to control the phosphorylation of c-MYC and thereby maintain its stability and occupancy at the chromatin (67). A peptide (residues

Table 1. Structures of the p53 and c-MYC TADs in complex with protein binders.

PDB ID	TAD residue range ^a	Protein binders	Method ^b	References
p53				
1YCR	17–29	MDM2	X-ray	(43)
1YCQ	17–27	MDM2	X-ray	(43)
3DAC	17–28	MDMX	X-ray	(44)
3DAB	18–28	MDMX	X-ray	(44)
6T58	17–30, 36–54	S100A4	X-ray	(45)
2B3G	33–56	Replication protein A	X-ray	(46)
2K8F	1–39	p300	NMR	(47)
2MZD	35–59	p300	NMR	(48)
2LY4	14–60	High mobility group B1	NMR	(49)
5HOU	1–60	CREB-binding protein	NMR	(50)
5HPD	2–61	CREB-binding protein	NMR	(50)
5HP0	37–61	CREB-binding protein	NMR	(50)
2L14	13-61	CREB-binding protein	NMR	(51)
2GS0	45–58	TFB1 subunit of TFIIH	NMR	(52)
2RUK	41–62	p62 subunit of TFIIH	NMR	(53)
6XRE	12–61	RNA polymerase II assembly	Cryo-EM	(54)
c-MYC			-	, ,
7LQT	13–30	PNUTS	NMR	(55)
1MV0	55–68	BIN1	NMR	(56)
6E16	96–111	TBP+TAF1	X-ray	(57)
6E24	96–107	TBP+TAF1	X-ray	(57)
7T1Z	51–62	FBW7	X-ray	(58)
7T1Y	241–248	FBW7	X-ray	(58)

^aThis range corresponds to the residues that are resolved in the structure.

13–30) from the highly conserved MB0 motif present at the TAD of c-MYC has been shown to directly interact with the folded N-terminal domain (PAD) of PNUTS (55). The molecular structure solved by NMR showed that the disordered peptide anchors into the binding pocket of PAD and adopts multiple conformations with features of a fuzzy complex (Fig. 3F).

The bridging interactor 1 (BIN1) protein is a nucleocytoplasmic adaptor protein with tumor-suppressive features, and its interaction with c-MYC can modulate c-MYC-mediated transformation and transactivation (68). The BIN1:c-MYC recognition is dependent on the highly conserved MBI motif in the TAD of c-MYC. The structural characteristic of this interaction is provided by a proline-rich peptide fragment (residues 55–68), which form part of the MBI motif in complex with the C-terminal Src homology 3 domain of BIN1 (56). The structure determined using NMR showed that the c-MYC TAD peptide adopts a predominantly polyproline II secondary structure in the bound state (Fig. 3G).

The TATA-binding protein (TBP) is an essential component of the multimeric transcription factor IID (TFIID) initiation complex, which is responsible for RNA polymerase II assembly and gene expression (69). The structure of a c-MYC peptide derivative (residues 96-111), which is proximal to the conserved MBII motif in c-MYC TAD, has been reported in a ternary complex with TBP and the amino-terminal domain 1 of TBP-associated factor 1 (TAF1) protein (57). The structure solved using X-ray crystallography indicates that the c-MYC peptide docks into the grove formed by TBP + TAF1 binary complex and adopts an amphipathic helical structure (Fig. 3H).

For MBII, which is the most prevalent site for protein recruitment in c-MYC TAD, no structure of the motif with a target protein has been solved to date. The transformation/transcription domain-associated protein (TRRAP) is a critical cofactor of c-MYC and one of the biophysically well-characterized MBII-dependent binders (70, 71). We have recently shown using native mass spectrometry that peptide derivatives from c-MYC (residues 101–150, which harbors the MBII motif) and TRRAP (residues 2038-2087)

form a 1:1 complex, suggesting specific association (60). Further, a modeled structure developed through a combination of AlphaFold and MD simulations suggested an elongated and predominantly helical conformation of the two peptides in the complex state (Fig. 3I). This model corroborates an earlier study which indicated that the interacting peptides from c-MYC and TRRAP undergo a "disorder-to-order" transition in the formation of a structurally stable conformation with high alpha helical character (71).

