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To study the effects of energy and dietary fiber on breast development in gilts and its

possible mechanisms, 32 gilts (Landrace × Yorkshire) were randomly allocated into a 2

× 2 factorial design to receive a diet with low or high energy [LE: 33.37 MJ/d digestible

energy (DE); HE: 41.87 MJ/d DE] and low or high fiber (LF: 0.3 kg/d dietary fiber,

HF: 0.6 kg/d dietary fiber). The weight of breast tissue was recorded. The mammary

glands were collected for further analyses. The high energy intake increased the relative

weight of breast tissue (p < 0.05) and the content of breast fat (p < 0.05). At the

same time, the oil red staining of breast slices also showed an increase in breast fat

content in high-energy treatment. High energy intake increased the DNA concentration

in breast tissues (p < 0.05). In addition, high energy intake increased the concentration

of triglycerides, free fatty acids, and total cholesterol in the blood of gilts (p < 0.05), and

the supplementation of high fiber tended to reduce free fatty acids, total cholesterol, and

estradiol (p < 0.1). Proteomic analysis suggested that there were notable differences in

the cytoskeleton, intracellular non–membrane-bounded organelle, apoptosis, receptor

activity, and endopeptidase inhibitor activity in molecular function between the energy

and fiber effects (p < 0.05). High fiber intake also decreased the mRNA expression of 5-

HT7, Bax, and caspase-3 in the breast tissue of gilts (p < 0.05), which further confirmed

the importance of fiber in regulating breast development in gilt. Our results indicate that

increasing gilt energy intake improved breast weight and fat deposition and increased

breast cell apoptosis. Increased fiber intake reduced breast fat deposition and breast

cell apoptosis at high energy intake in gilts. These results provide a potential strategy for

dietary intervention against high energy intake in gilts and even in humans.
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INTRODUCTION

Mammary gland secretes milk to provide nutrition and immune barrier for newborns (1–3).
Therefore, the development of the mammary gland is crucial for the next generations. For the
sows, the development of the mammary glands can be roughly divided into three periods, namely,
early puberty (approximately 3 months), late pregnancy (about 3 months), and lactation (4–6).
Studies have shown that pregnancy is the most prosperous period of mammary gland development;
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also, there were many studies that focused on this period (7–10).
Weldon found that when feeding pregnant sows with different
energy levels, the total amount of mammary DNA in high-
energy treatment was 30% higher than that in normal-energy
treatment; however, the total amount of mammary gland RNA
and total mammary gland protein were significantly higher in
normal energy treatment than the high-energy treatment (7).
In lactating sows fed different energy-level diets, it was found
that the percentage of protein, fat, and DNA in the mammary
glands of sows increased with the increasing of gross energy,
which suggests that gross energy intake affects the composition
of mammary gland tissue (11). However, studies have also shown
that high energy intake during pregnancy has side effects on
mammary gland development and subsequent lactation (12–14).
However, there are few studies on mammary gland development
in puberty. Restricted feed intake by 20% from 90 days of age until
puberty decreased growing gilts’ mammary mass of parenchymal
and extraparenchymal tissues (15). Restricted feeding from
90 days old to puberty significantly reduced mammary gland
development during puberty in gilts. When the feeding amount
is limited to 33% (compared with ad libitum feeding), the
mammary gland weight reduced by 36.8%, and mammary DNA
and RNA decreased (16).

In the production of replacement gilt, increasing the energy
supply of the diet would make the replacement gilts grow quickly
to meet the breeding standard as soon as possible (17, 18), but
it will cause excessive obesity of the gilts, which often leads
to mammary gland fat deposition and dysplasia, affecting milk
production; furthermore, it has adverse effects on the lactation
function in the later period (10). However, the question is how
to balance the high-energy needs of gilts for rapid development
and the adverse effects of excessive energy on mammary gland
development. This question still needs further exploration.

