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Identifying factors secreted by multiple myeloma (MM) cells that may contribute to MM

tumor biology and progression is of the utmost importance. In this study,

hepatoma-derived growth factor (HDGF) was identified as a protein present in

extracellular vesicles (EVs) released from human MM cell lines (HMCLs). Investigation of

the role of HDGF in MM cell biology revealed lower proliferation of HMCLs following

HDGF knockdown and AKT phosphorylation following the addition of exogenous HDGF.

Metabolic analysis demonstrated that HDGF enhances the already high glycolytic levels

of HMCLs and significantly lowers mitochondrial respiration, indicating that HDGF may

play a role in myeloma cell survival and/or act in a paracrine manner on cells in the

bone marrow (BM) tumor microenvironment (ME). Indeed, HDGF polarizes macrophages

to an M1-like phenotype and phenotypically alters naïve CD141 monocytes to resemble

myeloid-derived suppressor cells which are functionally suppressive. In summary, HDGF

is a novel factor in MM biology and may function to both maintain MM cell viability as

well as modify the tumor ME.

Introduction

The bone marrow (BM) microenvironment (ME) is thought to be a contributory factor in the progression
from the asymptomatic stage of monoclonal gammopathy of undetermined significance (MGUS) to active
multiple myeloma (MM). BM stromal cells interact with nascent tumor cells in myriad ways. For example,
malignant cells secrete cytokines, chemokines, and growth factors that create a permissive environment
for the tumor cells to proliferate. Additionally, it has more recently become clear that all cells shed extra-
cellular vesicles (EVs) laden with cargo, including DNA, RNA species, proteins, phospholipids, and
metabolites,1 which have the ability to modulate the state of the cell, releasing the EVs as well as cells in
the ME.

Various studies have examined the cargo of MM exosomes and EVs2-4 as well as their biological impact
on cells found in the BM ME. For example, MM cell-derived exosomes have been shown to induce inter-
leukin-6 (IL-6) secretion by BM stromal cells, resulting in suppression of osteoblastic differentiation,5,6

thereby contributing to myeloma bone disease. Furthermore, exposure of macrophages to exosomes
derived from human myeloma cell lines (HMCLs) results in their reprogramming to functional osteo-
clasts.7-9 EVs from MM cells with deletion of chromosome 13 strongly differentiate monocytes to an M2
supportive macrophage and/or tumor-associated macrophage (TAM) phenotype in a miR16-dependent
fashion.10 There is evidence that MM EVs are taken up by human umbilical vein endothelial cells
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Key Points

� HDGF is secreted by
and found in multiple
myeloma cell
extracellular vesicles;
it activates AKT and
sustains multiple
myeloma cell growth.

� HDGF polarizes naïve
macrophages to an
M1 phenotype and
generates
immunosuppressive
M-MDSC.
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(HUVEC) and that this results in tube formation, proliferation, and
increased vascular endothelial growth factor and IL-6 secretion by
HUVEC.11 Treatment with bortezomib or lenalidomide has been
shown to inhibit the proangiogenic potential of MM EVs.12 Finally,
murine MM exosomes have been shown in vivo to reprogram the
BM ME to enhance angiogenesis and create an immunosuppressive
environment.13

Previous studies of MM EVs have focused on defining the activity of
small EVs (,200 nM), which are mostly exosomes. Our group has
previously characterized larger HMCL EVs (200-800 nM),14 and in
this study, we investigated the cargo of MM EVs by comparing EVs
from 9 HMCLs to EVs from in vitro generated plasma cells (IVPCs).
Among the interesting proteins identified in the EVs, we demon-
strated that MM-derived EVs contain a hepatoma-derived growth
factor (HDGF), which drives the proliferation of hepatoma cells15

and many other types of cancer.16 Searching Vesiclepedia17 (a
compendium of EV data) for HDGF revealed that it has been identi-
fied in EVs shed by numerous cancers, including glioblastoma,
breast, colorectal, kidney, lung, ovarian, leukemia, and melanoma.
Additionally, HDGF has been found in EVs from normal endothelial
cells and mesenchymal stem cells but has never been described in
MM-derived EVs.

