
R E V I E W

Machine Learning in Diagnosis and Prognosis of 
Lung Cancer by PET-CT
Lili Yuan1,*, Lin An1,*, Yandong Zhu1, Chongling Duan1, Weixiang Kong1, Pei Jiang2, Qing-Qing Yu1

1Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China; 2Translational Pharmaceutical Laboratory, Jining 
NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China

*These authors contributed equally to this work 

Correspondence: Qing-Qing Yu, Jining No.1 People’s Hospital, Shandong First Medical University, Jining, 272000, People’s Republic of China, 
Email yuqingqing_lucky@163.com; Pei Jiang, Translational Pharmaceutical Laboratory, Jining NO.1 People’s Hospital, Shandong First Medical 
University, Jining, 272000, People’s Republic of China, Email jiangpeicsu@sina.com

Abstract: As a disease with high morbidity and high mortality, lung cancer has seriously harmed people’s health. Therefore, early 
diagnosis and treatment are more important. PET/CT is usually used to obtain the early diagnosis, staging, and curative effect 
evaluation of tumors, especially lung cancer, due to the heterogeneity of tumors and the differences in artificial image interpretation 
and other reasons, it also fails to entirely reflect the real situation of tumors. Artificial intelligence (AI) has been applied to all aspects 
of life. Machine learning (ML) is one of the important ways to realize AI. With the help of the ML method used by PET/CT imaging 
technology, there are many studies in the diagnosis and treatment of lung cancer. This article summarizes the application progress of 
ML based on PET/CT in lung cancer, in order to better serve the clinical. In this study, we searched PubMed using machine learning, 
lung cancer, and PET/CT as keywords to find relevant articles in the past 5 years or more. We found that PET/CT-based ML 
approaches have achieved significant results in the detection, delineation, classification of pathology, molecular subtyping, staging, and 
response assessment with survival and prognosis of lung cancer, which can provide clinicians a powerful tool to support and assist in 
critical daily clinical decisions. However, ML has some shortcomings such as slightly poor repeatability and reliability. 
Keywords: machine learning, computed tomography, lung cancer, artificial intelligence, diagnosis

Introduction
Lung cancer remains the primary cause of death around the world.1 Depending on the histological characteristics of the 
cancer cells microscopically, lung cancer can be divided into non-small cell lung cancer (NSCLC) and small cell lung 
cancer (SCLC), with the former accounting for 85%. Common types of NSCLC include squamous cell carcinoma (SCC), 
adenocarcinoma (ADC), and large cell carcinoma (LCC).2 Research shows that3,4 the 5-year survival rate after diagnosis 
of lung cancer is less than 20%, and approximately 62–70% of patients are diagnosed with lung cancer at an advanced 
stage. The stage of lung malignancies at diagnosis determines its prognosis. In general, the 5-year survival rate of lung 
cancer in stage I can exceed 80%, but in stage IV, it is close to 0%.5 Therefore, early diagnosis and treatment are crucial.6 

Positron emission tomography and computed tomography with 2-deoxy-2-[fluorine-18]fluoro-D-glucose (18F-FDG PET/ 
CT, PET/CT for short) is an functional molecular imaging technology. As a non-invasive examination method, it can 
provide anatomical and functional information of multiple organs and tissues in the whole body, so it has been routinely 
used for the early identification, staging, and efficacy evaluation of tumors such as lung cancer, rectal cancer, ovarian 
cancer, breast cancer, and so on, which provides comprehensive diagnosis and treatment information.7,8 The most widely 
used imaging agent for PET/CT examination in clinical practice is 18F-FDG, which is a glucose analog. By combining 
the degree of tumor uptake with some semi-quantitative parameters provided by the instrument, it provides most 
characteristics of the tumor such as size, shape, internal structure, and relationship with surrounding tissues, so it can 
provide an important reference for tumor treatment and prognosis.9 However, due to some special reasons, such as the 
heterogeneity of the tumor, some characteristics of the tumor which to a certain extent determine the response to 
treatment and their prognosis information have not been fully displayed according to the current treatment methods. 
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Meanwhile, the current images are mostly interpreted manually, which is closely related to the experience of doctors. It is 
sometimes difficult to reach an agreement between different doctors. In addition, if the patient’s preparation before 
imaging is not sufficient or the patients have recently undergone local surgery, radiotherapy, and chemotherapy, false- 
negative or false-positive results may appear on the PET/CT image.10,11 Therefore, more advanced processing methods 
such as artificial intelligence (AI) are needed to assist in analyzing the imaging information of lesions.

