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Abstract

Pseudouridine(Ψ) is widely popular among various RNA modifications which have been

confirmed to occur in rRNA, mRNA, tRNA, and nuclear/nucleolar RNA. Hence, identifying

them has vital significance in academic research, drug development and gene therapies.

Several laboratory techniques for Ψ identification have been introduced over the years.

Although these techniques produce satisfactory results, they are costly, time-consuming

and requires skilled experience. As the lengths of RNA sequences are getting longer day by

day, an efficient method for identifying pseudouridine sites using computational approaches

is very important. In this paper, we proposed a multi-channel convolution neural network

using binary encoding. We employed k-fold cross-validation and grid search to tune the

hyperparameters. We evaluated its performance in the independent datasets and found

promising results. The results proved that our method can be used to identify pseudouridine

sites for associated purposes. We have also implemented an easily accessible web server

at http://103.99.176.239/ipseumulticnn/.

Introduction

Pseudouridine is the most common RNA modification observed in both prokaryotes and

eukaryotes [1]. It is formed by the C synthase enzyme which leads to the proof of its occur-

rence in various kinds of RNAs [2]. This enzyme separates the uridine residue’s base from its

sugar and rotates it 180˚ along the N3-C6 axis. The separation is completed by the subse-

quent reattachment of the base’s 5’-carbon to the 1’-carbon of the sugar which results in the

formation of an isomer of uridine, Pseudouridine [3]. Psudouridines play a vital role in both

biological and genetic aspects of RNAs, especially for tRNA and rRNA. In case of rRNA,

ribonucleoproteins are proved to be needed for pseudouridylation [4]. Psudouridines also

work as a powerful mechanism for stabilizing tRNAs in both single and double-stranded

regions [5]. Besides, different species present different prospects due to pseudouridines such

as U6 snRNA mutants pseudouridylate at C28 contributing to the filamentation growth pro-

gram [6]. Furthermore, mRNAs incorporated with C increase translation efficiency and
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restrict innate immune response [7]. Therefore, an effective method for identifying C sites

has a vital significance.

Some laboratory techniques have been introduced over the years producing promising

results. Carlile et al. introduced a transcriptome-wide pseudouridine-seq approach where

Lovejoy et al. used induced termination of reverse transcription in their work [8, 9]. Further-

more, Schwartz et al. developed a transcriptome-wide quantitative mapping system to identify

pseudouridine [10]. All of these systems are not only expensive but also time consuming.

Moreover, skilled and experienced people are required to maintain these systems. That is why

a more user-friendly method is required for identifying pseudouridine sites.

Despite the necessity, there are not many in silico methods to identify C sites from nucleo-

tide sequences. Li et al. introduced an SVM based web server which is, as far as we know, the

first computational method to identify pseudouridine synthase (PUS) specific C sites [11].

They extracted features from the nucleotides around theC sites which provided good results

for human and yeast samples. Later, their performance was improved by taking account of the

chemical properties and the occurrence frequency density distributions of nucleotides by

iRNA-Pseu, proposed by Chen et al. Their work also covered another species (M. musculus)
[12]. He et al. proposed another web server named PseUI by using SVM [13]. First, they gener-

ated five different types of features and selected one by using the sequential forward feature

selection approach.

Among the recent works, Tahir et al. implemented both machine learning and deep learn-

ing methods in their work [14]. They extracted features using n-gram and MMI in their SVM

classifier and adopted a convolutional neural network (CNN) in their deep learning method,

where the CNN classifier produced better performance. To the best of our knowledge, this is

the only method that applied deep learning methodologies for this task so far. Using the best

features from forward and incremental features, Liu et al. proposed a gradient boosting based

method named XG-Pseu [15]. Furthermore, Mu et al. proposed an ensemble model named

iPseu-Layer consisted of three machine learning techniques [16]. They employed random for-

est for the final prediction.

Many of the recent works used PseKNC for feature extraction [17–19]. That is why we

wanted to adopt a CNN model which does not require any additional feature extraction tech-

nique. CNN has already proven to be useful in computer vision problems. Recently CNN has

been producing satisfactory results in nucleotide-based datasets [14, 20–23]. In this work, we

employed a CNN model where multiple channels of convolution layers with different sized fil-

ters are applied separately. Each of these convolution layers is then added to a max-pooling

layer and concatenated. Our model yielded satisfactory results in the benchmark and indepen-

dent datasets.

Materials and methods

Dataset collection

In this work, data were collected for three different species which are H. sapiens, S. cerevisiae

and M. musculus represented by HS, SC and MM respectively. There were three benchmark

datasets, HS_990, SC_628, and MM_944, one for each species for training purposes. Each of

these datasets was balanced in terms of the number of samples. These are the same datasets

used in Chen et al’s work where they downloaded the RNA sequences from RMBase [12, 24].