Little is known about the function of HDGF in MM. The HDGF cod-
ing sequence is found on 1q21-23 and is part of the 1q amplifica-
tion gene signature seen in some patients with MM.18 Of interest,
1q amplification is also a hallmark of hepatocellular carcinoma.19

Amplification of the 1q arm is found in 0% of MGUS, 45% of smol-
dering myeloma (SMM), 43% of newly diagnosed MM, and 72% of
relapsed MM.20 A 1q gain in MM patients is associated with com-
plex karyotypes, aggressive disease, and early progression after
lenalidomide, bortezomib, and dexamethasone treatment.21,22 More-
over, MM cells treated with SAHA (suberoylanilide hydroxamic acid,
a histone deacetylases inhibitor) become apoptotic, a state that is
accompanied by changes in their expression profiles.23 HDGF was
identified as one of the downregulated genes, suggesting that it is
involved in maintaining MM homeostasis.

In this study, we describe for the first time that HMCL-derived EVs
contain HDGF at levels significantly higher than in normal in vitro
generated plasma cells (PCs). To understand the significance of
this finding, we have carried out a variety of studies that demon-
strate both autocrine and paracrine activities of HDGF. As a result
of our work, we conclude that there is a biological role for HDGF
in MM.

Materials and methods

The Mayo Clinic Institutional Review Board approved the study
(number 1222-05), which was conducted according to the Declara-
tion of Helsinki.

Cell lines, culture medium, and reagents

The HMCLs ANBL-6, the sister cell lines ALMC-1 and ALMC-2,24

DP-6, JMW, KAS-6/1, KP-6, MC-B11/14, MMF-1, and VP-6 have
been previously described,25 as well as their culture conditions.14

IVPCs were generated as described.26 Briefly, peripheral blood B
cells from healthy donors were activated in a 3-stage in vitro culture
system using modifications of previously published protocols.27-30

Cells obtained at the conclusion of a 10-day incubation displayed

an aggregate phenotype similar to in vivo PCs.26 Detailed information
on reagents can be found in supplemental Methods and Reagents.

EV preparation

EVs were harvested from 9 HMCLs and pooled IVPCs generated
from 3 individuals as described previously.14 Triplicate EV prepara-
tions were resuspended in Laemmli sample buffer with Halt Prote-
ase Inhibitor Cocktail, and lysates were cleared of insoluble material
by centrifugation at 9000 3g for 10 minutes at 4�C. Lysates were
quantified with the bicinchoninic acid method (BCA kit).

Mass spectrometry

Please refer to supplemental Methods.

Gene expression profile analysis

Zhan and colleagues31 reported gene expression profiling (GEP)
data from normal PCs and PCs from patients with MGUS, SMM,
and MM and have made these data publicly available. These data
were queried for mRNA levels of various EV proteins, including
HDGF.

Immunoblotting

HMCLs (5 3 106) were lysed and protein quantitated as above.
30 mg of protein lysate was heated to 70�C for 10 minutes,
resolved on 4% to 20% Bio-Rad SDS-PAGE (sodium dodecyl-
sulfate polyacrylamide gel electrophoresis), and transferred to
Immun-Blot Low Fluorescence polyvinylidene difluoride (PVDF)
membranes using a Trans-Blot Turbo Transfer System. Total protein
on membranes was measured with the Li-Cor Revert system and
used as a loading control. Membranes were blocked in Intercept
blocking buffer for 1 hour at room temperature. Anti-human HDGF
antibody was used at a 1:1000 dilution in Intercept blocking
buffer 1 0.2% Tween 20 for an hour, washed in TBS with Tween
20, followed by a 30-minute incubation with IRDye 800CW goat
anti-rabbit antibody (Li-Cor) at 1:15 000. Membranes were visual-
ized after washing on the Li-Cor Odyssey CLX. HDGF signal inten-
sity was normalized to total inlane protein. For phospho-AKT
westerns, serum-starved ALMC-1, ALMC-2, ANBL-6, and KAS-6/1
cells were incubated without stimulus or with 50 ng/mL or 500 ng/
mL HDGF for 1 hour. As a positive control, HMCLs were stimulated
with 50 ng/mL IL-6 for 10 minutes. Membranes were probed with
antibodies to AKT, phospho-AKT, and b actin.

HDGF enzyme-linked immunosorbent assay (ELISA)

Levels of HDGF in HMCL-conditioned media were measured with
an HDGF ELISA kit according to the manufacturer’s instructions.
The conditioned media was collected from the same cultures that
yielded the EV preparations. The media remaining after the high-
speed centrifugation step that pellets the EVs (17000 g for 45
minutes) was stored at 280�C before testing by ELISA.