Dietary fiber is called “the seventh nutrient” and is widely
used in sow diets. Adding an appropriate amount of dietary
fiber reduced constipation during pregnancy (19), mitigated
sow delivery stress (20), and improved sow reproductivity
(21), while reducing the cost of feed (22). Peffer and
Rozeboom (23) used high-fiber diets (35% ground sunflower
hulls) to slow the growth of growing gilts and alternated
with phases of normal growth. On day 110 of gestation,
they found that the treatment gilts had fewer mammary
parenchyma than control gilts. However, the treatment gilts
consumed more feed and tended to wean heavier litters
during lactation. This showed that although the mammary
gland development before lactation was decreased, high-fiber
diets before puberty improved the lactation performance of
gilts (23).

Therefore, we hypothesized that supplementation fiber at
high-energy diet could improve mammary gland development
in gilts. The current study was undertaken to investigate
the effects of energy or fiber on the mammary gland
development in gilts, as well as its potential mechanisms at the
proteomics level. It is supposed to provide some proteomics
mechanistic insights into the application of energy and fiber
to a gilt diet to improve mammary gland development at the
puberty periods.

MATERIALS AND METHODS

Ethics Approval
The present experiment was conducted at the Research Farm
of Animal Nutrition Institute, Sichuan Agricultural University,
Ya’an, China. All experimental procedures followed the current
law regarding animal protection and were approved by the
Guide for the Care and Use of Laboratory Animals prepared by
the Animal Care and Use Committee of Sichuan Agricultural
University (Permit No. SICAU2015034).

Animals and Diets
A total of 32 gilts (Landrace × Yorkshire, 91.70 ± 3.70 kg, 161.5
± 0.5 days old) were used in a 2 × 2 factorial design trial: (1)
LELF = LE (33.17 MJ/d digestible energy [DE]) + LF (0.3 kg/d
dietary fiber, basil diet); (2) LEHF = LE (33.17 MJ/d DE) + HF
(0.6 kg/d dietary fiber); (3) HELF = HE (41.87 MJ/d DE) +

LF (0.3 kg/d dietary fiber); and (4) HEHF = HE (41.87 MJ/d
DE) + HF (0.6 kg/d dietary fiber). Each treatment was repeated
eight times, and there was one gilt for each repeat. The dose
of energy and fiber chosen for this study was in line with that
used in our previous study (24). The diet was formulated to meet
nutritional requirements recommended by the National Research
Council 2012 (NRC 2012). Based on a corn-soybean meal, the
basal diet (LELF) included 13.82MJ/kg DE, 14% of crude protein,
0.76% Lys, 0.55% calcium, 0.52% phosphorus, total crude fiber
3.3% (calculated value), and total dietary fiber 12.42% (analyzed
value). The basal dietary provided 298 g fiber and 33.17 MJ DE
per day (feed 2.40 kg/gilt per day). For high-energy and high-
fiber treatments, soybean oil (240 g/d) or dietary fiber (300 g/d,
composed of inulin and cellulose 1:4) was added, respectively,
to provide additional energy and fiber based on the basal diet.
Thus, the daily nutrient intake was identical between the different
treatments, except for energy and fiber.

Sample Collection
The day of gilt with the first estrus was recorded (indicated
as a standing reflex in response to the manual application of
pressure to the gilt’s back). All gilts were slaughtered on the
morning of day 19 of the fourth estrus cycle. Before slaughter,
10mL blood sample was collected by an acute jugular puncture
to obtain the plasma and serum. Briefly, plasma samples were
collected using heparin as an anticoagulant (25). For serum
sample collection, the blood samples were allowed to clot for
30min before centrifugation for 15min at 3,000 g (26). The
plasma and serum were stored at−20◦C for further analysis. The
third mammary gland tissue from the left side was collected from
each gilt and rapidly frozen in liquid nitrogen and then stored
at −80◦C (10). The fourth mammary gland tissue from the left
side was fixed in 4% paraformaldehyde. The right-side mammary
gland tissue was used to record the weight and sagittal area.