Targeting TADs through conformational modulation

The structures described above show that the different peptide derivatives from the TADs of p53 and c-MYC adopt multiple conformations in their bound state, underlying their plasticity to recruit diverse binding partners. Importantly, the structures also suggest that molecules that can bind to these TADs have the potential to inhibit their interactions. Table 2 highlights a list of ligands that are reported to target the TAD of p53, c-MYC, and AR. It contains information on the name of the compounds, chemical structure, and the biophysical method used to validate TAD binding, as well as the latest stage of their development. The initial hit identification of such compounds does not have to accurately match the specific sequence or structural features of the binding interfaces. This is illustrated by the fact that some naturally occurring polyphenols such as epigallocatechin gallate (EGCG) or curcumin and their derivatives are potent aggregation inhibitors for IDPs (81–83). These molecules combine aromatic moieties and hydroxyl groups in a flexible scaffold, to engage in multiple nonspecific interactions involving hydrophobic contacts and hydrogen bonds, which blocks the sites required for selfassociation (81–83). The extension of such an approach in the context of targeting TAD by modulating their conformational flexibility is demonstrated with current examples from p53, c-MYC, and AR in this section.

^bExperimental method used to solve the structures

X-ray, X-ray crystallography; NMR, nuclear magnetic resonance spectroscopy; cryo-EM, cryogenic electron microscopy.

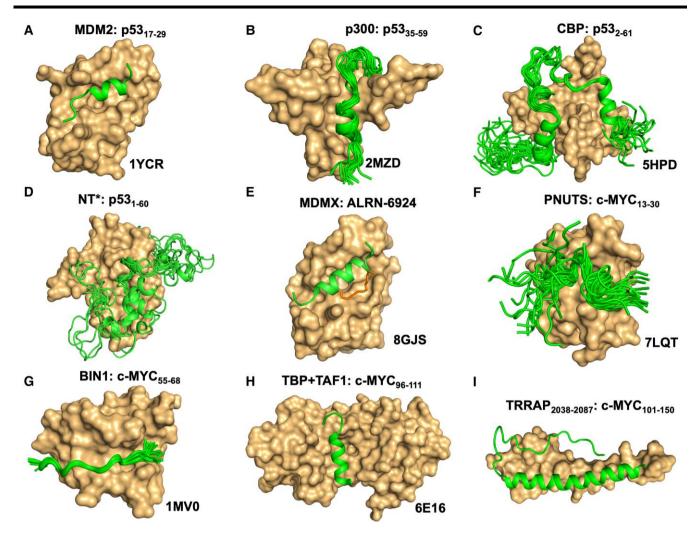


Fig. 3. TAD interactions of p53 and c-MYC. A)-C) Experimentally determined structures of the p53 TAD with folded domains from MDM2, p300, and CBP, respectively. D) Ensemble of MD-simulated structures of p53 TAD with an engineered domain from spider silk protein (NT*). Material from Kaldmäe et al. (59). E) Crystal structure of p53 TAD1-based stapled-peptide derivative in complex with MDMX. The covalent linker forming the staple is shown in stick representation. F)-H) Experimentally determined structures of the c-MYC TAD with folded domains from PNUTS, BIN1, or a binary complex of TBP + TAF1, respectively. I) Integrated AlphaFold and MD-simulated complex structure of peptides from TRRAP with c-MYC TAD. Material from Lama et al. (60). The PDB IDs of all the structures obtained from experiments, along with the name of the binding partners and the residue range of p53/c-MYC TAD, are indicated. All the TAD structure ensemble in the complex is shown for structures solved with NMR. The TAD-binding partners are displayed in surface rendering, while the TADs are shown in cartoon representation.

p53

A recent study by Zhao et al. (72) showed that EGCG interacted with the N-terminal disordered domain of p53 with binding affinity in the low micromolar range using surface plasmon resonance (SPR). NMR measurements showed that the TAD1 and TAD2 were particularly responsive to EGCG binding. The study used analytical ultracentrifugation, small-angle X-ray scattering, and MD simulations to demonstrate that EGCG interaction with the disordered domain was dynamic and that the small molecule induced a compact subpopulation of the p53 TAD. We performed an independent MD simulation of 50 amino acid (residues 11-60) peptide segment from p53 TAD with EGCG and observed that it could indeed capture the derivative in a compact conformation (Fig. 4A). Zhao et al. (72) have further reported that EGCG could disrupt the p53-MDM2 interaction and prevent ubiquitination of p53 in an in vitro ubiquitination assay, which correlates with reduced p53 degradation and stability in cells treated with EGCG. This study adds to the growing evidence that small molecules can associate and effectively promote the conformational modulation of disordered regions to prevent protein-protein interaction.