AI refers to the use of computers and advanced technologies to simulate human intelligent behavior and critical 
thinking,12 which has achieved great success in research and application.13 AI includes many different technologies: 
intelligent agent,14 symbolic and subsymbolic reasoning,15 plan,16 case-based reasoning,17 fuzzy systems,18 expert 
systems,19 and so on. The tool that enables most of these techniques is machine learning (ML). ML is a technology 
that enables machines to imitate human behavior,20 which can generate algorithms from a large number of databases and 
learn from experience, in other words, by developing some programs and mathematical algorithms that enable computers 
to program (build models) through experiential learning with or without human intervention, to make predictions and 
judgments on similar data.21 Generally, the more the data, the better the model performance.22 Therefore, ML model 
training requires powerful data storage and processing capabilities. ML contains four commonly used learning 
methods,23–25 be called reinforcement learning, supervised learning, unsupervised learning, and semi-supervised learn-
ing, each of which can be used to solve different tasks. Classic ML methods in practical applications include Support 
Vector Machines (SVM),26 Random Forest (RF),27 Decision trees (DT),28 Logistic Regression (LR),29 K-nearest 
neighbors (KNN),30 Naive Bayes (NB), Backpropagation artificial neural network (BP-ANN),31 Adaptive boosting 
(AdaBoost),32 and so on. Most of the algorithms belong to the category of supervised learning. With the rapid growth 
of science and technology, a new research field has emerged in ML, that is, deep learning (DL). DL, built on top of 
artificial neural networks, is a complex ML algorithm that mimics how the brain processes information, achieving far 
better results in speech and image recognition than previous technologies. The common method in DL is the neural 
network system based on convolution operation called fully convolutional network (FCN), convolutional neural network 
(CNN), generative adversarial network (GAN), recurrent neural network (RNN), and so on.33 Among them, CNN has 
a wide range of applications.34–37 It is a convolutional operation and downsampling or pooling operation of artificial 
neural networks based on depth architecture and multi-layer feedforward neural network, which accepts three- 
dimensional images as input. It can be trained end-to-end by a supervised method when learning highly discriminative 
image features. Since convolution operation is mainly used to process data with a grid-like structure, CNN has significant 
advantages in the analysis and recognition of time series and image data.38

The ML process can be divided into five steps: data acquisition; data preprocessing; model training; model verification and 
model use, each part of which covers more content and is no longer detailed here. The following words will be used in the 
practical application of ML, and it is necessary to explain them. The training set is the data used to train the model, the validation 
set is the data used to optimize the hyperparameters of the model, and the test set is the data used to evaluate the generalization 
ability of the model. The performance of the general model is evaluated through the confusion matrix, K-S value, AR value, 
receiver operating characteristic (ROC) curve, and area under curve (AUC). More and more research focus on the application of 
ML in tumor,39–41 but by far, lung cancer is almost the most extensively studied and characterized malignancies.42 Many studies 
have confirmed that PET/CT-based ML can be used for lung tumor recognition, tumor description, diagnosis and differential 
diagnosis, tumor staging, risk prediction, prognosis assessment, and early role prediction after treatment.43–50 Horizontal 
exploration, such as identification of pathological types, gene mutations, immunohistochemical expression, and prediction of 
lymph node metastasis. The other category is longitudinal exploration, predicting possible future events, such as efficacy and 
prognostic predictions. This paper is to summarize the application of PET/CT-based ML methods in lung cancer in recent years 
(as shown in Figure 1). At present, 18F-FDG is mostly used as a PET/CT imaging agent. There are few studies on other imaging 
agents, so the former is generally introduced without special explanation in this paper.

Tumor Detection
Studies51 have shown that the proportion of malignancy in lung nodules is as high as 6.34%, and the five-year survival rate for 
early-stage lung cancer with surgical intervention can exceed 90%, so the early and definite diagnosis of lung cancer is of great 
significance. Although many studies52–54 have confirmed the important role of PET/CT in distinguishing benign and 
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malignant pulmonary nodules, there are some false-positive results such as granulomatous inflammation, organizing pneu-
monia, or other rare benign lesions, so it is necessary to combine other means to reduce the false-positive rate to avoid over- 
treatment and waste of medical resources. Therefore, the ML method has been used by many scholars55 for the early 
recognition of carcinoma of the lungs. They have achieved a series of results. For PET-CT research of lung cancer, most of 
them56 obtain diagnostic and radiological features automatically, but they always locate tumors manually. There are few 
studies57,58 that use (ML) to combine automatic segmentation and extraction of lung lesion radiological data. Therefore, some 
scholars59 who used two CNNs, the Detection CNN and Organ CNN to study PET/CT images of lung cancer, found that it 
could detect 90% of lung cancer and the level of automatic segmentation and extraction data by ML method was close to that 
of manual extraction, so it is suggested that the future research may be carried out instead of manual work. Another 
significance of the study was that negative lesions can be screened using the ML method, so clinicians can pay attention to 
those potentially malignant lesions, which can improve the efficiency of clinical treatment.