Plasma Analyses
The concentrations of triglycerides (TGs), nonesterified fatty
acid (NEFA), total cholesterol (TC), low-density lipoprotein
cholesterol (LDL-C), and high-density lipoprotein cholesterol
(HDL-C) in plasma were detected by commercial kits according
to the manufacturer’s instructions (Nanjing Jiancheng

Frontiers in Veterinary Science | www.frontiersin.org 2 March 2022 | Volume 9 | Article 830392

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Xu et al. Dietary Energy, Fiber, and Breast

Bioengineering Institute, Nanjing, Jiangsu, China; catalog
no. A110-1-1, A042-2-1, A111-2-1, A113-2-1, A112-2-1,
respectively). Optical density (OD) values were determined
at 520, 440, 546, and 510 nm by a MuLtisKan MK3-Thermo
Labsystems microplate reader (Thermo Labsystems, CA, USA).
Serum estradiol, prolactin, testosterone, and progesterone were
measured using enzyme-linked immunosorbent assay kits (R&D
Systems Inc., Minneapolis, MN, USA; catalog no. KGE014,
DPRL00, KGE010, DYC5415-2, respectively). OD values were
determined at 450 nm by aMuLtisKanMK3-Thermo Labsystems
microplate reader (Thermo Labsystems). Minimal detection
limits for TG, NEFA, TC, LDL-C, HDL-C, estradiol, prolactin,
testosterone, and progesterone were 0.02 mmol/L, 10 µmol/L,
0.1 mmol/L, 0.01 mmol/L, 0.01 mmol/L, 1 pg/mL, 10 mIU/L, 1
pg/L, and 10 pg/mL.

Ether Extract and DNA Concentration of
Mammary Gland
Mammary gland tissues were analyzed for ether extract (EE)
corroding to the method 920.39 of AOAC, 2006 (27). DNA
concentrations of mammary glands were detected by commercial
kits according to the manufacturer’s instructions (TIANGEN,
Beijing, China; catalog no. DP304). Briefly, it contained the steps
of tissue sample digestion, lysis, and column purification. One
microliter of the extracted DNA stock solution was pipetted;
a Nanodrop ND-1000 spectrophotometer (ThermoFisher, CA,
USA) was used to detect the purity and concentration of the
analyzed samples, and the DNA content per milligram of tissue
was calculated.

Oil Red O Staining of Mammary Gland
Fixed mammary gland tissues were frozen, and 5-µm sections
were cut using a Leica microtome (Leica, Solms, Germany).
The frozen slices were rewarmed and dried, fixed in fixing
solution for 15min, washed with distilled water, and dried.
The slices were placed in the oil red dyeing solution protected
from light and dipped for 8–10min, and then the dye was
washed off with distilled water. After that, 75% alcohol was
used to differentiate and distilled water was used to wash away
the alcohol. Counterstaining with hematoxylin for 3–8min was
performed, and the dye was washed away with distilled water.
Hydrochloric acid and alcohol were used to quickly differentiate
for 1 s; distilled water was used to wash away, the aqueous
ammonia solution was used to return blue, and washing with
distilled water was continued. Finally, glycerin gelatin was used
to seal the tablets. The slice was scanned, and Image Pro Plus
(version 6.0; Media Cybernetics, MD, USA) software was used to
measure the oil red–stained area on the oil red–stained section of
the mammary gland.

Protein Identification and Label-Free
Quantification
The mammary glands of five gilts from each treatment
were randomly selected for proteomic analysis. Novogene
Bioinformatics Technology in Beijing, China, was used to achieve
it. Briefly, the sample was ground into powder in liquid nitrogen
and mixed with a four times’ volume of lysis solution (50mM

Tris-HCl, 8M urea, 0.2% sodium dodecyl sulfate, pH 8). Then,
samples were subjected to supersonic splitting thrice. Samples
were centrifuged, and the precipitate was collected. The protein
concentration was determined using a Bradford Protein Assay kit
(ThermoFisher, Shanghai, China; Catalog No. 23236) according
to the instructions.

Proteins were then digested with trypsin (37◦C overnight)
at an enzyme-to-protein ratio of 1:50. An equal volume of 1%
formic acid to tryptic peptides was added, mixed, and centrifuged
at room temperature at 12,000 g for 5min. The supernatant was
taken and slowly passed through a C18 desalting column. Then,
1mL of cleaning solution (0.1% formic acid and 4% acetonitrile)
was used to wash for three times. Then, 0.4mL of eluent (0.1%
formic acid, 45% acetonitrile) was added for two consecutive
elutions. The eluted samples were combined and lyophilized.