HDGF knockdown with small interfering

RNA (siRNA)

HDGF and nontargeting control pool siGenome siRNA duplexes
were purchased from Dharmacon/Horizon Discovery Ltd. Transfec-
tion of the siRNA duplexes was achieved via electroporation as pre-
viously described.32 Briefly, cells were electroporated (225 V, 20
ms, 1 pulse) with either HDGF or nontargeting control siRNA,
allowed to recover for 24 hours followed by a second transfection,
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and then plated in normal growth media. Twenty-four hours follow-
ing the second transfection, the cells were washed once with saline
and then cultured in normal growth media (10% fetal bovine serum
[FBS] and 1 ng/mL IL-6) at 0.5 3 106 cells per well in a final vol-
ume of 1 mL in a 24-well flat-bottom plate. Cells were cultured for 4
days. At 24, 48, 72, and 96 hours after set-up, cells were counted
in quadruplicate.

Metabolic analysis of HMCLs

Before metabolic analysis, ALMC-2, ANBL-6, and DP-6 cells were
washed twice with saline and incubated overnight in Iscove modi-
fied Dulbecco medium (IMDM) 1 0.5% bovine serum albumin. A
Seahorse XFe bioanalyzer was used to measure the extracellular
acidification rate (ECAR) and oxygen consumption rate (OCR). Sea-
horse 96 well plates were first coated with Cell-Tak for 20 minutes.
Cells were resuspended in Seahorse XF base media with or without
phenol red. For OCR analysis, the media contained 10 mM glucose,
1 mM sodium pyruvate, and 2 mM glutamine, whereas, for ECAR,
the media contained only 2 mM glutamine. The cells were resus-
pended in the appropriate media in the presence or absence of
20 ng/mL IL-6, 500 ng/mL HDGF, or the combination of the 2 cyto-
kines and placed in a non-CO2 incubator at 37�C for 1 hour. ECAR
and OCR analyses were conducted under basal conditions and
after adding the following reagents: ECAR: 10 mM glucose, 1 mM
oligomycin A, 100 mM 2-DG; and for OCR: 1 mM oligomycin A,
1 mM carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone Car-
bonyl cyanide-4 (trifluoromethoxy) phenylhydrazone (FCCP), and
5 mM rotenone/antimycin A (Seahorse XF Cell Mito Stress Kit). To
measure mitochondrial membrane polarization, HMCL cells were
incubated for 2 hours in XF base media with cytokines as above, fol-
lowed by the addition of tetramethylrhodamine, ethyl ester (TMRE)
(200 nM, for 20 min at 37�C). HMCL were washed with
phosphate-buffered saline, counterstained with UV Blue Live/Dead
(1:1000 for 30 min at room temperature), washed again, and evalu-
ated by fluorescence-activated cell sorting analysis gating on live
cells and calculating the percent of cells that expressed low levels
of TMRE.

Macrophage and monocytic–myeloid-derived

suppressor cell (M-MDSC) polarization

Peripheral blood mononuclear cells (PBMCs) were isolated from
healthy volunteer blood donors through the Division of Transfusion
Medicine at Mayo Clinic.33 CD141 monocytes were isolated from
PBMCs using an EasySep Human Monocyte Isolation Kit. After iso-
lation, monocytes were resuspended at 6 3 106 cells per 4 mL
with ImmunoCult–SF Macrophage Medium (SFMM), penicillin/strep-
tomycin (P/S), and 5 ng/mL macrophage colony-stimulating factor
(M-CSF) in a T25 flask. The cells were placed in an incubator at
37�C for 4 days. On day 4, media was exchanged with SFMM,
P/S, and M-CSF and were incubated for 2 more days. On day 6,
media was exchanged with SFMM, P/S, and M-CSF, and cells
were cultured under the following 4 conditions: (1) unsupplemented
media; (2) M1 induction using 10 ng/mL and 50 ng/mL interferon-
g(IFN-g); (3) M2 induction using 10 ng/mL IL-4; and (4) 50 ng/mL
HDGF. The cells were incubated for 2 days, and macrophages
were harvested on the eighth day. Cells were detached with Accu-
tase and stained for flow cytometry. For M-MDSC polarization,
CD141 monocytes were isolated as described above and cultured

for 2 days with IMDM 1 1% FBS in the absence or presence of
100 ng/mL HDGF.