In addition to these benchmark datasets, Chen et al. also gave two independent datasets,

HS_200 and SC_200 for testing purposes which were for H. sapiens and S. cerevisiae but not

for M. musculus. In both HS_200 and SC_200, the number of positive and negative samples
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was equal. In the datasets, RNA sequences were formulated as shown:

RxðUÞ ¼ N� xN� ðx� 1Þ � � �N� 1UN1 � � �Nþðx� 1ÞNx ð1Þ

Here, U indicates “uridine”, N−ξ denotes the ξ-th upstream nucleotide towards the 5’ end

and N+ξ denotes the ξ-th downstream nucleotide towards the 3’ end from the central uridine.

The value of ξ in HS_990 and MM_944 was 10 and 15 in SC_628.

Data preprocessing

Before applying the RNA sequences to our model, we needed to preprocess it first. There was

only one step involved in the preprocessing step, which was binary “one-hot” encoding to con-

vert our inputs into a 2-dimensional matrix. Each of the nucleotides of an input sequence was

represented as a row vector where all the values are zero except for one value. We applied two

separate techniques for this task.

General “one-hot” encoding. In this technique, the length of these row vectors was four

which is the number of nucleotides found in RNA. Therefore, a sequence with N nucleotides

would be a (N x 4) matrix. The 1D vectors we chose for the nucleotides were: (“A” = [1, 0, 0,

0], “U” = [0, 1, 0, 0],“C” = [0, 0, 1, 0], “G” = [0, 0, 0, 1]).

Merged-seq “one-hot” encoding. We also applied another technique by predicting sec-

ondary structures using RNAfold. Studies showed that secondary structure revealed critical

structural features to detect C sites [25]. We wanted to simulate this mechanism in computa-

tional methodologies. That’s why we predicted the secondary structure and merged it with the

original sequence. We called it “merged-seq”. The secondary structure provided a new set of

features and by merging with the original sequence we generated some more features. This

technique provided good predictive performance in Zheng et al.’s pre-miRNA detection [23].

The encoding process is shown in Fig 1. The predicted secondary structure and merged

sequence for each RNA sequence can be found in the supporting information or in this link:

http://103.99.176.239/ipseumulticnn/datasets. The following steps were followed for this

technique:

Fig 1. Vectorization process of the RNA sequences. Here, secondary structure was the predicted result from rnafold. Merged sequence was the pair of

the original sequence and secondary structures. This merged sequence was then encoded using “one-hot” technique.

https://doi.org/10.1371/journal.pone.0247511.g001
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• First, we predicted the secondary structure of the original sequence using RNAfold [26].

This structure had three types of symbols: “.”, “(” and “)”. The “(” and “)” indicated that a

nucleotide at 5’-end and it’s complimentary nucleotide at 3’-end is paired and the “.” indi-

cated that the nucleotide is not paired with any other nucleotide.

• Then, we formed a merged sequence that consisted of the original sequence and the second-

ary structure. This merged sequence had N pairs, N being the length of the sequence. The

pairs were formed by taking one nucleotide from the original sequence and one symbol

from the secondary structure.

• As there were four types of bases in RNA and three types of indicators in the secondary

structure, we had 12 types of pairs in the merged sequences. After that, we encoded the pairs

of the merged sequences using “one-hot” technique. So after encoding, an RNA sequence of

length, N became a two-dimensional matrix of (N x 12). So for both the HS and MM data-

sets, the preprocessed inputs turned into a (21 x 12) matrix and for the SC dataset, the inputs

turned into a (31 x 12) matrix.

CNN architecture

After preprocessing (“one-hot” encoding), the converted 2D inputs were fed to a convolutional

neural network. Generally, in a CNN model, the inputs are connected to some convolution and

max-pooling layers, followed by a couple of fully connected layers that are connected to the out-

put layer. But in our case, the preprocessed inputs are fed to a multi-channel CNN model which

has been very effective in various text classification tasks [27, 28]. The motivation behind this

approach was to make sure a sequence is processed at different lengths at a time. In a sequential

model, we can use only one size of filter for each convolution which may not extract the best

features all the time. That’s why we applied multiple channels of feature extraction operations

(convolution and max-pooling) to the input sequence and integrated the features for betterC

identification. A general architecture of our multi-channel model is shown in Fig 2.