AR

One of the most encouraging therapeutic developments in the direct targeting of disordered regions with small molecule compounds has been against the N-terminal TAD of AR (84, 85). Different families of compounds have been characterized to interact directly with the activation domain, and the majority of them have also been shown to inhibit xenografts of different prostate cancer models (Table 2) (22, 86, 87). A couple of derivatives from the EPI series (EPI-506 and EPI-7386) were in fact subjected to clinical trials for the treatment of castration-resistant prostate cancer (22, 88). Although both trials were eventually suspended, the advancement into clinical evaluation indicates the potential for targeting the disordered TAD in AR as a therapeutic strategy. These prodrugs were derived from the first (EPI-002) and second (EPI-7170) generations of bisphenol-A scaffold-based AR-TAD inhibitors, respectively. Characterization of EPI-002 interaction

Table 2. TAD inhibitors of p53, c-MYC, and AR.

Compound	Structure	Target	Method ^a	Evaluation	References
EGCG	НО ОН	p53	SPR	Inhibition of PPI in vitro	(60, 72)
	OH OH	c-MYC	MS		
PKUMDL-RH-1047	S N S N N Br	p53	SPR	Inhibition of PPI in vitro	(73)
EN4 ^b		c-MYC	MS	Inhibition of transcriptional activity in vitro	(74)
EPI-001	HO OH OH	AR	NMR	Derivatives EPI-506 and EPI-7386 tested in phase I clinical trials	(75) NCT02606123 NCT04421222
UT-143	NC N	AR	MS	Inhibition of tumor growth in vivo	(76)
QW07	HOIM	AR	SPR	Inhibition of tumor growth in vivo	(77)
SC-428	F F S S	AR	SPR	Inhibition of tumor growth in vivo	(78)
ET-516		AR	MST	Inhibition of tumor growth in vivo	(79)
ASR-600	HN-O-K	AR	STD NMR	Inhibition of tumor growth in vivo	(80)

^aBiophysical method used to validate binding.
^bThis compound is shown to covalently interact with C171, which is slightly outside the residue range of c-MYC TAD defined in this review.
SPR, surface plasmon resonance; MS, mass spectrometry; NMR, nuclear magnetic resonance spectroscopy; MST, microscale thermophoresis; STD NMR, saturation transfer difference nuclear magnetic resonance spectroscopy; PPI, protein-protein interaction.

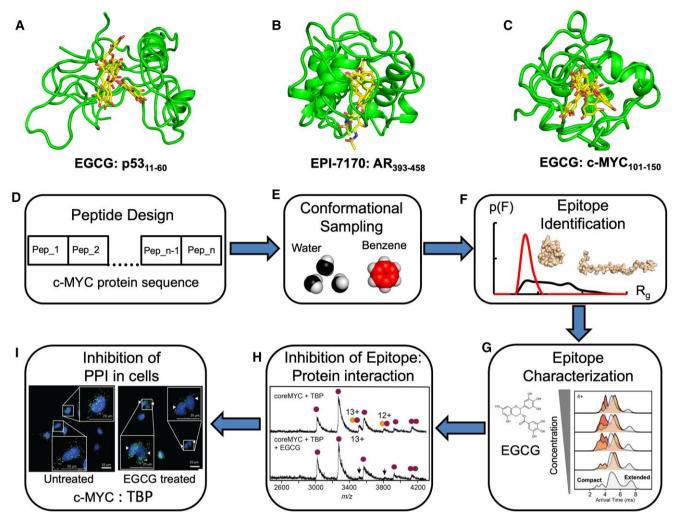


Fig. 4. Inducing the compact conformation of TAD. A)-C) Ensemble of MD-simulated structures of peptide segments from TAD of p53, AR, and c-MYC, respectively, with EGCG (p53 and c-MYC) and EPI-7170 (AR). The TAD segments are shown in cartoon and the small molecules in stick representations. The residue range of the TAD used in the MD simulations is indicated. D)-I) Schematic representation of the pipeline developed for identification and characterization of an epitope within c-MYC that can undergo ligand-inducible conformational modulation. D) Representation of the different peptide derivatives from c-MYC, E) MD simulations of the peptides with and without benzene, F) conformational distribution of coreMYC as a function of the radius of gyration, G) arrival time distribution of coreMYC from ion mobility mass spectrometry of the peptide with increasing concentrations of EGCG, H) native mass spectra of coreMYC + TBP with and without EGCG, and I) representative images from proximity ligation assay of c-MYC and TBP interaction in cells with and without the treatment of EGCG. The specific details of the individual steps in the pipeline are also highlighted in each panel. Material from Lama et al. (60).