CD4
1
T-cell proliferation assay

CD41 T cells were isolated from healthy volunteer blood donor
PBMC with the EasySep Human CD41 T-cell Isolation Kit and incu-
bated for 2 days in IMDM 1 10% FBS, during which autologous
monocytes were polarized as described above. T cells were then
stained with 2 mM CFSE for 10 minutes at 37�C, washed, and
counted; 2 3 105 T cells were plated in flat-bottom 96 well plates
previously coated with 2 mg/mL anti-CD3 in serum-free IMDM with
1 mg/mL soluble anti-CD28 and 100 U/mL IL-2 (Roche). T cells
were cocultured with 2 3 105 monocytes for 3 days. Following
incubation, proliferation was measured by flow cytometry and evalu-
ated using FlowJo.

Proteome profile

Conditioned media from in vitro generated macrophages described
above was centrifuged at 300 xg for 3 minutes and analyzed using
Proteome Profiler Human Cytokine Arrays according to the manu-
facturer’s instructions. Proteins were labeled with IRDye 800CW
Streptavidin (1:2000) and visualized with the Li-Cor Odyssey CLX.
Signals were normalized to the positive control in each blot and
expressed as fold change (FC) over the unstimulated cells.

Flow cytometry

Harvested macrophages were stained with fixable UV Blue Live/
Dead stain, followed by staining with CD163-PE, CD80-APC,
CD206-BV785, and CD68-FITC. Flow cytometry analysis was car-
ried out using a BD Fortessa, and data were analyzed using FlowJo
software. Data are expressed as the difference in mean fluorescence
intensity (DMFI) of each antibody, comparing every condition to that
of media-only control. M-MDSCs were stained with UV Blue
Live/Dead stain, CD14-FITC and HLA-DR-PE-Dazzle, analyzed using
the BD Symphony flow cytometer, and data were evaluated using
FlowJo. For assessment of T-cell proliferation by flow cytometry,
cells were stained with UV Blue Live/Dead stain and CD4 BV510.

Statistical analyses

Results in Figures 1, 3, 4, and 7 are displayed as means 6 stan-
dard deviation. Significance in Figure 2 was measured by one-way
ANOVA. Metabolism results in Figure 5 are displayed as means 6
standard error was measured by one-way ANOVA.

Results

Proteomic analysis reveals novel proteins enriched

in MM EVs

We compared MM EV protein cargo to that of IVPC EVs and
selected proteins that reached a significance of #0.05 and had a
$2 FC (n 5 294) (supplemental Table 1). Of these 294 proteins,
73 were expressed at higher levels, and 221 were expressed at
lower levels in MM EVs compared with IVPC EVs. From this list, we
chose 18 proteins that were highly differentially regulated and of
biological interest. Figure 1 shows the number of averaged peptides
mapped to these 18 proteins that are higher (Figure 1A) or lower
(Figure 1B) in HMCL EVs compared with IVPC EVs. As expected,
the proteins that were at high levels in IVPC EVs were largely
related to B-cell activation (STAT1, PTPRJ, and ENTPD1), B-cell
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maturation (PLCG2 and SYK), and PC biology (ITGAL, ITGB2, and
SHIP1). We, therefore, focused on upregulated cargo proteins that
could provide new insights into MM biology.

GEP data show a correlation between expression

levels of genes encoding MM cell EV proteins and

stages of PC malignancy

Having identified cargo proteins in HMCL-derived (malignant) EVs
that were expressed at a much lower level or not at all in EVs
released from IVPCs (Figure 1A), we next took advantage of publicly
available GEP data from normal BM PCs and PCs from patients
with MGUS, SMM, and MM31 and assessed gene expression levels
for our proteins of interest. Expression levels of NCAM, SDC1,
MPP6, ANXA1, CADM1, RGAP1, HDGF, MFGM, and IQGAP2
were analyzed by one-way ANOVA to determine if there was a sig-
nificant correlation between expression levels and stage of disease.
Six of the 9 genes were significantly upregulated in myeloma cells
as compared with normal PCs and PCs from MGUS and SMM
patients: HDGF, NCAM and MPP6 (P , .001 for each of these 3
genes); RGAP1 (P 5 .0016); CADM1 (P 5 .004); and IQGAP2
(P 5 .03) (Figure 2). Expression of SDC1, ANXA1, and MFGM did
not increase across this disease continuum (data not shown).