Mobile phase solutions A (100% water, 0.1% formic acid) and
B (80% acetonitrile, 0.1% formic acid) were prepared. The tryptic
peptides were dissolved with 1mL of solution A and separated
by the EASY-nLCTM 1200 system (Thermo Scientific, Waltham,
MA, USA). Then, they were analyzed on a Q ExactiveTM HF-X
mass spectrometer (MS) (Thermo Scientific). Full MS scans were
performed at a scan range of 350 to 1,500 m/z and 3e6 C-trap.
Data-dependent MS2 scans were monitored at a resolution of
15,000 and 1e5 C-trap using higher-energy collision dissociation
with 27% of normalized collision energy and 60 s of dynamic
exclusion time.

Bioinformatics Analysis
Proteins were identified against the genome using the
UniProt-GOA database (www.http://www.ebi.ac.uk/GOA/;
Hinxton, England; P101SC18081032-01-sus-scrofa-uniprot-
2018_8_2.fasta [48,936 sequences]) within Proteome Discoverer
2.2 (Thermo). Peptide spectrum match identification criteria
included an identification probability of 95%. The protein
containing at least one unique peptide is a trusted protein. Only
the trusted spectrum peptides and proteins were retained, and
false discovery rate (FDR) verification was done to remove
peptides and proteins with FDR >5%. InterProScan (Hinxton,
England) was used to annotate the corresponding Gene Ontology
(GO) function of the differentially expressed proteins (DEPs)
under the categories of biological process (BP), molecular
function (MF), and cellular component (CC). We also identified
and analyzed proteins within the KEGG (Kyoto Encyclopedia of
Genes and Genomes) metabolic pathway (http://www.kegg.jp/).

Quantitative Polymerase Chain Reaction
Analysis
Specific parts of genes were selected to check the results
obtained from the proteomics analysis. Total RNA was extracted
with TRIzol reagent (Invitrogen, Carlsbad, CA, USA; Catalog
No. 15596018) from frozen mammary gland tissue. The trace
quantity DNA was removed by DNase-I (TaKaRa Biotechnology
Co., Ltd., Dalian, China; catalog no. D2215), and the RNA was
quantified by spectrophotometrically. cDNA was synthesized
with random primers (Invitrogen, Carlsbad, CA, USA; catalog
no. 48190-011). Real-time polymerase chain reaction was used
to quantify the specific genes; the primers are listed in
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FIGURE 1 | The effect of energy and fiber interaction on the sagittal area (A) and (B) relative weight of the mammary gland of the gilts (n = 8). LELF, low-energy

low-fiber group; LEHF, low-energy high-fiber group; HELF, high energy low-fiber group; HEHF, high-energy high-fiber group; E × F, energy and fiber interaction.
a,bMeans not sharing identical superscripts are significantly different (p < 0.05).

Supplementary Table 1. Amplification was carried out according
to the product specifications (Takara, Tokyo, Japan). To get rid
of the potential contamination, one reaction with the cDNA
was replaced by water. Product sizes were verified by agarose
gel electrophoresis, and all products were sequenced to confirm
identity. Used as housekeeping gene, β-actin was amplified for
each sample to verify the presence of cDNA and as an internal

control to calculate the relative level of target gene expression
using the 2−11Ct method (28).

Statistical Analysis
Before using parametric analyses, descriptive statistics were
performed to check the normality and homogeneity of variances.
All data were analyzed by two-way analysis of variance using
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FIGURE 2 | Effects of energy and fiber interaction on crude fat (A) and DNA (B) concentration in mammary gland of gilts (n = 8). LELF, low-energy low-fiber group;

LEHF, low-energy high-fiber group; HELF, high-energy low-fiber group; HEHF, high-energy high-fiber group; E × F, energy and fiber interaction. a,bMeans not sharing

identical superscripts are significantly different (p < 0.05).