with AR-TAD using NMR indicated that the largest chemical shift perturbations were localized to the TAU-5 transactivation unit of AR-TAD (75). Further exploration using MD simulations revealed that both EPI-002 and EPI-7170 sampled a wide range of binding configurations, which induced the formation of partially folded compact states in TAU-5 (89). However, EPI-7170 was found to form elevated intermolecular interactions in the bound ensemble that stabilized the collapsed conformation more potently and hence displayed higher affinity to TAU-5 than EPI-002 (Fig. 4B). This study thus provided a rationale for the mechanism of inhibition and the experimentally observed differences in the binding potency of the two compounds. As in the case for p53, compaction of the molecular recognition elements in the TAD of AR is the primary mechanism of inhibition for these therapeutic small molecules, which prevents interactions between AR and the transcriptional machinery. AR is also reported to undergo liquid-liquid phase separation (LLPS) to form transcriptionally active biomolecular condensates (90). The various domains in AR cooperate to facilitate effective phase separation, with TAD

playing the predominant role (79, 90, 91). Importantly, ligands that target AR TAD and reduce LLPS also suppress AR transcriptional activity and inhibit tumor growth in vivo (79, 92).

c-MYC

We have recently reported a proof-of-concept study in which we developed a pipeline that led to the identification of ligand-inducible conformational switch in the TAD of c-MYC (Fig. 4C) (60). The first part of the process involved computational peptide screening using probe-based MD simulations across the entire disordered c-MYC protein to find segments whose structural ensemble can be modulated with exogenous ligands (Fig. 4D). A set of 17 50-residue peptide derivatives were designed and subjected to MD simulations with and without benzene as the molecular probe (Fig. 4E). The conformational sampling from these simulations highlighted that the impact on the ensemble distribution is most substantial for the peptide spanning residues 101-150, which includes the conserved MBII motif of c-MYC. This

epitope (termed coreMYC) that samples both compact and extended states in water undergoes a shift towards a predominantly compact conformation with the addition of benzene (Fig. 4F). We found that the epitope is the most hydrophobic region of c-MYC composed predominantly of bulky nonpolar residues, which makes it particularly sensitive to conformational modulation by benzene. Extending the computational approach to small molecules, we found that the polyphenolic compound EGCG similarly induced compaction of the epitope.

The second part of the pipeline included experimental examination of the c-MYC:EGCG complex using native ion mobility mass spectrometry (Fig. 4G). These experiments showed that the small molecule interacted with the peptide in a nonspecific manner driving the conformational equilibrium towards a predominantly compact state. This conformational switch inhibited the interaction of the epitope in the TAD with one of its binding partners TBP (Fig. 4H). The inhibitory effect was also observed in cancer cells where treatment with EGCG reduced binding of c-MYC to TBP (Fig. 4I), but not to its obligate partner MAX, which binds to the C terminus of c-MYC (60). Significant efforts have been made on disrupting the c-MYC:MAX heterodimerization by targeting the basic-helix-loop-helix leucine zipper (bHLHZip) domain, involved in this association (93, 94). Comparatively, our survey of the literature indicates that direct targeting of the N-terminal domain to inhibit c-MYC is relatively scarce (Table 2). Therefore, the study (60) provides an impetus in this direction and presents a blueprint for the systematic identification and characterization of ligand-binding interfaces in IDPs. It further emphasizes that shape-shifting compounds could be the hallmark for directly targeting disordered regions like the TAD of c-MYC.

Outlook

Disordered regions such as the TAD of transcription factors exert their biological functions without a need for well-defined structures. Instead, they rely on occupying an ensemble of states that facilitates fuzzy complexes, conformational selection, induced folding, or their combination for binding partner recognition. However, their intrinsic flexibility and the lack of targetable sites often prevent the utilization of conventional methods to target disordered proteins to combat disease. Instead, modulation of their conformational landscape has emerged as a potential targeting mechanism. More specifically, shifting the equilibrium between the different conformational states that an IDP can occupy may prevent it from accessing functionally important conformations. For example, molecular probes can be utilized to bind and trap the disordered protein in a nonactive conformational state. This possibility is highlighted here using three well-established anticancer targets p53, c-MYC, and AR. Collectively, recent efforts show that direct interaction of small molecules with the disordered TADs in these proteins shifts their conformation towards a compact state and inhibits protein-protein interaction. Through the collaborative application of complimentary strategies, we can systematically explore the dynamic landscape of disordered proteins, with the goal of identifying innovative ways and promising compounds to target their activity for therapeutics.