HDGF is expressed in HMCL-derived EVs and is also

present in HMCLs

Western analysis was used to determine the levels of HDGF protein
in our panel of 9 HMCLs and confirm the differential expression of
HDGF in EVs derived from HMCLs compared with those from
IVPCs. We discovered that HDGF levels are consistently higher
(2.8-fold) in HMCLs than in IVPC samples. The HMCLs predomi-
nantly express isoform 1 of HDGF (the stronger signal, lower band)
(Figure 3A, top panel) with much lower levels of isoform 2 (the
weaker, higher band), whereas IVPCs only express isoform 1.
Among the HMCLs, KAS-6/1 expressed the highest quantities of

HDGF and JMW the lowest (Figure 3A). There is a shift in expres-
sion when the levels of HDGF in EVs are examined. EVs from
IVPCs do not have detectable HDGF. The variation in HDGF
expression in EVs is similar to that in HMCLs, with DP-6 and KAS-
6/1 displaying the highest expression levels of HDGF. Isoform 1
was the only form of HDGF detected (Figure 3B) in EVs.

HMCLs directly secrete HDGF into

conditioned media

To determine whether HMCLs also secrete HDGF in an
EV-independent manner, we performed an HDGF ELISA (which
detects both isoforms) on conditioned media (CM) that had been
cleared of EVs (Figure 3C). Only trace levels of HDGF were detect-
able in 3 of the 5 IVPC CMs tested. By contrast, HDGF was readily
detectable in the CM of all HMCLs and exceeded the levels found
in IVPC CM by generally more than 100-fold. The highest levels
were consistently found in ANBL-6 (average of 200 ng/mL), fol-
lowed by MMF-1 and VP-6 (average of 147 and 122 ng/mL,
respectively). Interestingly, DP-6, which had the highest concentra-
tion of HDGF in EVs, had the lowest levels of secreted HDGF (aver-
age of 22 ng/mL). CM from IVPCs had an average of 2 ng/mL of
HDGF, 10-fold lower than the lowest HMCL level.

HDGF sustains MM growth and activates AKT

Given that HMCLs secrete HDGF, we first wanted to investigate
whether HDGF had a measurable autocrine effect(s) on myeloma
cells themselves. HDGF has been shown to stimulate phosphoryla-
tion of AKT in multiple cancers.34-36 Thus, we assessed the effects
of adding recombinant HDGF to several HMCLs. Incubation with
HDGF (50 ng/mL or 500 ng/mL) induced AKT phosphorylation in
ALMC-1, ALMC-2, ANBL-6, and KAS-6/1 cells (Figure 4A).
ALMC-1 is a sister cell line of ALMC-2 with slightly higher levels of
HDGF expression (supplemental Figure 1). Because AKT activation
is a powerful cell survival signal, these data suggest that HDGF
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may promote survival as well as the proliferation of MM cells. To
determine whether HDGF acts as a myeloma cell growth factor, we
performed HDGF knockdown using siRNA. In these experiments,
we silenced HDGF in ALMC-1 and ANBL-6 cells, and knockdown
was verified by Western blot (Figure 4B-C). Cell growth was moni-
tored every 24 hours and revealed that HDGF knockdown substan-
tially decreases ALMC-1 and ANBL-6 proliferation rates as
compared with the parent cells expressing HDGF that were trans-
fected with nontargeting control siRNA (P # .001 for all time
points) (Figure 4D-E). We found no effect of HDGF silencing on via-
bility or apoptosis (data not shown).

HDGF enhances glycolysis and reduces

mitochondrial respiration in HMCLs

In results not shown, we observed that the addition of HDGF to
HMCLs resulted in more rapid acidification of the culture media.

Since MM cells are known to have heightened glycolytic rates,37 we
analyzed glycolysis and mitochondrial respiration in ALMC-2 cells
(Figure 5) using the Seahorse platform. In addition, we also analyzed
ANBL-6 and DP-6 cells (both of which secrete less HDGF than
ALMC-2), and these data can be found in supplemental Figures 2
and 3. Measuring the ECAR, we found that IL-6 did not significantly
raise ECAR, but HDGF alone did significantly raise ECAR (Figure
5A). While ALMC-2 exhibits high innate glycolysis, HDGF signifi-
cantly raised glycolysis (P 5 .02) but not the glycolytic capacity of
the cells (Figure 5B) as compared with untreated (nil) cells. Exami-
nation of the effect of HDGF on OCR revealed a reduction of the
basal OCR (Figure 5C) and a significant decrease in basal respira-
tion (P 5 .01), ATP-linked respiration (P 5 .04), maximal respiration
(P , .001), as well as spare respiratory capacity (P , .001) (Figure
5D) in ALMC-2 cells as well as ANBL-6 and DP-6 cells (supple-
mental Figures 2 and 3). Finally, we used the OCR:ECAR ratio to
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evaluate the basal metabolic state of ALMC-2 cells exposed to
HDGF. Our results show that HDGF reduces OCR in favor of
ECAR (P 5 .01) (Figure 5E). While IL-6 was used as a positive
control for HMCL activation, the samples treated with both IL-6 and
HDGF showed that HDGF reversed the effect of IL-6 in all metrics
of mitochondrial respiration.

