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Abstract

Background: Follicular lymphoma (FL) is one of the most common lymphoid malignancies in the western world.
FL cases are stratified into three histological grades based on the average centroblast count per high power field (HPF).
The centroblast count is performed manually by the pathologist using an optical microscope and hematoxylin and eosin
(H&E) stained tissue section. Although this is the current clinical practice, it suffers from high inter- and intra-observer
variability and is vulnerable to sampling bias.

Methods: In this paper, we present a system, called Follicular Lymphoma Grading System (FLAGS), to assist the
pathologist in grading FL cases. We also assess the effect of FLAGS on accuracy of expert and inexperienced

readers. FLAGS automatically identifies possible HPFs for examination by analyzing H&E and CD20 stains, before
classifying them into low or high risk categories. The pathologist is first asked to review the slides according to
the current routine clinical practice, before being presented with FLAGS classification via color-coded map. The

accuracy of the readers with and without FLAGS assistance is measured.

Results: FLAGS was used by four experts (board-certified hematopathologists) and seven pathology residents on
20 FL slides. Access to FLAGS improved overall reader accuracy with the biggest improvement seen among residents.
An average AUC value of 0.75 was observed which generally indicates “acceptable” diagnostic performance.

Conclusions: The results of this study show that FLAGS can be useful in increasing the pathologists’ accuracy in
grading the tissue. To the best of our knowledge, this study measure, for the first time, the effect of computerized
image analysis on pathologists’ grading of follicular lymphoma. When fully developed, such systems have the potential
to reduce sampling bias by examining an increased proportion of HPFs within follicle regions, as well as to reduce

inter- and intra-reader variability.
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Background

Follicular lymphoma (FL) is a cancer of lymph system,
and is the second most common lymphoid malignancy
in the western world. It is a mature B lymphocyte malig-
nancy of follicular center cell origin. Its diagnosis is
based on specific morphologic, immunophenotypic and
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cytogenetic findings in lymph node/tissue biopsy speci-
mens. Currently the most commonly used risk stratifi-
cation method is the histological grading (HG) system
adopted by the World Health Organization [1]. The
HG method requires calculating average count of large
malignant cells called centroblasts (CB) per standard
microscopic high power field (HPF), equivalent to
0.159 mm®”. The average CB count per HPF is based on
ten randomly selected high power fields within the tissue.
The average count stratifies follicular lymphoma cases
into three histological grades: Grade I (0-5 CB/HPF),
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Grade II (6-15 CB/HPF) and Grade III (>15 CB/HPF).
Grades I and II are considered a low-risk category while
grade III is considered a high-risk category.

The histological grading system, however, suffers
from several drawbacks. Firstly, the CB count is per-
formed manually by the pathologist using an optical
microscope on hematoxylin and eosin (H&E) stained
tissue sections, which leads to subjectivity. It is well
documented that the grading system is subject to
high inter- and intra-observer variability [2, 3] even
among experts [4]. Secondly, since this method uses
only ten high power fields, the results are vulnerable
to sampling bias. Our group has been developing
methods to assist pathologists in reducing inter- and
intra-reader variability and sampling bias [5-7]. In
this paper, we present a system to assist the patholo-
gist in finalizing the grading of a FL tissue under
examination. Given a FL tissue at 40x magnification,
the system will automatically identify possible high
power fields for examination and classify these HPFs
into low (i.g. Grades I or II) or high risk (Grade III)
category.

From our observation, there could be between 250 to
1650 high power fields (approximately 2165 x 1365 pixels)
that can fit into the tissue section of the FL images. Out of
these, 100 to 800 fields may be useful for examination
(i.e. within the follicle area). Compared to the ten ran-
domly selected HPFs that are used for grading a typical
follicular lymphoma slide, this represents a vast amount
of unused data. While it is unrealistic to expect the
pathologists to examine such a large number of HPFs, a
computer system can do this efficiently and consist-
ently. The proposed system will display all the detected
HPFs within the tissue alongside its class (low or high
risk). The pathologists can then use this as a second
opinion to finalize their grading from the ten randomly
sampled HPFs in the HG system. It is important to
stress that the system is not intended to replace the
pathologists in grading, but rather to provide a second
opinion for them to improve their accuracy by reducing
the sampling bias. While our previous work docu-
mented the positive effect of automatically choosing
the HPFs on inter-reader variability, to the best of our
knowledge, this is the first work in documenting the
effect of computer-aided classification to pathologist
grading.