The research continues. Some researchers have applied the Least absolute shrinkage and selection operator (LASSO) 
method on PET/CT images to reduce the false-positive rate in lung malignant tumor diagnosis.60 Meanwhile, SVM was 
also used to analyze the image information of 135 PET/CT patients, and it was found that Surface Volume Ratio and 
SUV peak had the potential ability to distinguish benign and malignant lung lesions.61 Some scholars used the dynamic 
threshold segmentation method to recognize the pulmonary parenchyma in CT images and the suspicious regions in PET 
images, and then the dubious areas on the CT images were marked using the improved watershed method. Next, SVM 
was applied to classify pulmonary nodules. Based on the metabolic features of PET images and texture features of CT 
images, the sensitivity was higher than that of traditional CT methods, reaching 95.6%, and the false-positive rate was 
low.62 Dual-time point imaging (DTPI) can enhance the accuracy of differentiating benign and malignant lesions in PET/ 
CT. In a study,63 SVM modeling was applied to analyze the characteristics of early and delayed PET/CT imaging, which 
showed higher accuracy and specificity than traditional PET/CT and CT in distinguishing benign and malignant solitary 
pulmonary nodules (SPNs). Quantitative indicators frequently used in PET/CT in clinical work or research are standard 
uptake value (SUV max) and metabolically active tumor volume (MTV). However, due to the heterogeneity of tumor 
shape and uptake, the tumor characteristics cannot be fully described.64 In addition, SUV max ≥ 2.5 was used as the 
diagnostic threshold for malignant SPNs in the past, and the diagnostic efficiency of which was slightly insufficient under 
some conditions.65 Therefore, some studies66 have established an SVM model based on texture features to improve the 
diagnostic evidence of PET/CT in malignant SPNs larger than 5 mL, with an index AUC (95% CI) of 0.854 (0.637–1) 
which was better than traditional SUV max and MTV metrics. In addition to traditional ML methods, DL also plays 
a vital role in the early identification of lung malignant tumor. A research67 analyzed the information of traditional CT 
and PET/CT of enrolled cases, established a deep transfer learning (TL) model based on ResNet-18, and found that the 
performance of the model built using traditional CT was better than that of the CT model in PET/CT. However, data 
information extracted from PET/CT, including size and SUV max of the pulmonary lesions, can enhance the performance 
of the DL system and increase the accuracy of PET/CT diagnosis of malignant tumor. CNN also plays a vital role in the 

Figure 1 Application of PET/ CT-based ML in lung cancer. The relationship between AI, ML, and DL and the actual use of ML methods in the diagnosis and treatment of lung 
cancer.
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detection of lung tumors, based on a study of 104 PET-CT images of lung nodules. The study found that using CNN 
reduced the false-positive rate for lung cancer, from 72.8 to 4.9 per case.68 Another scholar69 used an artificial neural 
network (ANN) to analyze 18 cases of pure wool glass turbidity on PET/CT images, and compared the ability to explore 
malignant lesions with that of two blind specialists. It was found that ANN had a good predictive value, the AUC of 
which was 0.98 ± 0.02. As we all know, the use of PET/CT imaging is partly subject to its high dose, which is mainly 
from the radiation emitted by the imaging agent and the CT instrument itself. Therefore, some scholars used the ANN 
method to perform PET/CT imaging at three scanning doses, namely a standard dose of PET100%, 10% standard PET 
dose of PET10%, and PET3.3%, to detect lung cancer. The results showed that the AUC at the three doses were 0.989, 
0.983, and 0.970, respectively. At the same time, it was found that the sensitivity and specificity of the (ML) method at 
the standard dose and PET3.3% dose were 95.9% and 91.5%, respectively, and the specificity was 98.1% and 94.2%. 
Therefore, it was concluded that ML may still be able to better detect lung cancer at lower PET/CT injection dose, which 
offered a new choice in clinical practice.70

Tumor Delineation
After the discovery of the tumor, its accurate description is of great significance for its precision treatment. In recent 
years, the method of ML has penetrated this field and achieved ideal results. Traditional PET has low spatial resolution 
and cannot fully describe tumor lesions, so a physics-guided modular DL frame work has been developed for automated 
tumor segmentation and has been used to accurately characterize primary lung tumors in PET images through small 
clinical training datasets, which demonstrated the ability to segment small tumors.71 In other studies,72 SVM technology 
was used to train the outline of gross tumor volumes (GTV) on PET/CT images based on optimal contour selection to 
distill the initial GTV region. The study found that the 3D dice similarity coefficient (DSC) can reach 0.777, suggesting 
that this technology can be used as an effective tool to determine tumor GTV.

DL has limitations in the application process, that is, model training requires a large amount of data. To solve this 
problem, a research team73 integrated the Few Shot Learning (FSL) scheme into the U-Net architecture used for the 
segmentation of carcinoma of lung lesions on PET/CT scans, permitting dynamic model weight fine-tuning. In addition, 
an online supervised study plan was created, and the weight of the model was continuously adjusted online according to 
feedback from users, to increase the accuracy of detection and category, then better detection results were achieved. 
Through this research, clinicians could more accurately find the size, configuration, and position of the lung cancer and 
so forth to better serve the clinic.