To better understand the mechanism underlying HDGF-mediated
attenuation of IL–6-stimulated mitochondrial respiration, we mea-
sured the mitochondrial membrane potential with TMRE,38 which is
a key readout of active oxidative phosphorylation (OXPHOS).
ALMC-2 cells cultured with IL-6 had the lowest number of cells
exhibiting low membrane potential in the form of TMRElow (9%, P ,
.0001 compared with HDGF). The addition of HDGF to IL-6
increased TMRElow cells to 15% (P , .0001 compared with
HDGF), whereas cells cultured with HDGF alone had 25%
TMRElow cells (Figure 5F).

HDGF polarizes macrophages to an M1 phenotype

Since the presence of MM cells in the BM is known to modify the
tumor ME,39 we next investigated whether HDGF polarizes macro-
phages to either proinflammatory M1 or antiinflammatory M2 cells.
CD68 was used as a marker for all macrophages, CD80 as a
marker for M1 macrophages, CD206 as a marker for M2 macro-
phages, and CD163 as a marker that is highly expressed in TAMs.
In vitro matured macrophages (labeled as “media” in Figure 6A)
express varying levels of CD80, CD206, and CD163. Under
M1-inducing conditions, and as expected, macrophages exhibited
upregulated CD80 expression, whereas CD206 and CD163 levels
did not change. M2 polarized macrophages acquired higher levels
of CD206. HDGF-stimulated macrophages revealed an interesting
mixed phenotype (ie, CD80 expression increased, suggestive of an
M1 effect, however, there was also a modest increase in CD206
expression as well as CD163) (Figure 6A).

HDGF induces macrophages to secrete myeloma

cell growth factor IL-6

To further understand the role of HDGF on macrophages, we col-
lected enriched media from triplicate experiments of macrophages
subjected to the above polarization conditions and queried a panel
of 36 cytokines and chemokines that are characteristically secreted
by M1 or M2 polarized macrophages. As expected, M1 polarization
resulted in significant secretion of IL-6, whereas M2 polarized cells
secreted only trace levels of IL-6. Macrophages exposed to HDGF
secreted $twofold higher levels than control in all 3 replicates of
the following molecules: TNF-a, IL-6, ICAM-1, CCL2, CCL3, CCL5,
CXCL1, and CXCL10 (Figure 6B). HDGF stimulation had the
most pronounced effects on macrophage secretion of IL-6 (aver-
age FC of 82), CXCL1 (average FC of 28), and CCL5 (average
FC of 106).
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amount of HDGF). Nd, not detectable. (C) Levels of HDGF in HMCL-conditioned

media measured by ELISA show that HMCLs secrete between 10- to 100-fold

more HDGF than IVPCs. HMCL samples were tested in triplicate (except JMW and

VP-6, which are duplicates); IVPC values reflect an average of 5 independent

determinations. Means 6 SD are shown.
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Figure 4. Autocrine effects of HDGF on HMCLs. (A) HDGF induces AKT phosphorylation in ALMC-1, ALMC-2, ANBL-6, and KAS-6/1 cells. Serum-starved cells were
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(D,E). Results shown are representative of triplicate determinations. ***P , .001. Means 6 SD are shown.
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HDGF induces naïve monocytes to assume an

M-MDSC phenotype, causing them to become

immunosuppressive

Tumor-derived EVs can induce loss of HLA-DR and promote the
development of MDSCs.40 Since we found that HDGF upregulated
CD80 in macrophages, and CD80 can also be expressed by
M-MDSCs, we next asked whether HDGF could convert naïve
CD141 monocytes to M-MDSCs. Monocytes were incubated for
2 days in the presence or absence of HDGF. Histograms of HLA-
DR fluorescence intensity (Figure 7A) show that HDGF strongly
reduces HLA-DR levels in naïve CD141 monocytes. Evaluation of
HLA-DR expression levels as a percentage of that from cells grown
in media only (Figure 7B) confirms that HDGF leads to a reduction
of HLA-DR intensity to 7% of levels found in control monocytes
(P # .0001). To confirm that HDGF not only changes monocytes
phenotypically but that this change is indicative of a functionally sup-
pressive cell, we cocultured CD41 T cells with control monocytes
or HDGF-treated monocytes and measured T-cell proliferation