The rest of this paper is organized as follows: Sections 2
explains the image analysis strategies and methods used in
detecting the HPFs and classifying them into low and high
risk categories, followed by description of the FLAGS sys-
tem. Section 3 discusses the effect of the proposed system
on the expert and inexperienced pathologists involved in
the project. Finally, the last section concludes the paper
with a summary of the work as well as future directions.
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Methods

High power fields detection

When pathologists are presented with an FL. H&E case,
they must select ten HPFs and analyze these HPFs to de-
termine the grade. Selection of the HPFs are left to the
pathologists who typically select these regions in areas of
follicles while trying to capture as much of the hetero-
geneity as possible. Considering that there are thousands
of potentials HPFs in a given slide, this is not an easy
task. Due to the limited time they can allocate reviewing
each case, they are limited to these ten HPFs for their
decision making.

In most cases, follicles in a FL case are easy to distinguish
from the other structures in a slide. However, our previous
studies demonstrated that it is easier for the computer
algorithms to detect the follicles in immunohistochemically
(IHC) stained slides [8—10]. Therefore, we propose a simple
thresholding approach to detect suitable high power fields
for examination based on CD20-stained images. Compared
to H&E images, CD20-stained images provide much better
follicle delineation, hence HPFs can be detected better. Our
CD20 and H&E biopsy slides were scanned at 40x magnifi-
cation using a high-resolution whole slide scanner Aperio
(Vista, CA) ScanScope™ at the resolution of 0.23 microm-
eter/pixel. The digitized images have resolution of around
80,000 x 80,000 pixels on average. The cases were selected
from the archives of The Ohio State University with
Institutional Review Board (IRB) approval (Protocol 2007
C0069, renewed May 7, 2014).

Figure 1 (top) shows the flow chart of the proposed
detection method. Given the CD20 and H&E stained im-
ages of a tissue sample, image registration is carried out to
align the tissue boundaries as well as the follicle regions
between the two images [11]. Since the classification of
the FL tissues will eventually be carried out based on the
H&E-stained images, the CD20 images are registered to
the H&E images. In other words, the CD20 images are
transformed so that they are spatially registered with the
H&E images. The saturation channel from the HSV color
model is used to register the two images as it provides a
good gray level separation between the follicle regions,
non-follicle regions, and the white background.

A local thresholding operation is carried out on the regis-
tered CD20 images to separate the tissue samples from the
background as well as the follicle regions from the non-
follicle regions. The local regions were selected to be of size
400 x 400 pixels within HPF blocks of size 1365 x 2165
pixels at 40x magnification. The mean saturation value
within each local block is calculated and compared to the
threshold value. The threshold value is determined as the
value for which the histogram has the peak. In the absence
of a peak in the histogram, the default value of 0.5 is used.
The output of the local thresholding is a binary image in
which the potential follicle regions are marked as positive
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Fig. 1 Flowchart of the proposed high power fields detection and classification

(ie. 1). The binary image is then divided into non-
overlapping blocks of 1365 x 2165 pixels, and the blocks
with more than 75 % positive pixels are deemed suitable
high power fields for examination. The choice of 75 % as
the threshold was selected after consultation with patholo-
gists, who recommended that at least three quarters of the
HPF be within the follicle. Experimental results on 20
randomly selected FL test cases (10 high risks and 10 low
risks) suggest that 75 % is a good threshold choice.

Additional file 1: Figure S1 shows a sample image (1a) as
it goes through each step of the algorithm (1b-1 g) with
the output of the algorithm superimposed on the final
image (1 h). It can be observed that CD20 images (both
the original and the S channel) provide better follicle delin-
eation (i.e. boundaries of the follicles have higher contrast
with the surrounding tissue), and the detected high power
fields are all within the follicles. It is important to note that
to reduce the computational workload, HPFs can be de-
tected on lower resolution images without sacrificing
detection accuracy as the detection is based on the larger
follicle regions instead of the individual cells. In our experi-
ment, we use 0.5x magnification, where the tissue slides
are reduced to a region of around 1000 x 1000 pixels, high
power fields are reduced to a size of 17 x 27 pixels, and the
local window size for thresholding is set to a 5 x 5 pixels.
The design decisions are made with the understanding that
this system has higher tolerance for missed potential HPF
regions than incorrect HPF detections. Because patholo-
gists review only 10 HPFs in their current practice, even
when the system detects and analyzes 20 high quality HPF
regions, this immediately doubles the number of regions
reviewed.