Funding

The research in this study was supported by the Swedish Cancer Society grants 20-1288, 22-2023, and 19-0510 to D.P.L., M.L., and M.A.H., respectively, and by the Swedish Research Council grants 2013-08807, 2019-01961, and 2018-02580 to D.P.L., M.L., and M.A.H., respectively. C.S. was supported by a Novo Nordisk Foundation Postdoctoral Fellowship (NNF19OC0055700), and M.L. was supported by a KI faculty-funded Career Position and a Consolidator Grant from the Swedish Society for Medical Research (SSMF).

Author Contributions

Conceptualization: T.V., M.A.H., M.L., and D.L.; Writing original draft: T.V. and D.L.; Figures and Tables: T.V. and D.L.; Review and editing: C.S., D.P.L., M.A.H., and M.L.; All authors approved the final version.

Data Availability

There are no data underlying this work.

References

- Bray F, et al. 2021. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer. 127(16): 3029-3030.
- Santofimia-Castaño P, et al. 2020. Targeting intrinsically disordered proteins involved in cancer. Cell Mol Life Sci. 77(9):1695-1707.
- Bondos SE, Dunker AK, Uversky VN. 2021. On the roles of intrinsically disordered proteins and regions in cell communication and signaling. Cell Commun Signal. 19(1):88.
- Chen J, Liu X. 2020. Targeting intrinsically disordered proteins through dynamic interactions. Biomolecules. 10(5):743.
- Kulkarni V, Kulkarni P. 2019. Intrinsically disordered proteins and phenotypic switching: implications in cancer. Prog Mol Biol Transl Sci. 166:63-84.
- Oldfield CJ, Dunker AK. 2014. Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem. 83:553-584.
- Liu Z, Huang Y. 2014. Advantages of proteins being disordered. Protein Sci. 23(5):539-550.
- Vishnoi K, Viswakarma N, Rana A, Rana B. 2020. Transcription factors in cancer development and therapy. Cancers (Basel). 12(8):2296.
- Staby L, et al. 2017. Eukaryotic transcription factors: paradigms of protein intrinsic disorder. Biochem J. 474(15):2509-2532.
- 10 Tsafou K, Tiwari PB, Forman-Kay JD, Metallo SJ, Toretsky JA. 2018. Targeting intrinsically disordered transcription factors: changing the paradigm. J Mol Biol. 430(16):2321-2341.
- 11 Raj N, Attardi LD. 2017. The transactivation domains of the p53 protein. Cold Spring Harb Perspect Med. 7(1):a026047.
- 12 Lane DP. 1992. Cancer.p53, guardian of the genome. Nature. 358(6381):15-16.
- 13 Aubrey BJ, et al. 2018. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 25(1):104–113.
- 14 Jumper J, et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature. 596(7873): 583-589.
- 15 Wang YC, et al. 2022. Severe cellular stress drives apoptosis through a dual control mechanism independently of p53. Cell Death Discov. 8(1):282.
- 16 Chang DW, et al. 2000. The c-Myc transactivation domain is a direct modulator of apoptotic versus proliferative signals. Mol Cell Biol. 20(12):4309-4319.
- 17 Dang CV. 1999. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol. 19(1):1-11.
- 18 Zhang Q, et al. 2017. MBO and MBI are independent and distinct transactivation domains in MYC that are essential for transformation. Genes (Basel). 8(5):134.