(Figure 7C-D). Monocytes preincubated with HDGF for 2 days, fol-
lowed by washing cells to remove HDGF, strongly suppressed
T-cell proliferation (Figure 7D), reducing the number of proliferating
T cells from an average of 55% seen in control monocytes that had
preincubated for 2 days in medium alone to an average of 11%
(P # .0001). Thus, suppressed T-cell proliferation is a direct result
of polarized M-MDSCs.

Discussion

EVs are complex vehicles of intercellular communication. We began
this study by characterizing the protein cargo of EVs derived from
HMCLs with different genetic subtypes in order to discover new
proteins potentially involved in MM cell communication with its tumor
ME in the BM. The growth factor HDGF was identified as one of
several differentially regulated proteins in these studies, and an anal-
ysis of publicly available GEP data confirmed our findings. Given
the biological importance of HDGF in several other cancers, the
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potential role of HDGF in MM became the focus of our remaining
studies.

Our studies have revealed several biological activities linked to
HDGF. To explore possible autocrine effects of HDGF in MM cells,
we chose to investigate AKT activation. The PI3K/AKT/mTOR path-
way is aberrantly activated in a large proportion of MM patients,41

providing a critical survival pathway that promotes MM growth and
is now being explored as a therapeutic target.42 We show that
HDGF activates AKT in a number of HMCLs, suggesting that it has
a role similar to IL-6 and insulin growth factor 1 (IGF-1) in protecting
MM cells from apoptosis. We also employed a siRNA silencing
approach and showed that HDGF silencing resulted in reduced
HMCL cell growth in a manner consistent with previous observa-
tions that HDGF silencing reduces the growth of other types of
tumor cells.34,43,44

During stimulation of HMCLs with HDGF, we observed enhanced
media acidification, which led to our studies examining glycolysis
and mitochondrial respiration. It is well known that tumors preferen-
tially use anaerobic respiration and consume high levels of glucose,
resulting in lactate secretion. While anaerobic respiration is less

efficient, it is a significantly faster source of energy that tumors,
including MM, use to fuel their enhanced proliferation.45 We carried
out the metabolic studies using 3 HMCLs with high (ANBL-6),
medium (ALMC-2), and low (DP-6) innate HDGF secretion. ECAR,
a measure of the usage of glycolysis as a means of energy, was
predictably high in all HMCLs. Despite this, the addition of HDGF
significantly raised the levels of glycolysis in all 3 HMCLs. Examina-
tion of the effects of HDGF on OCR was even more striking (ie, we
observed a strong reduction of basal respiration, ATP production,
maximal respiration, and spare respiratory capacity, which are
reflected in the decreased OCR:ECAR ratio). We also observed
that HDGF significantly attenuated mitochondrial respiration in IL–6-
stimulated cells. Using an assay that allowed assessment of the
mitochondrial membrane potential with TMRE staining, we observed
that the addition of HDGF to IL–6-stimulated cells indeed resulted
in an increase in the percentage of cells with nonfunctioning mito-
chondria, reversing the effect of IL-6. These findings complement
the data shown in Figure 5E by again demonstrating that IL-6 indu-
ces OXPHOS, whereas HDGF consistently suppresses OXPHOS.
Our data demonstrate that HDGF initiates metabolic reprogramming
by significantly reducing basal mitochondrial respiration in the form
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of reducing mitochondrial membrane potential and enhancing glycol-
ysis; such metabolic alterations are hallmarks of highly proliferative
cells and are also linked with regulating drug resistance in MM.46