High power field classification
Most of the previous work in the classification of follicular
lymphoma was based on the segmentation and recognition

of the centroblasts [12-19]. In this work, we propose a
simpler alternative by analyzing the centroblasts’ features at
the image level. To train the system, 200 high power field
images (obtained from different FL cases to the 20 test
cases above) were used; for each of these images, at least
two pathologists marked every centroblast in these images.
A total of 3771 centroblasts were identified from the 200
images and each CB was extracted as a 64 x 64 block for
feature extraction purposes. To represent non-centroblast
cells, 4000 64 x 64 blocks were then randomly extracted
from the non-CB areas of training images (20 from each
image). 64-dimensional color histogram [20] features were
then extracted from these 3771 centroblast and 4000 non-
centroblast blocks which were used to train the system in
classifying the detected HPFs from the previous section.
We relied on our extensive experience in this area to select
the training data set so that the computer can be trained to
recognize centroblasts as accurately as possible from all
non-centroblast cells regardless of cell type. Most of the
3771 identified centroblasts were in consensus between the
pathologists. The 4000 non-centroblasts blocks, on the
other hand, were carefully selected such that they are at
least twice the distance from any marked centroblast, even
those non-consensus ones.

Figure 1 (bottom) shows the flowchart of the pro-
posed high power fields classification method. The
detected high power fields are broken into 64 x 64 sub-
blocks. For the HPF resolution of 1365x2165 pixels
used in our experiment, this resulted in 693 blocks for
examination. After color histogram features are extracted
from each of these blocks, the k-nearest neighbor classifi-
cation is carried out based on the 3771 centroblast and
4000 non-centroblast training blocks. A block is then clas-
sified according to the majority class of its k neighbors.
An HPF is classified as a high centroblast field if its num-
ber of sub-blocks classified as centroblasts exceeds a



Fauzi et al. BMC Medical Informatics and Decision Making (2015) 15:115

certain threshold p. Experimentally, the best classification
was achieved when k =49, and p = 115. At the tissue level,
the tissue will be classified as high risks (grade III) if the
number of detected HPFs classified as high exceeds 50 %.
Table 1 summarizes the rule-based classification at each
level of the process.

Experiments on the 20 FL test cases gives an accuracy
of 80 % compared against consensus ground truth.
Table 2 summarizes the results.

Follicular lymphoma grading system (FLAGS)

All 20 cases were used in a study of the influence of the
proposed computer detection and classification of FL
tissues on pathologist accuracy. As shown in Table 1,
using a threshold of 50 % for computer scores, sixteen
of these cases were correctly classified by the computer
system, and four were incorrectly classified. The four
incorrectly classified cases were included to see if the
pathologists can still trust the computer even after they
encounter such cases. The pathologists however, were
not informed about the classification accuracy and cases
were presented to them in a random order.

For each case, the ground truth was generated by ex-
tensive reading by two experienced pathologists, where
each and every centroblast in the selected HPFs was
identified and counted. Eleven pathologists (four experts
and seven residents) were involved in the experiments,
and each pathologist was asked to grade twenty cases of
H&E stained follicular lymphoma slides. The confidence
scores were then used to perform Receiver Operating
Characteristic (ROC) analyses comparing reader accur-
acy before and after using the computer.

Additional file 2: Figure S2 shows the user interface of
our proposed system designed to measure the influence of
the computer grading of FL tissues on the pathologists.
The system is fairly easy to use thus brief step-by-step
training was given to each pathologist before they pro-
ceeded to grade the 20 FL cases. Additional file 3: Figure S3
shows an example of the HPF classification map generated
by the system, where red boxes indicate low CB regions,
while green boxes indicate high CB regions. The detailed
usage process of the system is described below:

Table 1 Rule-based classifications at different levels of the
process

Levels Classification Rule

64x64 blocks

Classified as centroblasts region if 50 % of its nearest
49 neighbors are centroblasts

Classified as high centroblasts region if the number
of 64x64 blocks classified as centroblasts exceeds
115 (out of 693 blocks)

Classified as high if 50 % of its detected HPFs are
classified as high

High power fields

Tissue
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A: Conventional reading:

1. Pathologist selects a case to be examined. For this
phase of the review, the pathologist is instructed
to review the case in a standard clinical setting;
i.e, using glass slides and under the microscope.