Radiation therapy (referred to as radiotherapy) is a conventional treatment for lung cancer, and the precise delineation 
of its target area directly affects its therapeutic effect. PET/CT provides information on the biological activity of the 
tumor by obtaining the metabolic changes of the tumor, which can be used as an important reference for making 
radiotherapy plans. However, when PET/CT is routinely used to scan lung tumors, especially lung cancer lesions, due to 
the influence of respiratory movement, the lung tumors will be slightly displaced, which directly affects the accurate 
detection of tumors, and then affects the formulation of treatment, especially radiotherapy plans. To reduce the impact of 
tumor movement, SVM was used to74 automatically depict the tumor starting with the first frame. With the help of the 
level set (LS) deformation model, the dimension and position information of the first was applied to track its movement 
in succeeding frames, so that the tumor volume of all frames could be accurately depicted, thus planning accurate and 
effective radiotherapy scope. Another study75 included 60 NSCLC patients accepting stereotactic body radiation therapy 
(SBRT). In this research, PET and CT images of patients were sent to 3D DL fully convolutional networks (DFCN), and 
a co-segmentation model based upon PET/CT images was established. The study found that the various indicators of 
model were superior to manual segmentation and models on the strength of PET or CT images individual. Because of the 
heterogeneity of the tumor, the anatomical and metabolism from PET/CT may not fully reflect the true structure of the 
tumor. Therefore, studies76 have compared three different ML methods fuzzy-c-means clustering method (FCM), ANN, 
and SVM to establish an automated fralanguage to describe the GTV of lung cancer lesions in PET/CT with stereotactic 
body radiation therapy. The results showed that various quantitative indicators such as DSC based on the FCM 
framework were superior to the other two methods, which also provided a method to accurately depict tumors to be 
more conducive to the formulation of precision radiotherapy plans in the future.
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Classification of Pathology
After the tumor is accurately described, the next step is to consider its treatment, but attention must be paid to the subtype 
of NSCLC before treatment. The most common subtypes of NSCLC are SCC and ADC. It has been reported that 
different subtypes of NSCLC have different responses to the same treatment.77 Therefore, it is important to distinguish 
NSCLC subtypes before treatment.78,79 CT-guided needle biopsy is usually used to diagnose the pathological type, its 
numerous risks, sampling errors, and non-invasive limit its use. Sometimes this process is achieved with the help of PET/ 
CT, as PET/CT imaging agents vary with different subtypes. However, it is sometimes difficult to distinguish NSCLC 
subtypes by PET/CT. Therefore, scholars have carried out many studies with the help of ML methods on PET/CT, and 
a series of results have been achieved in both traditional ML methods and DL, which will be introduced in detail below.

Researchers first explored a linear discriminant analysis (LDA) classifier combined with PET/CT images to distin-
guish NSCLC subtypes. Because of the small number of enrolled clients in the research, only 30 cases, the conclusions 
have not been widely considered in clinical practice.80 Later, scholars81 tried to use RF and gradient lift tree models to 
extract seven kinds of radiomics features extracted from PET/CT images of lung cancer. The results showed that 
combining image-omics methods was helpful in identifying ADC and SCC. DL methods are also commonly studied 
and are considered significantly superior to all traditional ML algorithms.82

In addition to using a single ML method for research, some scholars also included multiple ML methods at the same 
time, trying to find which method is more effective in distinguishing NSCLC subtypes. In this study,83 1417 patients with 
NSCLC were enrolled. Ten ML models, such as LDA, SVM, RF, and the VGG16 DL algorithm, were used to extract and 
analyze PET/CT image features to distinguish the subtypes. It was found that the VGG16 DL algorithm was better than 
other models. Other scholars84 used LR, kNN, DT, and RF to further analyze the PET/CT image characteristics of 
patients with Phase I and II NSCLC. They found that the model built by kNN and LR had better performance than other 
methods, because it was in the nonlinear cutting space of kNN, but it had the risk of overfitting, and LR could reduce the 
risk of overfitting. Both methods were able to distinguish between ADC and SCC. Two different PET/CT scanners were 
used during the study, so they also found that differences in the instruments could affect the results described above. 
Shenet al85 divided the tumor into multiple subregions according to the tracer metabolism and anatomical structure in 
PET/CT images. Based on the subregion image and traditional tumor image, seven classifiers were used to build a model 
to distinguish ADC and SCC. It was found that the performance of the subregion imaging model was superior to that of 
the tumor region imaging model. The optimal model is SVM with the radial basis function kernel (SVM-RBF) model, 
with sensitivity, specificity, accuracy, and AUC of 0.8538, 0.8758, 0.8623, and 0.9155, separately.