- 19 Flinn EM, Busch CM, Wright AP. 1998. Myc boxes, which are conserved in myc family proteins, are signals for protein degradation via the proteasome. Mol Cell Biol. 18(10):5961-5969.
- 20 Kalkat M, et al. 2017. MYC deregulation in primary human cancers. Genes (Basel). 8(6):151.
- 21 Weikum ER, Liu X, Ortlund EA. 2018. The nuclear receptor superfamily: a structural perspective. Protein Sci. 27(11):1876–1892.
- 22 Sadar MD. 2020. Discovery of drugs that directly target the intrinsically disordered region of the androgen receptor. Expert Opin Drug Discov. 15(5):551-560.
- 23 Tan MH, Li J, Xu HE, Melcher K, Yong EL. 2015. Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin. 36(1):3-23.
- 24 Michmerhuizen AR, et al. 2020. Are we there yet? Understanding androgen receptor signaling in breast cancer. NPJ Breast Cancer. 6:
- 25 Schweizer MT, Yu EY. 2017. AR-Signaling in human malignancies: prostate cancer and beyond. Cancers (Basel). 9(1):7.
- 26 Callewaert L, Van Tilborgh N, Claessens F. 2006. Interplay between two hormone-independent activation domains in the androgen receptor. Cancer Res. 66(1):543-553.
- 27 Malagrinò F, et al. 2022. Unveiling induced folding of intrinsically disordered proteins—protein engineering, frustration and emerging themes. Curr Opin Struct Biol. 72:153-160.
- 28 Robustelli P, Piana S, Shaw DE. 2020. Mechanism of coupled folding-upon-binding of an intrinsically disordered protein. J Am Chem Soc. 142(25):11092-11101.
- 29 Mannige RV. 2014. Dynamic new world: refining our view of protein structure, function and evolution. Proteomes. 2(1):128-153.
- Fuxreiter M. 2019. Fold or not to fold upon binding—does it really matter? Curr Opin Struct Biol. 54:19-25.
- 31 Wright PE, Dyson HJ. 2009. Linking folding and binding. Curr Opin Struct Biol. 19(1):31-38.
- 32 Morando MA, et al. 2016. Conformational selection and induced fit mechanisms in the binding of an anticancer drug to the c-Src kinase. Sci Rep. 6:24439.
- 33 Yang J, et al. 2019. Features of molecular recognition of intrinsically disordered proteins via coupled folding and binding. Protein Sci. 28(11):1952-1965.
- 34 Sen S, Udgaonkar JB. 2019. Binding-induced folding under unfolding conditions: switching between induced fit and conformational selection mechanisms. J Biol Chem. 294(45):16942-16952.
- 35 Wang W, Wang D. 2019. Extreme fuzziness: direct interactions between two IDPs. Biomolecules. 9(3):81.
- 36 Sharma R, et al. 2015. Fuzzy complexes: specific binding without complete folding. FEBS Lett. 589(19 Pt A):2533-2542.
- 37 Tompa P, Fuxreiter M. 2008. Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem Sci. 33(1):2-8.
- 38 Clerici M, et al. 2009. Unusual bipartite mode of interaction between the nonsense-mediated decay factors, UPF1 and UPF2. EMBO J. 28(15):2293-2306.
- 39 Selenko P, et al. 2003. Structural basis for the molecular recognition between human splicing factors U2AF65 and SF1/mBBP. Mol Cell. 11(4):965-976.
- 40 Morris OM, Torpey JH, Isaacson RL. 2021. Intrinsically disordered proteins: modes of binding with emphasis on disordered domains. Open Biol. 11(10):210222.
- 41 Freiberger MI, et al. 2021. Frustration in fuzzy protein complexes leads to interaction versatility. J Phys Chem B. 125(10):2513-2520.
- 42 Mollica L, et al. 2016. Binding mechanisms of intrinsically disordered proteins: theory, simulation, and experiment. Front Mol Biosci, 3:52.