Each channel of our model started with a convolution layer. We tuned the number of chan-

nels and the height of the filters of the convolution layer. The width of the filters remained

unchanged. Each of these convolution layers was then connected to a max-pooling layer. Then,

the max-pooling layers were concatenated together to combine the features extracted by the

convolution and max-pooling layers. Next, the max-pooling layers are connected to the first

fully connected layer which had 1024 nodes. After that, we employed dropout regularization to

reduce the number of parameters. Then, the final layer was connected which gave a probability

distribution of the classes. From the probability distribution, the final output was predicted.

The number of convolution layers was selected by applying k-fold cross-validation and grid

search. Cross-validation also helped us to select the learning rate, dropout probability and

height of the filters. Relu activation function was employed in every layer except for the last

layer where the softmax activation function was used. This was the general structure of our

model. Only the height of filters and the number of convolution layers varied for different

datasets. We used categorical cross-entropy as the loss function. We also examined some well-

known optimizers like Adam, Gradient descent, RMSprop etc. to minimize the loss function.

Among these optimizers, Adam produced the best optimization.

Method evaluation metrics

Four evaluation metrics have been frequently used to evaluate the quality of a method in recent

studies [29–31]. To calculate them, we required four parameters: true positive (TP), true
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negative (TN), false positive (FT) and false negative (FN). The equations for the evaluation

metrics are given below:

• Sensitivity (SN):

Sensitivity ¼ TP=ðTPþ FNÞ ð2Þ

• Specificity(SP):

Specificity ¼ TN=ðTNþ FPÞ ð3Þ

• Mathews Correlation Coefficient (MCC):

MCC ¼ ðTP � TP � TP � FNÞ=½ðTPþ FPÞ�

ðTPþ FNÞ � ðTNþ FPÞ � ðTNþ FNÞ�1=2
ð4Þ

• Accuracy (AC):

Accuracy ¼ ðTPþ TNÞ=ðTPþ TNþ FPþ FNÞ ð5Þ

Results and discussions

Hyperparameter tuning

Hyperparameter tuning is vital to maximize a model’s predictive performance. On the bench-

mark datasets, we tuned a number of hyperparameters to fine-tune our model. We did it in

three separate steps using k-fold cross-validation and grid search. We used k = 5 to compare

Fig 2. The architecture of our multi-stage CNN model.

https://doi.org/10.1371/journal.pone.0247511.g002
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our results with the existing works as they also applied cross-validation using the same value.

This implied that we divided the benchmark datasets into 5 folds. Among them, 4 folds were

used for training and the remaining fold was used for testing that particular model.

First, we tuned the number of epochs and batch size. Then, we tuned the number of chan-

nels and the height of convolution filters using the values from the first step. The number of

channels was tuned to investigate how many of them can be separately connected to the input

layer to produce the best accuracy. Finally, using the values from the previous steps we tuned

the learning rate and dropout probability. Grid search was adopted to select the values that

produced the best result.

The considered and selected values for the hyperparameters are given in Table 1. We calcu-

lated accuracies for every possible combination of values of these hyperparameters and

selected the ones that provided the highest accuracy. Merged-seq “one-hot” encoding was used

when we tuned the hyperparameters. Then we trained our model by applying general and

merged-seq “one-hot” encoding separately using the tuned values. As the shape of the inputs

were different in the datasets, the selected values were not the same. They were used to train

our model in the benchmark datasets and were evaluated by the independent data.

Training

Since the performance of CNN in computer vision and NLP tasks is well established, we

wanted to use its classification success for biological sequence inputs. After the concatenation

of the multiple convolution and max-pooling layers of our multi-stage CNN model, the num-

ber of parameters increased significantly. That is why to reduce the number of parameters, we

employed dropout regularization after the first fully-connected layer. We also applied early

stopping to make sure there was no overfitting in our model which means we stopped the

training process if the validation loss did not improve after a certain consecutive epochs. After

tuning the hyperparameters, we used the selected values to train our model in the benchmark

datasets. The validation and training process were done in a core i5 laptop having NVIDIA

940m as GPU. Because of the grid search, the validation process took almost an hour to com-

plete and the training process took about 2-3 minutes. We implemented our model using

Keras Framework (2.2) with TensorFlow as backend.

We trained our model on the benchmark datasets using both general “one-hot” encoding

and merged-seq “one-hot” encoding separately. Among these techniques, merged-seq “one-

hot” encoding produced better performance. We employed the same model architecture in

both cases using the tuned hyperparameters. We compared the performance of our models

with the existing predictors (iRNA-PseU [12], PseUI [13], iPseU-CNN [14], XGboost [15],

iPseU-Layer [16]) on the benchmark datasets which is shown in Table 2. From the table, we

can see that our models produced satisfactory results. The training accuracy of our model was

Table 1. The ranges of values of the hyperparameters of the benchmark datasets.