The clinical characteristics and laboratory indicators of patients play a key role in differentiating ADC from SCC, 
which can be further enhanced when both are included in ML studies.86 Therefore, some scholars87 used all kinds of ML 
learning skills, including LR, LDA, Naive Bayes (NB), KNN, SVM with radial basis function kernel, DT, RF, eXtreme 
Gradient Boosting (XGBoost), AdaBoost, and ANN combined clinical characteristics and part of laboratory indicators to 
build model to distinguish the two based on PET/CT radiomics feature. It is found that regardless of the training set or the 
verification set, the RF model with AUC 0.863 and SVM model with AUC 0.876 have the best diagnostic performance 
and can better distinguish the two. This study has a better effect than only combining clinical characteristics. Moreover, 
the study also found that the SVM model is more suitable for small samples, and the RF model is more suitable for 
situations where there is data loss in the study. Given the difference in glucose metabolism between ADC and SCC,88 

therefore, researchers89 have used a variety of ML methods (RF, neural network, NB, LR, and SVM) to study PET/CT 
image features of lung cancer. Some clinical characteristics of the subjects, which include age, sex, tumor size, and 
smoking status, were also introduced. The results indicated that the LR model had better predictive ability than other 
models (AUC = 0.859, accuracy = 0.769, precision = 0.804) which can distinguish well between pulmonary ADC and 
SCC. The study also found that Sex, SUV max, gray-level zone length nonuniformity, gray-level nonuniformity for zone, 
and total lesion glycolysis were the optimum predictors of pulmonary ADC.

Further studies90 showed that the prognosis of different ADC subtypes at the same TNM stage may be different, 
which is determined by the characteristics of histological progression and the main growth pattern. Some scholars tried to 
use the Dedicaid Automated ML platform combined with PET/CT images of ADC patients and some clinical data, to 
establish a prediction model for long-term survival outcome and histological features of initially treated ADC patients. In 
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this study, the 4-year and 3-year tumor grade (TG), overall survival (OS), and histologic growth pattern risk (GPR) of 
enrolled patients were analyzed. It was found that all parameters responded well, with the highest AUC of 0.88. This 
study provides a non-invasive means of obtaining ADC subtypes.

Molecular Subtyping
Before treatment of lung cancer, attention should be paid to its efficacy, so we need to find influence factors. Among those 
factors, one of which is the epidermal growth factor receptor (EGFR) mutation. There are various driver mutations in 
NSCLC,91 incorporating oncogenic mutations such as EGFR, BRAF, ROS1, MET, and ALK. EGFR mutations are more 
common.92 If targeted therapy can be carried out for patients with these mutations, compared with traditional chemother-
apy, the progression-free survival rate will be increased, and the quality of life will be improved.93 Since the mutation 
information is usually obtained through invasive means such as surgery or puncture with many side effects, a non-invasive 
prediction method is needed. Some scholars94 tried to extract texture characteristic from CT and PET/CT images of NSCLC 
patients, with the help of Linear discriminant analysis (LDA) and multivariate LR to establish models. Leave-one-out Cross 
Validation (LOOCV) was used to validate the model to identify and distinguish EGFR mutation types. The results showed 
that the model built from PET/CT images had a higher AUC, which may be related to the better tumor segmentation 
achieved by taking more imaging agents in tumor tissues. However, the tissue surrounding the tumor in CT affected the 
segmentation. This study has achieved a good prediction effect, which may guide clinical treatment.

Targeted therapy as immune checkpoint inhibitors (ICI) acting on programmed death-1 (PD-1) receptor on T cells or 
the programmed death ligand-1 (PD-L1) expressed by tumor cells and tyrosine kinase inhibitors (TKI) acting on EGFR 
are usually used in NSCLC.95 However, studies have shown that whether EGFR is mutated or not has different sensitivity 
to EGFR- TKI treatment,96 which plays a vital role in the targeted therapy of NSCLC,97 especially related to the efficacy 
of the treatment.98 It is therefore crucial to identify EGFR mutations pretherapy.99

The 18F-labeled small-molecule PET imaging molecular probe 18F-MPG has been used by some scholars to identify 
mutated EGFR to screen patients who would benefit from TKI therapy, but as the imaging agents used were too difficult to 
obtain, it has not been extensively studied.100 Later, some scholars101 used PET/CT images to establish a DL model, such as 
small-residual-convolutional neural network (SResCNN) to predict the mutation state of EGFR. EGFR-deep learning score 
(DLS) was formed to find out which patients could benefit from the two treatments. In this study, the AUC of training, 
validation, and independent test cohorts were 0.86, 0.83, and 0.81, respectively. At the same time, some researchers used 
ResNet DL to analyze the PET/CT image features of NSCLC patients in combination with major clinical data, for example, 
age, gender, and smoking history to build models to predict EGFR mutations whose results are satisfactory. The cases in this 
study were from multiple centers. The study also pointed out that the combination of patients clinical data was better than the 
simple analysis of PET/CT image feature modeling in which case prediction sensitivity and accuracy, with AUC ranging from 
0.81 to 0.85, sensitivity and accuracy ranging from 0.60 to 0.76 and 0.82 to 0.83, respectively. The “lower-level” prediction 
models were integrated to the “higher-level” model more effectively by using stacked generalization in the study.102