2. Pathologist will review the case under a
microscope to count the number of centroblasts
in ten randomly selected high power fields, as in
standard clinical practice.

3. The counts are recorded into the computer using
the interface on the left hand panel of Additional
file 2: Figure S2. It should be noted that this is
just for convenience (as opposed to writing the
counts on a piece of paper) and no digital reading
or assistance is provided at this stage.

4. Once the ten counts have been entered, the
system will show the grade based on World
Health Organization (WHO) guidelines. Again,
this is for convenience for the pathologists, the
computer simply calculates the average count so
that they do not need to use a calculator to carry
out this step. Up to this point, the pathologist
carries out the reading in the conventional way.

B: Computer-assist:

5. The computer will ask the pathologist to provide
a score in the range: 0-100, reflecting how
confident they are that the case is high risk
(Grade III).

6. For the whole tissue sample, the computer will
identify suitable high power fields and classify
them into low (grade I and II) or high (grade III)
category regions. The pathologist can view and
verify these high power fields by clicking on the
colored boxes (see Additional file 3: Figure S3).

C: Decision:

7. The system will then ask the pathologist if he or
she wants to change their confidence score after
seeing the computer’s output.

The pathologists were asked to follow the standard
practice in follicular lymphoma grading; i.e. to look at 10
random high power fields within the tissue, and to count
the number of centroblasts in each of the 10 locations.
The average number of centroblasts per high power field
was calculated and a case was marked as high grade if
the average number was more than 15 in accordance
with the current WHO guidelines. The only difference
between the current clinical practice and our set up is
that the computer calculates the averages instead of
pathologist using a calculator to compute the average
value. After the average centroblast counting, the system
proceeds to ask “In your opinion, how likely is this
Grade I1I?” Then, the pathologists are prompted to enter
a score in the range of 0 (unlikely) to 100 (very likely).
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Table 2 Detection and Classification Results for 20 Cases
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Case Grade (Consensus) Detected HPFs  HPFs Classified as High  HPFs Classified as Low Percentage of Correct Classification  Grade (Computer)
1 High 826 755 71 914 High
2 High 324 320 4 98.8 High
3 High 98 98 0 100.0 High
4 High 56 55 1 982 High
5 High 66 66 0 100.0 High
6  High 154 154 0 100.0 High
7 High 208 207 1 99.5 High
8 High 123 120 3 97.6 High
9 High 742 330 412 445 Low
10 High 102 6 96 59 Low
1 Low 361 273 88 756 High
12 Low 187 186 1 995 High
13 Low 67 17 50 254 Low
14 Low 390 99 291 254 Low
15 Low 199 82 117 412 Low
16 Low 46 1 45 2.2 Low
17 Low 25 2 23 80 Low
18 Low 191 27 164 14.1 Low
19 Low 169 0 169 0.0 Low
20 Low 36 0 36 0.0 Low

The second part of the system shows the pathologists the
computer detected HPFs as well as classification for each
HPF according to the classifier explained in Section 3. The
classification was presented in color code so that high
grade HPF regions were marked in green outline and low
grade regions in red. To understand the computer’s classifi-
cation decisions, the pathologists were given the option to
click on any of the detected high power field regions to
view the area at high resolution (i.e. 40x). After showing
the classification, the system proceeded to ask “After seeing
the computer’s output, how likely is this Grade III1?” To an-
swer this question, the pathologists have the options to
maintain or change their previously entered likelihood
score. All the pathologists’ ten CB counts, average CB
count, initial likelihood score and final likelihood score
were recorded for analysis.

It is important to point out that, as this study was
intended as a proof of concept, our readers had to go
through extra steps to enable our extensive statistical
analysis. Once these studies are completed and the sys-
tem is redesigned to be deployed clinically, several of the
steps in the current system (e.g. recording confidence
interval before and after reviewing the computer results)
will not be necessary and the whole process will be very
streamlined. The FLAGS system was designed to guide
pathologists towards the most informative areas on the
slide. The final classification decision is that of the

pathologist. Pathologists with experience in FL diagnosis
have a choice of agreeing or disagreeing with computer
marking of centroblasts by re-reviewing the areas of
interest highlighted by the computer as centroblast rich.