Hyperparameters Ranges of values Selected values

SC_628 HS_990, MM_944

Batch size [16, 32, 64, 128] 16 16

No. of epochs [10, 50, 100, 200] 50 50

No. of channels [5, 7, 9, 11] 7 9

Height of filters [3, 5, 7, 9] 7 5

Learning rate [0.0001, 0.0003, 0.0005, 0.0007, 0.001] 0.0005 0.0005

Dropout probabillity [0.4, 0.45, 0.5, 0.55, 0.6] 0.4 0.5

https://doi.org/10.1371/journal.pone.0247511.t001
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less than that of the iPseu-Layer because of their model’s overfitting which is stated by Mu

et al. That’s why our model had better accuracy in the independent dataset despite having less

accuracy in the benchmark datasets. Even though our model didn’t achieve the most accuracy

it had increased sensitivity by 4.26% and 20.27% in SC_628 and HS_990 datasets respectively.

In our case, sensitivity represents the ratio of correctly identified C sites to all sequences which

hadC sites in reality. That means our models were able to predict actual C sites quite well.

Comparative analysis

After training our models in the benchmark datasets, we examined its performance in the

independent datasets by comparing the evaluation metrics with the existing predictors

(iRNA-PseU [12], PseUI [13], iPseU-CNN [14], iPseU-Layer [16]). The findings are shown in

Table 3. Similar to our training process, we tested for both general and merged-seq encoded

models. Although both models produced better results than the existing predictors, the

merged-seq encoded model outperformed them all.

Among the existing methods, iPseU-CNN produced the best performance in the SC_200

dataset. So, we calculated the amount of increased performance with respect to this classifier.

In the SC_200 dataset, the specificity, accuracy and MCC was increased by 6.65%, 2% and

6.38% respectively for our general “one-hot” encoded model. But for our merged-seq “one-

hot” encoded model, accuracy increased by 4.08%, sensitivity increased by 16.34% and

MCC increased by 12.76%. Here, our merged-seq “one-hot” encoded model produced better

performance.

In the HS_200 dataset, iPseU-Layer produced the best performance among the existing

methods. In this dataset, our general “one-hot” encoded model had improved performance

Table 2. Comparison of the evaluation metrics with the existing predictors on the benchmark datasets.

Predictors

Benchmark Datasets

SC_628 HS_990 MM_944

AC(%) SN(%) SP(%) MCC AC(%) SN(%) SP(%) MCC AC(%) SN(%) SP(%) MCC

iRNA-PseU [12] 64.49 64.65 64.33 0.29 60.40 61.01 59.80 0.21 69.07 73.31 64.83 0.38

PseUI [13] 65.13 62.74 67.52 0.30 64.24 64.85 63.64 0.28 70.44 74.58 66.31 0.41

iPseU-CNN [14] 68.15 66.84 69.45 0.37 66.68 65.0 68.78 0.34 71.81 74.79 69.11 0.44

XGboost [15] 68.15 66.84 69.45 0.37 65.44 63.64 67.24 0.31 72.03 76.48 67.57 0.45

iPseU-Layer [16] 89.34 84.68 93.76 0.79 79.70 71.18 88.22 0.60 80.08 77.92 81.82 0.60

ours(General) 81.50 76.0 87.0 0.61 77.0 79.5 74.5 0.53 80.50 86.0 75.0 0.55

ours(merged-seq) 85.85 88.29 83.37 0.72 78.83 85.61 72.07 0.59 77.23 76.62 77.60 0.54

https://doi.org/10.1371/journal.pone.0247511.t002

Table 3. Comparison of the performance of our model with the existing predictors on the independent datasets.

Predictors

Independent Datasets

SC_200 HS_200

AC(%) SN(%) SP(%) MCC AC(%) SN(%) SP(%) MCC

iRNA-PseU [12] 60.00 63.00 57.00 0.20 61.50 58.00 65.00 0.23

PseUI [13] 68.50 65.00 72.00 0.37 65.50 63.00 68.00 0.31

iPseU-CNN [14] 73.50 68.76 77.42 0.47 69.00 77.72 60.81 0.40

iPseU-Layer [16] 72.50 68.00 77.00 0.45 71.00 63.00 79.00 0.43

ours(General) 75.00 67.00 83.00 0.50 72.5 80.00 65.0 0.44

ours(merged-seq) 76.5 80.00 73.00 0.53 74.00 73.00 75.00 0.48

https://doi.org/10.1371/journal.pone.0247511.t003
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in accuracy by 2.11%, sensitivity by 26.98% and MCC by 2.32%. On the other hand, our

“merged-seq” encoded model outperformed iPseU-Layer in accuracy, sensitivity and MCC by

4.22%, 15.87% and 11.62% respectively. Similar to the SC_200 dataset, our merged-seq “one-

hot” encoded model produced better evaluation metrics in this dataset.