Research on EGFR mutations continues. LASSO was used by some studies in ML to analyze the PET/CT image features 
of ADC patients, together with some clinical data to create a model to make predictions about the performance of OS in 
EGFR-positive stage III and IV patients who have previously received systemic therapy. Satisfactory results were achieved.103 

RF and LR were used to build a prediction model based on PET/CT, and satisfactory results were obtained over the prediction 
of EGFR mutations. It is AUCs fluctuated from 0.77 to 0.92.104 Yip105 et al used MATLAB software and eight PET imaging 
features to successfully predict EGFR mutation in 348 NSCLC patients and could also predict the prognosis of NSCLC 
patients after chemotherapy.106 The above research results avoid non-invasive operations to obtain the information on EGFR 
mutations, and offer a reference for implementation of EGFR-TKI for the treatment of lung cancer.

More and more studies have proven that for patients with advanced NSCLC, immune blockers targeting PD-1 or PD-L1 
can achieve better survival rates than traditional chemotherapy.107,108 Therefore, PD-L1 inhibitors have become the 
standard treatment for some NSCLC patients. PD-L1 is the only clinically approved marker that triggers ICIs therapy, 
which is usually achieved through invasive procedures. Some studies109,110 have found that by using SResCNN to analyze 
PET/CT imaging and clinical information of NSCLC to build DLS to predict the presentation of PD-L1 in pulmonary 
malignancy. So it can provide pre-treatment advice for patients who need immunotherapy.
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Staging
As we all know, the different stages of the disease are closely related to the prognosis of the neoplasm.111 Other things 
being equal, those who are at the highest risk of lung cancer death benefit the most from early detection,112 and the earlier 
the stage, the more appropriate treatment, the better the effect. So early identification is more important, providing 
additional opportunities to provide cure and prevent death from carcinoma of the lungs.113 PET/CT can be used as 
a significant imaging technique for clinical staging in lung cancer,114 with the help of ML,115–118 its application ability is 
further improved, which is described below.

Lymph node metastasis is a crucial criterion for clinical staging in lung cancer. Some researchers use PET/CT radiomics to 
distinguish benign and malignant lymph nodes to help stage lung cancer.119 Other scholars have used different ML and DL means 
to identify metastasis of mediastinal lymph node in NSCLC patients with PET/CT and achieved ideal results.120 At present, CNN 
is extensively used in the staging of malignant tumor of the lung. The CNN algorithm was used in some studies with PET/CT 
image data to divide 472 cases into stages T1-T2 or T3-T4. And then cases were included in the training set (n = 303), verification 
set (n = 75), together with test set (n = 94) teams. The results found that the accuracy rate [correct/(correct + incorrect)] in the 
training, verification, and test sets was 87%, 86%, and 90%, separately, suggesting the important role of CNN in staging.121 Other 
researchers used CNN to predict lymph nodes and distant metastases of NSCLC based on PET/CT, and found that CNN 
performed well in predicting the N stage, with a prediction accuracy of 0.80.122 Therefore, CNN is expected to be used as 
a staging tool for lung cancer in the immediate future.

People who develop NSCLC with stage I generally have a better prognosis than those with stage II and III.123 

Traditional ML research on lung cancer staging often adopts a single method, and the prediction effect varies with 
a different method. If different ML methods are integrated, the final prediction efficiency will be improved. Therefore, 
researchers have used the fusion of SVM, RF, and LR to analyze PET/CT image features, and found that the prediction 
efficiency is higher than that of a single method. By predicting stages II and III of NSCLC, we can identify patients who 
will benefit from subsequent treatment.124

Response Assessment
The choice of tumor treatment is of great significance to its prognosis. Therefore, accurate and reliable decision-making 
on tumor prognosis can help to plan appropriate treatment programs such as surgery, chemoradiotherapy, targeting, 
immunotherapy, and so on, and improve patient management according to different stages of the disease.125