Since pathologists will likely review only a small number
of HPFs with computer aid, the additional time is kept to
a minimum. Once the computer identifies the HPFs, it is
up to the pathologist to select which computer-classified
HPFs they want to inspect more closely. We preferred this
approach because it gives more flexibility to the patholo-
gist in terms of whether they prefer computer assistance,
and if they do, the extent of the assistance. This is a more
realistic scenario as in regards to how such a system might
be used in practice, as opposed to pre-specifying which
HPFs the pathologist should inspect more closely with the
computer aid.

Results and discussion

Two pathologists were considered to agree on a case if
they both rated the case as high grade (score > =50), or if
they both rated the case as low grade (score < 50). It is im-
portant to point out that from the experiment, even expert
pathologists disagree on the grading for some of the cases.
Out of the 20 cases, only nine cases were unanimously
agreed upon by the expert pathologists. The interrater
agreement improved to ten cases upon seeing the com-
puters’ output. Thus, the agreement—when taking into
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account resident pathologists reading as well—is worse:
only a single case registered unanimous agreement, which
improved to four cases upon seeing the computer’s
output. Additional file 4: Figure S4 plot the change in
median confidence scores (initial vs. final scores) across 11
pathologists for the 20 cases.

Agreement with the ground truth and computer output
We used a threshold of 50 on pathologists’ scores to define
agreement with ground truth. Thus, if the ground truth for
a case was high risk, a pathologist was considered to be in
agreement with the ground truth if his/her score was equal
to or larger than 50. If the ground truth for a case was low
risk, a pathologist was considered to be in agreement with
the ground truth if his/her score was less than 50. Overall,
out of 220 readings (20 cases x 11 pathologists), only 125
initial readings were in agreement with the ground truth
(56.8 %). Agreement improved to 148 (67.3 %) after the
pathologists reviewed the computer’s output.

Analysis according to pathologists’ experience level
Comparing expert pathologists to residents, 53.8 % (43 out
of 80) of the experts’ readings were initially in agreement
with the ground truth, while 58.6 % (82 out of 140) of the
residents’ readings were initially in agreement. These num-
bers improved to 62.5 % and 70.0 %, respectively upon
reviewing the computer’s output. While the initial reading
was more or less similar between the experts and inexperi-
enced readers, it is interesting to note that residents were
more inclined to change their score after seeing the com-
puter results.

We analyzed the agreement data using the Obuchowski-
Rockett (OR) method [21] with Hillis denominator degrees
of freedom [22] to estimate confidence intervals and to
compare the agreement with and without the use of the
computer system. Although the OR method is typically
used to analyze ROC data, it is equally applicable to other
indexes of diagnostic accuracy, including agreement [23].
Table 3 summarizes the agreement results for the group of
11 pathologists, as well as for the expert pathologist and
resident subgroups.
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Another analysis that can be made is on the agreement
to the computer’s output, instead of to the ground truth.
Overall 153 initial readings (69.6 %) are in agreement
with the computer classification, which increases to 176
readings (80.0 %) after consulting the computer output.
From these numbers, the experts registered an initial
68.8 % agreement which later improved to 77.5 %, while
the residents recorded an initial 70.0 % agreement that
subsequently improved to 81.4 %. As in the comparison
against the ground truth, the agreement increases after
seeing the computer’s output, and the resident patholo-
gists are more willing to alter their confidence score.

In terms of overall changes in the agreement between
the pathologists and the ground truth, 25 out of the 220
readings (8 from the experts and 17 from the residents)
recorded a change towards computer results, with only
two cases (one from an expert and one from a resident)
recorded the change in the opposite direction. This indi-
cates that although the pathologists were not informed
about the performance level of the computer system,
both experts and residents developed a trust for the
computer system for their interpretation.