Mixed Procedure of SAS 9.4 (SAS Institute, Cary, NC, USA) and
GraphPad Prism 6.0 (GraphPad Inc., La Jolla, CA, USA; figures
used). The statistical model was as follows: Yijk= µ + αi+ βj+
αβij + eij, where Yijk is the analyzed variable, µ is the overall
mean, αi and βj are the effect of energy and fiber, αβij is the
interaction effect, and eij is the residual error. When significant
(p < 0.05) interactions were observed, the means were compared
based on the least significant difference. The results are presented
asmean± SE. p< 0.05 was considered as a statistically significant
difference. A trend was assumed at 0.05 ≤ p < 0.1.

To identify significant DEPs, the DEPs were first determined
between the treatment and control from the fiber or energy,
respectively. The proteins with a fold change (FC) of ≥1.2 (p <

0.05) was considered up-regulated, and those with FC < 0.82 (p
< 0.05) were defined as down-regulated. Second, the relative FC
(RFC) for the up-regulated and down-regulated proteins between

energy or fiber was further compared, and the proteins with an
RFC > 1.2 or < 0.82 were considered as significant up-regulated
or down-regulated, respectively.

RESULTS

Effect of Energy and Dietary Fiber on the
Mammary Gland Development in Gilt
High energy intake significantly increased the sagittal area and
relative weight of mammary glands in the gilts (p < 0.05;
Figure 1). However, under high-energy conditions, high fiber
intake decreased the relative weight of mammary glands (p
< 0.05; Figure 1B). As shown in Figure 2, high energy intake
increased the EE and DNA concentration in mammary gland
tissue of gilts (p < 0.05). The relative area of oil red O staining
of breast tissue of gilts was increased by the high energy intake (p
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FIGURE 3 | Representative images (A–D) of red-staining sections of mammary gland in gilts and the effect of energy and fiber on the relatively oil red O–staining area

of mammary gland in gilts (n = 8, E). (A) Low-energy low-fiber group; (B) low-energy high fiber; (C) high-energy low-fiber group; (D) high-energy high-fiber group.

LELF, low-energy low-fiber; LEHF, low-energy high-fiber; HELF, high-energy low-fiber; HEHF, high-energy high-fiber; E × F, energy and fiber interaction. a,bMeans not

sharing identical superscripts are significantly different (p < 0.05).
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TABLE 1 | Effects of energy and fiber levels on plasma metabolites in gilts.

(mmol/L) LE HE p-Value

LF HF LF HF Energy Fiber E × F

TG 0.291 ± 0.027b 0.283 ± 0.026b 0.416 ± 0.042a 0.330 ± 0.027ab 0.010 0.142 0.219

TC 1.896 ± 0.144b 1.825 ± 0.057b 2.244 ± 0.072a 1.979 ± 0.082ab 0.013 0.088 0.315

NEFA 0.082 ± 0.006c 0.085 ± 0.008c 0.205 ± 0.021a 0.150 ± 0.014b <0.001 0.061 0.039

HDL-C 0.845 ± 0.077 0.834 ± 0.032 0.845 ± 0.061 0.916 ± 0.065 0.501 0.625 0.507

LDL-C 0.879 ± 0.075 0.794 ± 0.022 0.916 ± 0.062 0.800 ± 0.062 0.714 0.100 0.800

Values are mean ± SE. n = 8. TG, triglycerides; TC, total cholesterol; NEFA, nonesterified fatty acid; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein

cholesterol; LE, low energy; HE, high energy; LF, low fiber; HF, high fiber; E × F, energy and fiber interaction. a,bMeans not sharing identical superscripts in the same row are significantly

different (p < 0.05).

TABLE 2 | Effects of energy and fiber levels on serum hormone concentrations in gilts.

Items LE HE p-Value

LF HF LF HF Energy Fiber E × F

Estradiol, pg/mL 71.14 ± 6.36ab 55.14 ± 5.59b 94.58 ±14.39a 87.21 ±12.79ab 0.013 0.276 0.685

Prolactin, mIU/L 228.00 ± 12.90 249.00 ± 11.50 244.20 ±14.90 244.50 ±3.00 0.599 0.342 0.359

Testosterone, pg/mL 73.50 ± 3.30 78.20 ± 3.30 78.00 ±2.60 78.10 ±2.50 0.467 0.427 0.436

Progesterone, ng/mL 2.63 ± 0.19 3.26 ± 0.28 2.88 ±0.34 3.03 ±0.21 0.969 0.156 0.385

Values are mean ± SE. n = 8. LE, low energy; HE, high energy; LF, low fiber; HF, high fiber; E × F, energy and fiber interaction.
a,bMeans not sharing identical superscripts in the same row are significantly different (p < 0.05).