Sublobar resection was confirmed to be an effective treatment for primary lung cancer, but some studies found that for 
highly invasive cancer, this resection method could increase the local recurrence rate of lung cancer compared with 
lobectomy,126 therefore, if highly invasive cancer can be identified before surgery, appropriate treatment can be selected. 
The tumor invasiveness is usually assessed by the tumor diameter and consolidation tumor ratio (CTR) in CT images;127 

however, CT findings do not completely correspond to pathological findings.128 So scholars began to explore new methods. 
Some experts used ML methods to study PET/CT and CT image data of primary lung cancer undergoing lobectomy or 
segmentectomy to evaluate the aggressiveness of lung cancer. This study used seven ML methods such as LR, SVM, RF, 
KNN, light gradient boosting (LGB),129 deep neural net (DNN), together with TabNet,130 to establish the ensemble model 
(ENS) individually and jointly. All models performed well, with LR and ENS having better predictive performance than other 
models. At the same time, the prediction performance of the PET/CT patterns was superior to that of CT.131

For some lung cancer patients who have lost the chance of surgery, radiotherapy and chemotherapy have become the 
main means of treatment. If the therapeutic effect can be predicted, the treatment plan can be adjusted in time, and 
mortality from lung cancer can be reduced. Metabolic tumor volume 50% (MTV50) > 4.04 in PET/CT was found to be 
a separate predictor of poor prognostic features in NSCLC patients undergoing chemotherapy using ML,132 which can be 
used as a biological marker to predict chemotherapy sensitivity and effectiveness of NSCLC patients. The application of 
ML in radiotherapy is discussed below. Radiotherapy plans that determine the efficacy rely heavily on image segmenta-
tion. Some studies used 3D fully convolutional neural networks (FCN), including CT and PET data, to realize automatic 
multimodal image segmentation. This method was robust. Its effectiveness was also confirmed by 84 cases of lung 
cancer.133 U-net, as one of the most favorite image segmentation architectures of CNN, can be used to self-act segment 
apparatus at risk in radiotherapy for lung cancer. The morphological and metabolic data provided by PET/CT fusion 
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imaging is utilized to improve the accuracy and radiotherapy effect of lung cancer.134–136 SBRT is currently believed to 
be the criterion treatment for patients with early stage of lung cancer who are medically impractical or refuse surgical 
operation.137 The kernel support tensor machine (KSTM) has been used to predict the prognosis of early NSCLC 
receiving SBRT. Certain results have been achieved.138 Another study using supervised principal component analysis 
found that mixed PET-CT imaging features improved the prediction of relapse after SBRT treatment.139

Immunotherapy is an emerging treatment for lung cancer in recent years. It is a promising approach through immune 
checkpoint blockade. It has been reported that only a few patients can get great benefit from immunotherapy.140 

Therefore, it is important to predict the outcome of immunotherapy pretherapy. At present, many studies have proven 
that the neoplasm immune microenvironment (TIME) affects the efficacy of immunotherapy.141–144 Therefore, some 
scholars have used the LASSO logistic regression method to build PET/CT imaging and clinical features such as gender, 
smoking history, and SUVmax model of NSCLC patients, to reflect TIME phenotypes by predicting the expression of 
CD8 in tumor tissues to predict the patient’s response to immunotherapy.145 Some results have been obtained.

Survival and Prognosis
Scholars and experts agree146,147 that recurrence of NSCLC after comprehensive treatment is an important factor 
affecting its survival rate, especially within 2 years after curative intent therapy.148,149 In the past, recurrence was 
detected mainly through regular follow-up means, including the detection of tumor markers and imaging examinations 
such as PET/CT examination, and so on. However, due to the heterogeneity of tumors, the aggressiveness of tumor cells 
will change during treatment, so the prediction ability of the above means is limited. The mortality rate of NSCLC will 
reduce if some means, such as ML, can be used to predict recurrence early, so timely treatment is given.150–152 The 
application of ML is not only to process and analyze image data but also to store and record more patient-related 
information, which can help doctors make personalized medical decisions for patients, understand patients’ treatment 
responses, and predict survival rates. Studies have revealed that the combined application of the CT model and PET 
model established with ML is better than that applied alone in predicting the local recurrence of NSCLC.153,154

Some scholars155 used linear SVM to train the PET/CT image features of 30 NSCLC patients and established a new feature 
set, called size-aware longitudinal pattern (SALoP). After 2 years of follow-up after the last treatment of the patients, it was 
found to be superior to the traditional radiomic method in predicting prognosis. At the same time, there were also studies156 

using the LASSO program to preprocess PET/CT images, and then utilizing an extracted texture features by the gray-level co- 
occurrence matrix (GLCM), which was found to be an individual predictor of overall survival of lung cancer. When together 
with genetic and clinical information, the overall performance of prognostic features was higher.157 DL has also been studied 
in this area. Some scholars analyzed pre-treated PET/CT data with the help of CNN and found that it performed well in 
predicting lung malignant tumor progression and OS. Meanwhile, this study also used a random survival forests (RSF) model 
based on DL characteristics, which may be associated with meaningful areas and margins of lesions.158