Analysis according to correctly and incorrectly classified
cases by the computer system

We used a threshold of 50 on the computer scores to
define correctly and incorrectly classified cases by the com-
puter system. Thus, if the ground truth for a case was high
risk, it was considered to be correctly classified if the
computer score was equal to or larger than 50. The 220
readings can be subclassified into 88 readings of correctly
classified high grade cases (8 high grade cases x 11 pathol-
ogists), 88 readings of correctly classified low grade cases (8
low grade cases x 11 pathologists), and 44 readings of in-
correctly classified cases (4 incorrectly classified cases x 11
pathologists). It was observed that the pathologists per-
formed better in grading the correctly classified high grade
cases compared to the correctly classified low grade cases,
for both initial and final grading. Before computer results
were presented, 69 out of the 88 correctly classified high
grade readings (78.4 %) were in agreement with the ground

Table 3 Percent agreement with ground truth and Average Area Under the ROC Curve (AUC) Estimates

Without Computer

With Computer

Agreement (%) 95 % Cl Agreement (%) 95 % Cl p-value of the difference

Experts 538 (37.2,70.3) 62.5 (47.3,77.7) 0.188
Residents 586 (44.0, 73.1) 70.0 (56.9, 83.1) 0.014

All Readers 56.8 (423,71.1) 67.3 (536, 80.1) 0.004

AUC 95 % Cl AUC 95 % Cl p-value

Experts 0.62 (040, 0.84) 0.69 (0.50, 0.87) 0.21
Residents 0.66 (046, 0.86) 0.79 (0.63, 0.95) 0.04

All Readers 0.65 (0.46, 0.83) 0.75 (0.58,0.92) 0.03
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truth, while only 48 of the 88 low grade readings (54.6 %)
were. These numbers improved to 78 and 62 cases respect-
ively (88.6 % and 70.5 %) after consulting the computer re-
sults. Contrarily, only 8 of the 44 initial readings of
incorrectly classified cases (18.2 %) were in agreement with
the ground truth, which remained the same for the final
grading.

The agreement against the computer’s output shows
more or less the same improvement between initial and
final confidence scores as in the agreement against the
ground truth. In terms of actual confidence scores, for
correctly classified high grade cases, the average final
confidence score was 82.2 % compared to 73.1 % ini-
tially. For the correctly classified low grade cases, the
average final confidence score was 28.8 % compared to
43.1 % initially. As expected, the average scores for the
incorrectly classified cases approximated the 50 % mark
(46.8 % initial, 53.9 % final).

ROC analysis

Stand-alone computer ratings of the likelihood that a case
was Grade III (0-100 scale) were compared to the ground
truth by calculating the Area Under the ROC Curve
(AUC) using the trapezoidal rule and, by viewing the AUC
as a binomial proportion [24], an exact binomial 95 %
confidence interval of the trapezoidal AUC was obtained.
The confidence interval was also calculated using U-
statistics to estimate the variance of AUC [25], followed by
the logistic transform to find the confidence interval for
logit (AUC), and transforming the confidence interval
back to AUC [26]. The two methods resulted in similar
95 % confidence intervals. ROC curves of the computer
and individual readers were generated using Intercooled
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Stata 11 (StataCorp, College Station, TX). The computer
exhibited excellent performance in discriminating high
grade from low grade cases, as indicated by the ROC
curve shown in Fig. 2.

The Obuchowski-Rockett (OR) method [21] with Hillis
denominator degrees of freedom [22] was used to com-
pare the average AUC of readers with and without the
computer. To determine if the effects of the computer dif-
fered by experience level, we also performed separate OR
analyses for expert hematopathologists and residents. All
AUC calculations were made using the nonparametric
trapezoidal method for integration. The OR analysis was
performed in SAS Version 9.2 (SAS Inc., Cary, NC) using
the MRMC_ANALYSIS macro by Hillis et al. [27]. The
average ROC curves corresponding to the average AUC
values were generated using a nonparametric averaging
method described in [28].

Additional file 5: Figure S5 shows the ROC curves for
each and every individual reader. Table 3 shows the
results for statistical comparisons of the mean AUC per-
formance without the computer aid versus with the
computer aid for different reader populations. Figure 3
shows the average ROC curves corresponding to those
average AUC values in Table 3, where the average was
performed along the direction of the diagonal line con-
necting the upper-left point and the lower-right point in
the ROC space. These results indicate that access to the
computer improved reader accuracy with the biggest im-
provement seen among residents. However, even with
the improvements provided by computer, the average
AUC value was only 0.75, which is generally regarded as
“fair” or “acceptable” diagnostic performance (see, for
example, [29]).
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Fig. 3 Average ROC curves obtained using a nonparametric average [26] of empirical ROC curves of (a) the four expert readers, (b) the seven
resident readers, and (c) all 11 readers. See Table 3 for the corresponding average AUC values and statistical inference results

Overall, the convergence of the final grading towards
the ground truth and computer results, as well as the
improvement of the confidence scores (towards 100 %
for high risk cases and towards 0 % for low risk cases)
suggests that with proper image analysis methods that
can yield acceptable accuracy, the computer detection
and classification does help in increasing the confidence
of the pathologists in their grading ability.