< 0.01); the high fiber intake tended to decrease the area of oil
red O staining of breast tissue (p= 0.098; Figure 3).

Effect of Energy and Dietary Fiber on
Plasma Metabolites Parameters in Gilt
High energy intake increased the concentration of TGs, free
fatty acids, and TC in the blood of gilts (p < 0.05; Table 1).
High dietary fiber intake showed a tendency to reduce the
concentration of free fatty acids (p = 0.061) and TC (p = 0.088)
in the blood circulation. The high energy and high dietary fiber
intake showed an interaction effect on plasma free fatty acid
content (p= 0.039).

Effect of Energy and Dietary Fiber on
Serum Hormone Concentration in Gilt
High energy intake increased the concentration of serum
estrogen in gilts (p < 0.05; Table 2). Different energy and
fiber intake levels did not affect the concentration of prolactin,
testosterone, and progesterone in the serum (p > 0.05).

DEP Analysis in Proteomics
Proteins with an FC > 1.2 (p < 0.05) between the treatments
were considered up-regulated, whereas proteins with an FC
< 0.82 (p < 0.05) were considered down-regulated. Based on
these criteria, there were 53 proteins up-regulated, whereas
58 proteins down-regulated on the main effects of energy
(Supplementary Table 2). There were 25 proteins up-regulated
and 6 proteins down-regulated on the main effects of fiber
(Supplementary Table 3). Under the interaction of energy and
fiber, there were 10 proteins up-regulated and 10 proteins

down-regulated (Supplementary Table 4). Among them, the
proteins that affect the development of mammary glands of gilts
included lipid metabolism, reduction metabolism, mitochondrial
respiratory chain, molecular chaperone that maintains the
normal function of the protein, and energymetabolism (Table 3).

Functional Enrichment Analysis of DEPs
To annotate the function of the treatments response proteins,
protein IDs were searched against the Uniprot database (http://
www.uniprot.org/). From the GO term annotation, the DEPs on
the main effects of energy were enriched in BP, CC, and MF
(Figure 4A). BP included protein metabolic processes, and CC
mainly included cytoskeleton, whereas MF included structural
molecular activity, zinc iron binding, endopeptidase inhibitor
activity, and so on. For the fiber response, proteins were involved
in CC, BP, and MF, including carboxylic acid biosynthetic
process, prostaglandin biosynthetic process, extracellular region,
G-protein–coupled receptor activity, and so on (Figure 4B).

Effect of Energy and Dietary Fiber on
Relative mRNA Expression of Mammary
Gland in Gilt
High energy intake significantly increased the relative mRNA
expression of 5-hydroxytryptamine receptor 7 (5-HT7) in
mammary gland of gilts (p < 0.05; Table 4). High energy intake
also increased the mRNA expressions of apoptosis relative gene
B-cell lymphoma protein 2–associated X protein (Bax) and
caspase-3 in mammary gland of gilts (p < 0.05).
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TABLE 3 | Differentially expressed proteins (DEPs) associated with development of mammary glands in the energy and fiber treatments in gilt.

Protein accession Protein description FC/energy FC/fiber Gene name

F1RZK8 Histone deacetylase 5.022224 — HDAC2

A0A287BM29 Apolipoprotein A-IV 3.603054 — APOA4

A0A0D5BWD2 Mitochondrial complement component 1 Q subcomponent-binding protein 1.785695 — C1QBP