Since we applied deep learning methodologies in our work, we wanted to produce better

results than other deep learning methodologies. As far as we know, iPseU-CNN is the only

available deep learning methodology that used the same datasets as us. Although their

encoding is similar to our general encoding technique, they adopted a single-stage sequen-

tial model where our model had multi-stage architecture. Our both general and merged-seq

“one-hot” encoded model had better accuracy, sensitivity and MCC than iPseU-CNN. So

we can say that our models outperform the existing deep learning methodologies in every

evaluation metric. To enhance the comparison, we provided a graphical comparison of

our models with the state of the art methods in the independent datasets which is depicted

in Fig 3.

We also plotted the receiver operating characteristic (ROC) curve on the benchmark and

independent datasets to have a better understanding of our merged-seq “one-hot” encoded

model. The plot is illustrated in Fig 4. ROC curve tells us how well a model can differentiate

between classes. Our model achieved 0.88, 0.94 and 0.83 AUC (Area Under Curve) score on

the HS_990, SC_628 and MM_944 benchmark datasets respectively. In case of the indepen-

dent datasets, our model produced 0.77 and 0.78 on the HS_200 and SC_200 datasets

respectively.

Fig 3. Graphical comparison of our models with the existing works in the independent datasets.

https://doi.org/10.1371/journal.pone.0247511.g003
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Visualization of the learned features

We visualized the outputs after the concatenation of the multi-stage convolution and max-

pooling layers to gain further insights into the learned features for both general and merged-

seq “one-hot” encoded models. We employed similar approaches used in recent CNN based

works [32–34] to convert the kernel outputs into motifs. Then we used sequence logos to visu-

alize and compare them with the logos generated from the independent datasets (Fig 5). The

logos were generated in terms of probabilities (first three rows) and information contents (last

three rows). From the sequence logos we can see that despite having some differences with

the ground truth for the general “one-hot” encoding, the logos of the merged-seq “one-hot”

encoding based models are quite similar to the ground truths. We can also observe from the

information content logos that our models were able to capture the motifs around the central

uracil(U) quite well for both datasets.

Discussion

Our merged-seq “one-hot” encoded classifier is already implemented and taken to the next

stage by providing a user-friendly web server. In this work, we tried to tune only those hyper-

parameters that can impact the performance of our classifier positively. Nevertheless, tuning

other hyperparameters may result in improved performance. In our merged-seq “one-hot”

encoding, the secondary structure of RNA played a vital role in improving the overall perfor-

mance. We can further investigate how these new features are helping to improve the predic-

tive performance. We also noticed some false positives for our merged-seq “one-hot” encoded

model because of the secondary structure provided by RNAfold. We can investigate other sec-

ondary structure predictors in future for further improvements. We can also look for other

encoding techniques of RNA sequences like Word2Vec other than “one-hot” encoding in the

future. Furthermore, we can extend our work by applying our model to other species for C

site identification. Besides, there are other RNA modifications such as inosine (I), m3c, m5c

etc. We can investigate whether our classifier can identify those sites from RNA sequences as

Fig 4. Illustration of the performance of our model in the benchmark and independent datasets using ROC curve.

https://doi.org/10.1371/journal.pone.0247511.g004
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well. Moreover, compared to the existing methods, our model produced the most accuracy in

both HS_200 and SC_200 dataset.

Conclusion

The purpose of our work was to identify pseudouridine sites from RNA sequences using

computational methods, in our case, a multi-stage convolutional neural network. After prepro-

cessing our data using “one-hot” encoding, we adopted a CNN model having multiple convo-

lution and max-pooling layers connected to the input layer individually, which was followed

by a couple of fully-connected layers and an output layer. We applied k-fold cross-validation

and grid search for hyperparameter tuning. We trained our model by using the selected values

from tuning. Then we tested the performance of our model using the independent datasets

and found 74% accuracy in the HS_200 dataset and 76.5% accuracy in the SC_200 dataset. It is

projected that our classifier can become a helpful tool for identifying C sites. We can also say

that CNN can be used as an important method for classifying biological data.

Supporting information

S1 File. The benchmark and independent datasets with the secondary structure by RNA-

fold and merged sequence that we applied in this work.

(ZIP)

Fig 5. A comparison between the learned motifs of the general and merged-seq “one-hot” encoding. The ground truths were generated using

Weblogo [35].
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