Conclusions

We have proposed a system to assist pathologists in grad-
ing follicular lymphoma cases. The system first identifies
potential high power fields for examination by analyzing
accompanying CD20 images. Even at relatively small false
positive rates, the number of computer selected high
power fields is much higher than 10 (i.e. the number of
randomly selected high power fields in the current clinical
practice) and represents only a tiny fraction of all available
high power fields in a given slide. These high power fields
are then classified into low or high grades based on the k-
nearest neighbor classifier of potential centroblast regions

within sub-blocks of the HPF regions followed by rule-
based classification at the block, HPF and tissue levels. The
proposed classification methods are able to achieve an
accuracy of 80 % for this data set. The detected and classi-
fied HPFs are then presented as an HPF classification map
for pathologists’ review and verification. To the best of our
knowledge, for the first time, we measure the effect of
computer-detection on the decisions of experts and inex-
perienced readers in grading follicular lymphoma. The
average AUC value of the 11 readers increased from 0.65
to 0.75 when they used the computer system, which is
generally considered acceptable diagnostic performance.
Residents were found more likely to change their scores
after using the computer which could explain why their
readings were more accurate than the pathologist readings.

The current study is performed on set of cases with clas-
sical follicular pattern that is predominant in FL clinical
cases, thus non-follicular patterns in follicular lymphoma
may pose problem for our system as it is deployed right
now. Recognizing the important issue of FL with diffuse
pattern and fused follicles, we have been working on an
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algorithmic solution that will recognize characteristic stain-
ing for follicular dendric cells networks (FDCS) (as stained
by CD21, CD23 or CD35 IHC stains) to help with this
problem. We believe that digital computer triangulation of
CD20 and FDCS positive areas will accurately guide our al-
gorithm towards proper diagnostic areas in FL cases with
diffuse pattern and with fused follicles.

Finally, due to the limited number of case samples avail-
able to us at the time of the study, some parameters of the
computer system were selected based on the regions of
interest extracted from the twenty cases that were used in
the study with the pathologists. This may have optimistic-
ally biased the performance of the computer system,
which had an AUC value of 0.87, higher than any of the
pathologists who participated in the study. In the future,
we intend to apply the designed computer system to a
completely independent, randomly selected data set of tis-
sue samples, and investigate if the computer performance
on the current data set is biased. However, regardless of
the potential bias, we demonstrated for the first time that
a computer system with the characteristics and perform-
ance described in this study has the potential to increase
both the percent agreement with the ground truth and the
AUC value of the pathologists in the task of follicular
lymphoma grading. When fully developed, the proposed
system has the potential to reduce sampling bias, thus
decreasing potential errors. Our future work will focus on
further improving the classification accuracy of both the
detection and classification algorithms, as well as expand-
ing the study on a larger number of cases and more
pathologists.

Additional files

Additional file 1: Figure S1. Flow of the detection process: (a) H&E
image, (b) CD20 image, (c) S channel of H&E, (d) S channel of CD20, (e)
Registered CD20 (S channel), (f) Local thresholding with blocks showing
detected HPF regions, (g) Detected HPFs on CD20 (S channel), (h)
Detected HPFs on the H&E. (DOCX 384 kb)

Additional file 2: Figure S2. Graphical User Interface of the proposed
FLAGS system. (DOCX 1052 kb)

Additional file 3: Figure S3. Example of the HPF classification map
generated by the system (top), and the zoomed version (40x
magnification) of one of the detected HPF. (DOCX 3320 kb)

Additional file 4: Figure S4. Initial and final median confidence scores
across 11 pathologists for the 20 cases. The first eight readings are for
correctly classified high grade, the middle four readings are for the
incorrectly classified cases, and the last eight readings are for correctly
classified low grade. (DOCX 138 kb)

Additional file 5: Figure S5. Reader-Specific ROC Curves. Readers 1-4
were expert hematopathologists. Readers 5-11 were residents. (DOCX 21 kb)
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