Single ML has performed well in predicting the recurrence of lung cancer. Therefore, some scholars have tried to use 
a variety of ML methods to build a prognostic model of lung cancer to determine whether it can help identify factors 
affecting the development and outcome of tumors, to correctly evaluate the effect of treatment measures.159 Studies are 
using six different ML methods: SVM, RF, neural network, naive Bayes, LR, and gradient boosting to analyze the PET/ 
CT imaging features to establish a model for predicting the recurrence of NSCLC after treatment. It was found that the 
naive Bayes model had the optimum predictive ability, which had an AUC of 0.816. Imaging features such as Gray level 
size zone matrix-low-intensity short-zone emphasis (GLSZM-LISZE) together with GLSZM-high-intensity zone empha-
sis (HIZE) extracted from PET/CT were superior to other features in predicting the recurrence of tumors than.160

In addition to the conventional use of ML to establish predictive models, in recent years, scholars have found that the body 
composition phenotype may be related to the immune function of the body, thus affecting the therapeutic efficacy and survival 
of patients.161,162 Further studies163 have found that the cross-sectional muscle area of the lumbar 3 vertebrae is closely related 
to the overall muscle mass. Based on the L3 vertebral body level, there were at least three phenotypes of physical 
compositions, containing visceral fat area (VFA), subcutaneous fat area (SFA), together with skeletal muscle index (SMI) 
are associated with the prognosis of NSCLC patients.164–166 Based on the above research, some scholars167 used the least 
absolute shrinkage and selection operator (LASSO) with ten-fold cross-validation methods for the purpose of obtaining state 
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IV NSCLC baseline PET/CT imaging features, to establish a comprehensive prediction model by combining the above three 
body component features to get prognostic prediction of patients with advanced NSCLC. They found that the combined 
prediction model improved the ability to predict progression-free survival in patients with NSCLC in IV stage possessing 
AUC values of 0.803 and 0.866 in the training and validation sets, separately, compared with the body phenotype or imaging 
omics prediction models alone.

Conclusions
The data cited in this review mainly came from the following sources: searches of common databases such as PubMed, 
Medline (Ovid), EMBASE, Google Scholar, and the Cochrane Library on related topics; some research centers, and 
projects such as cancer screening programs. Multicentric Italian Lung Detection (MILD) trial, a single center in the 
inflammatory-endemic region, Yale Cancer Center, Princess Margaret Cancer Centre, Veterans Health Service Medical 
Center, VU University Medical Center, the Cancer Genome Atlas (TCGA) cohort, and American College of Radiology 
Imaging Network (ACRIN) 6668/Radiation Therapy Oncology Group (RTOG) 0235; institutional databases such as 
government datasets, Lung Image Database Consortium (LIDC) database, Lung-PET-CT-Dx open dataset from The 
Cancer Imaging Archive Database (TCIA), the Kaiser Permanente Southern California (KPSC) Cancer Registry and 
Research Data Warehouse, institutional lung cancer database, public repositories, and local medical institutions. Some of 
these studies and clinical trials experienced one, two, or even 10 years.

Despite the increasing use of ML in the diagnosis and treatment of lung cancer, there are still some shortcomings. 
First, interpretability is a challenge in ML applications. An important reason for this is that most ML models do not 
explicitly identify causal features and simply rely on correlating input features with outcomes, which can lead to 
unexpected outcomes and uncertain behavior. High-risk medical decisions, such as diagnosis, treatment, and prognostic 
choices, require interpretable decision-making processes. There is limited interpretability in most ML models, meaning it 
is difficult to understand how millions of parameters work simultaneously. If clinicians cannot explain how a technique 
reached a certain conclusion, patients may not have the confidence to accept the results of ML. The second problem is the 
repeatability of the model. A single dataset was used by most studies for model development and validation, which has 
a certain degree of bias, and the conclusions may not be applicable to all cases. DL, in particular, is limited by the amount 
and quality of data used to train the model. Last but not least, many doctors are afraid that their jobs will be replaced by 
ML, so they are unwilling to accept or even reject this technology from the heart, which hinders the application of ML in 
clinical practice. From the perspective of the imaging physician, this development should not be seen as a threat, but 
rather as an opportunity to play a pioneering role in the health care sector and actively shape this transformation process. 
Machines do not have the ability to have such complex conversations as humans, and the empathy to match that of 
doctors, which remains an important aspect of the doctor’s role.

In the future, clinicians in particular will need to shift their thinking to embrace ML technology, familiarize them with 
the basic concepts and metrics, increase collaboration with developers and help develop it to meet appropriate clinical 
needs, who adapt their daily practices to ensure ML works in company with them which is not a threat to their role. At 
the same time, we actively develop and integrate databases, improve existing ML algorithms and create new ML 
algorithms, establish comprehensive quality control and standardization tools, data sharing and verification of multi- 
institutional data to standardize their processes, in order to achieve more efficient and accurate diagnosis, to realize the 
important role of ML in the diagnosis and treatment of tumors.
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