Since HDGF is secreted in both EVs and unbound form, we asked
whether it had any biological effect on cells that are present in the
tumor stroma, such as macrophages and monocytes. In vitro
matured macrophages were cultured with HDGF-upregulated
CD80, a marker that corresponds with a proinflammatory M1 mac-
rophage. This agrees with studies that monocytes recruited to a
tumor site are first “classically activated” or M1 polarized macro-
phages which generate a proinflammatory response in the MM BM
microenvironment.47 However, HDGF polarized macrophages also
expressed the highest level of CD163 (the hemoglobin scavenger
receptor), which is associated with M2 macrophages48 and TAMs
in hematological malignancies.49 High CD163 expression in macro-
phages is a characteristic of tissues responding to inflammation50

due to expanding tumor burden. Moreover, M2 macrophages are
thought to participate in tissue remodeling, thus facilitating metasta-
sis. Finally, studies show that MM patients with BM macrophages
that express high levels of CD163 have a poorer prognosis.51 Mac-
rophage polarization is to be understood as a plastic adaptation to
their environment, not as specific static endpoints. As such, it is fea-
sible that HDGF can induce markers present in a continuum of acti-
vation and polarization from M1 to M2 to TAM.

In addition to examining surface markers to classify macrophages, it
is important to consider the secreted cytokines and chemokines.
Others have described that IL-6 and TNFa were significantly upre-
gulated in BM macrophages of MM patients compared with normal
donors.10,52 We found that HDGF-treated macrophages not only
secreted high levels of IL-6, a powerful MM growth factor, but also
produced more TNFa, CCL3, and CXCL1 than M1 macrophages
as well as comparable levels of CCL2, CCL5, CXCL10, and
ICAM-1. In a review of the consequences of tumor EVs on myeloid
cells in the TME,53 the authors describe that tumor EVs induce
reprogramming of monocytes to secrete IL-6, TNF-a, and CCL-2,
which is reflected in our analysis. Much effort has gone into parsing
out the effect of various cytokines and chemokines secreted by
macrophages on the tumor ME. TNF-a is a proinflammatory cytokine
that plays a role in the TME of various tumor types, including
MM,47,54 by enhancing tumor cell proliferation. Several studies have
highlighted the role of CXCL1 in mediating the communication
between cancer and stromal cells47,55 and linking CXCL1 to
decreased survival and metastasis.56-58 Other chemokines closely
associated with the M1 phenotype (CCL2, CCL3, CCL5, and
CXCL10) secreted by HDGF-polarized macrophages are all associ-
ated with various aspects of MM pathology. For example, CCL3 lev-
els in MM BM correlate with osteolysis and tumor burden.59-61

Interaction of ICAM-1 with its ligand on the surface of MM cells
leads to MM cell proliferation in mouse models, and antibodies
against ICAM-1 have antimyeloma activities in vitro and in vivo.62 In
the BM, ICAM-1 expression impaired osteogenic differentiation of
MSCs.63 In summary, the overall picture that emerges from our data
is that HDGF induces secretion of a number of M1-associated fac-
tors (the only exception being CXCL1, which is associated with
TAMs) that are known to be involved in tumor–stroma interactions.

Melanoma and glioblastoma-derived EVs (both of which contain
HDGF) generate immunosuppressive MDSCs associated with the
downregulation of HLA-DR.64 MM patients have higher numbers of
MDSCs in their blood and the BM than normal controls.65 Based
on these observations, we investigated the effect of HDGF on
immature CD141 monocytes and found that HDGF induced the
characteristic downregulation of HLA-DR observed on MDSCs.
This phenotypic change was concomitant with strong immunosup-
pressive function as revealed by significant suppression of CD41

T-cell proliferation by monocytes that had been preincubated with
HDGF. Of note, HDGF does not convert CD41 T cells into regula-
tory T cells(Tregs) (data not shown). Moreover, HDGF was not
present during the coculture of CD41 T cells with control or
HDGF-pretreated monocytes. Therefore, suppressed CD41 T-cell
proliferation results directly from polarized M-MDSCs and does not
reflect differences in levels of Tregs. Previous reports showed that
MDSCs support MM cell survival through suppression of T-cell acti-
vation and induction of Tregs.65 Thus, HDGF could be a novel fac-
tor that contributes to immunosuppression in the MM tumor
microenvironment.

In our study, we used proteomic analysis to characterize the cargo
of HMCL EVs, discovering the presence of HDGF in EVs, cell
lysates, and the culture medium of HMCLs. We demonstrated that
HDGF has autocrine functions such as activation of the AKT path-
way in MM cells, maintaining proliferation, and playing a significant
role in metabolism (ie, enhancing glycolysis while suppressing mito-
chondrial respiration). Furthermore, we show that HDGF also has a
potential paracrine role, affecting cells in the tumor microenviron-
ment such as macrophages and immature monocytes. Taken
together, HDGF is likely to play an important, albeit previously unrec-
ognized, role in myeloma biology.
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