- 43 Kussie PH, et al. 1996. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science. 274(5289):948-953.
- 44 Popowicz GM, Czarna A, Holak TA. 2008. Structure of the human Mdmx protein bound to the p53 tumor suppressor transactivation domain. Cell Cycle. 7(15):2441-2443.
- 45 Ecsédi P, et al. 2020. Structure determination of the transactivation domain of p53 in complex with S100A4 using annexin A2 as a crystallization chaperone. Structure. 28(8):943-953.e4.
- 46 Bochkareva E, et al. 2005. Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Proc Natl Acad Sci U S A. 102(43):15412–15417.
- 47 Feng H, et al. 2009. Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation. Structure. 17(2):202-210.
- 48 Miller Jenkins LM, et al. 2015. Characterization of the p300 Taz2-p53 TAD2 complex and comparison with the p300 Taz2-p53 TAD1 complex. Biochemistry. 54(11):2001-2010.
- 49 Rowell JP, Simpson KL, Stott K, Watson M, Thomas JO. 2012. HMGB1-facilitated p53 DNA binding occurs via HMG-box/p53 transactivation domain interaction, regulated by the acidic tail. Structure. 20(12):2014-2024.
- 50 Krois AS, Ferreon JC, Martinez-Yamout MA, Dyson HJ, Wright PE. 2016. Recognition of the disordered p53 transactivation domain by the transcriptional adapter zinc finger domains of CREB-binding protein. Proc Natl Acad Sci U S A. 113(13):E1853-E1862.
- 51 Lee CW, Martinez-Yamout MA, Dyson HJ, Wright PE. 2010. Structure of the p53 transactivation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein. Biochemistry. 49(46):9964-9971.
- 52 Di Lello P, et al. 2006. Structure of the Tfb1/p53 complex: insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Mol Cell. 22(6):731-740.
- 53 Okuda M, Nishimura Y. 2014. Extended string binding mode of the phosphorylated transactivation domain of tumor suppressor p53. J Am Chem Soc. 136(40):14143-14152.
- 54 Liou SH, Singh SK, Singer RH, Coleman RA, Liu WL. 2021. Structure of the p53/RNA polymerase II assembly. Commun Biol. 4(1):397.
- 55 Wei Y, et al. 2022. The MYC oncoprotein directly interacts with its chromatin cofactor PNUTS to recruit PP1 phosphatase. Nucleic Acids Res. 50(6):3505-3522.
- 56 Pineda-Lucena A, et al. 2005. A structure-based model of the c-Myc/Bin1 protein interaction shows alternative splicing of Bin1 and c-Myc phosphorylation are key binding determinants. J Mol Biol. 351:182-194.
- 57 Wei Y, et al. 2019. Multiple direct interactions of TBP with the MYC oncoprotein. Nat Struct Mol Biol. 26:1035-1043.
- 58 Welcker M, et al. 2022. Two diphosphorylated degrons control c-Myc degradation by the Fbw7 tumor suppressor. Sci Adv. 8(4): eabl7872.
- 59 Kaldmäe M, et al. 2022. A "spindle and thread" mechanism unblocks p53 translation by modulating N-terminal disorder. Structure. 30(5):733-742.e7.
- 60 Lama D, et al. 2024. A druggable conformational switch in the c-MYC transactivation domain. Nat Commun. 15(1):1865.
- 61 Zhu H, et al. 2022. Targeting p53-MDM2 interaction by smallmolecule inhibitors: learning from MDM2 inhibitors in clinical trials. J Hematol Oncol. 15(1):91.
- 62 Vassilev LT, et al. 2004. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 303(5659):844-848.
- 63 Saleh MN, et al. 2021. Phase 1 trial of ALRN-6924, a dual inhibitor of MDMX and MDM2, in patients with solid tumors and lymphomas bearing wild-type TP53. Clin Cancer Res. 27(19):5236-5247.

- 64 Guerlavais V, et al. 2023. Discovery of sulanemadlin (ALRN-6924), the first cell-permeating, stabilized α -helical peptide in clinical development. J Med Chem. 66:9401-9417.
- 65 Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL. 2007. Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J Am Chem Soc. 129:2456-2457.
- 66 Kannan S, Lama D, Tan YS, Li J, Verma C. Stapled peptidomimetic therapeutics peptide and peptidomimetic therapeutics. In: Qvit N, Rubin SJS, editors. From bench to bedside. Academic Press, 2022. p. 99-124.
- 67 Dingar D, et al. 2018. MYC dephosphorylation by the PP1/PNUTS phosphatase complex regulates chromatin binding and protein stability. Nat Commun. 9(1):3502.
- 68 Sakamuro D, Elliott KJ, Wechsler-Reya R, Prendergast GC. 1996. BIN1 is a novel MYC-interacting protein with features of a tumour suppressor. Nat Genet. 14:69-77.
- 69 Patel AB, et al. 2018. Structure of human TFIID and mechanism of TBP loading onto promoter DNA. Science. 362:eaau8872.
- 70 McMahon SB, Van Buskirk HA, Dugan KA, Copeland TD, Cole MD. 1998. The novel ATM-related protein TRRAP is an essential cofactor for the c-myc and E2F oncoproteins. Cell. 94:363-374.
- 71 Feris EJ, Hinds JW, Cole MD. 2019. Formation of a structurally stable conformation by the intrinsically disordered MYC: TRRAP complex. PLoS One. 14:e0225784.
- 72 Zhao J, et al. 2021. EGCG binds intrinsically disordered N-terminal domain of p53 and disrupts p53-MDM2 interaction. Nat Commun. 12(1):986.
- 73 Ruan H, et al. 2020. Computational strategy for intrinsically disordered protein ligand design leads to the discovery of p53 transactivation domain I binding compounds that activate the p53 pathway. Chem Sci. 12(8):3004-3016.
- 74 Boike L, et al. 2021. Discovery of a functional covalent ligand targeting an intrinsically disordered cysteine within MYC. Cell Chem Biol. 28(1):4-13.e17.
- 75 De Mol E, et al. 2016. EPI-001, A compound active against castration-resistant prostate cancer, targets transactivation unit 5 of the androgen receptor. ACS Chem Biol. 11(9):2499-2505.
- 76 Thiyagarajan T, et al. 2023. Inhibiting androgen receptor splice variants with cysteine-selective irreversible covalent inhibitors to treat prostate cancer. Proc Natl Acad Sci U S A. 120(1): e2211832120.
- 77 Peng S, et al. 2020. Regression of castration-resistant prostate cancer by a novel compound QW07 targeting androgen receptor N-terminal domain. Cell Biol Toxicol. 36(5):399-416.
- 78 Yi Q, et al. 2023. Discovery of a small-molecule inhibitor targeting the androgen receptor N-terminal domain for castrationresistant prostate cancer. Mol Cancer Ther. 22(5):570-582.
- 79 Xie J, et al. 2022. Targeting androgen receptor phase separation to overcome antiandrogen resistance. Nat Chem Biol. 18(12): 1341-1350.

- 80 Chandrasekaran B, et al. 2023. Urolithin A analog inhibits castration-resistant prostate cancer by targeting the androgen receptor and its variant, androgen receptor-variant 7. Front Pharmacol. 14:1137783.
- 81 Martinez Pomier K, Ahmed R, Melacini G. 2020. Catechins as tools to understand the molecular basis of neurodegeneration. Molecules. 25(16):3571.
- 82 Xu MM, et al. 2020. Advances in the development of imaging probes and aggregation inhibitors for alpha-synuclein. Acta Pharmacol Sin. 41(4):483-498.
- Kurnik M, et al. 2018. Potent α-synuclein aggregation inhibitors, identified by high-throughput screening, mainly target the monomeric state. Cell Chem Biol. 25(11):1389-1402.e9.
- 84 Hirayama Y, Tam T, Jian K, Andersen RJ, Sadar MD. 2020. Combination therapy with androgen receptor N-terminal domain antagonist EPI-7170 and enzalutamide yields synergistic activity in AR-V7-positive prostate cancer. Mol Oncol. 14: 2455-2470.
- 2020. Ralaniten 85 Banuelos CA, et al. sensitizes enzalutamide-resistant prostate cancer to ionizing radiation in prostate cancer cells that express androgen receptor splice variants. Cancers (Basel). 12:1991.
- 86 Chen Y, Lan T. 2024. N-terminal domain of androgen receptor is a major therapeutic barrier and potential pharmacological target for treating castration resistant prostate cancer: a comprehensive review. Front Pharmacol. 15:1451957.
- 87 Obst JK, Tien AH, Setiawan JC, Deneault LF, Sadar MD. 2024. Inhibitors of the transactivation domain of androgen receptor as a therapy for prostate cancer. Steroids. 210:109482.
- 88 Hong NH, et al. 2020. The preclinical characterization of the N-terminal domain androgen receptor inhibitor, EPI-7386, for the treatment of prostate cancer. Eur. J. Cancer. 138:S51.
- 89 Zhu J, Salvatella X, Robustelli P. 2022. Small molecules targeting the disordered transactivation domain of the androgen receptor induce the formation of collapsed helical states. Nat Commun. 13:
- 90 Zhang F, et al. 2023. Dynamic phase separation of the androgen receptor and its coactivators key to regulate gene expression. Nucleic Acids Res. 51(1):99-116.
- 91 Ahmed J, Meszaros A, Lazar T, Tompa P. 2021. DNA-binding domain as the minimal region driving RNA-dependent liquid-liquid phase separation of androgen receptor. Protein Sci. 30(7): 1380-1392.
- 92 Basu S, et al. 2023. Rational optimization of a transcription factor activation domain inhibitor. Nat Struct Mol Biol. 30(12):1958-1969.
- Llombart V, Mansour MR. 2022. Therapeutic targeting of "undruggable" MYC. EBioMedicine. 75:103756.
- 94 Struntz NB, et al. 2019. Stabilization of the Max homodimer with a small molecule attenuates Myc-driven transcription. Cell Chem Biol. 26(5):711-723.e14.