F1SLR1 NADH dehydrogenase 0.463774 — NDUFA8

P12309 Glutaredoxin-1 0.458297 — GLRX

A0A287A808 Cytochrome c oxidase subunit 0.437125 — COX6B

P27917 Apolipoprotein C-III — 1.609517 APOC3

F1S0J2 Apolipoprotein R precursor — 1. 51511 C4BPA

A0A287AH85 Adenylate kinase 2, mitochondrial — 0.81694 AK2

I3LNG8 Stress-induced phosphoprotein 1 — 0.726254 STIP1

A0A287BEZ5 Acetyl-coenzyme A synthetase, cytoplasmic — 0.533272 ACSS2

F1SIS9 NADH dehydrogenase [ubiquinone] 1α subcomplex subunit 10, mitochondrial — 0.380405 NDUFA10

The change of protein expression level was expressed by the ratio of energy or fiber/control group. The FC (fold change) ratio >1 (p < 0.05) indicates up-regulation, and the FC ratio

<1 (p < 0.05) indicates down-regulation.

DISCUSSION

Our previous study found that high-energy diets increased the
thickness of back fat and advanced the estrus age of gilts; at
the same time, high-fiber diet intake counteracted the excessive
antral follicular atresia caused by high energy intake (24). It is
reported that with the increase in diet energy, the concentration
of free fatty acids increased in the blood of gilts (29). As the
concentration of free fatty acids in the blood increased, the
cholesterol content that transports fatty acids also tended to
increase (30). In the present study, the results showed that a
high-energy diet significantly increased the concentration of TGs,
free fatty acids, and TC in the blood; increased sagittal area
and the relative weight of mammary glands; and increased the
EE of mammary gland tissue of gilts. Moreover, after oil red O
staining was performed on the sections of the mammary gland,
it was found that high-energy diet could significantly increase
the oil red area (the area of oil red O staining represents the
fat content). Furthermore, it was found in this study that high
energy intake resulted in an up-regulation of apolipoprotein A-IV
in proteomic analysis. Apolipoprotein A-IV plays an important
role in lipoprotein metabolism and maintenance of lipid levels
(31). As previous results have shown that high energy intake
significantly increases blood levels of TGs, free fatty acids, and
TC, it is speculated that the up-regulation of apolipoprotein A-
IV due to high energy intake may be an adjustment response
to the high energy intake of gilts. These results suggest that
the weight and size of the mammary gland can be affected by
increasing the fat deposition in the mammary gland of the gilts
under high-energy conditions. In this study, high fiber intake
reduced the relative weight of the mammary glands under high-
energy conditions. One study has shown that the addition of
dietary fiber to the diet of growing and fattening pigs reduced fat
deposition and increased the carcass lean meat rate (29). These
indicate that the high-fiber diet reduced the fat deposition in the
mammary gland of gilts and reduced the burden of high-energy
fat deposition in the mammary gland.

Studies have confirmed that estrogen plays an important role
in the ductal extension during puberty and acinar development
during pregnancy (32). During the puberty of gilt, estrogen
increased the blood flow speed of blood vessels by increasing
the permeability of cell membranes and the accumulation of
extracellular fluid, thereby promoting the synthesis of DNA and
protein and thus stimulating the development of mammary duct
system (33). It had found that estradiol secretion was influenced
by cholesterol level and positively correlated with body fat tissue
content (34). The results of this study suggest that increasing
diet energy promotes the secretion of estrogen, which may in
turn promote ductal extension of mammary during puberty.
The present results show that a high-energy diet significantly
increased DNA concentration in mammary gland tissue of gilts.
The amount of mammary tissue, DNA, and RNA was positively
correlated to the average daily gain of the piglets in the lactation
period (35). The increase in DNA concentration indicated that
high energy intake increased the activity of mammary cells.
However, studies have shown that high energy intake during
pregnancy has side effects on the development of the mammary
glands and subsequent lactation (12, 13). A study has found that
the increase in free fatty acids inhibited the growth of mammary
epithelial cells in rats (36). Exogenous free fatty acid challenge
induced increase in concentrations of mitochondrial reactive
oxygen species (ROS) and cell apoptosis in bovine mammary
epithelial cells (37). In addition, it also found a significant
increase in the cell apoptosis treated with free fatty acids in
human vascular endothelial cells (38). These findings suggest
that free fatty acids can promote apoptosis. In this study, high-
energy diet–induced increase in free fatty acid concentration in
the blood of gilts may promote cell apoptosis of the mammary
gland. However, high-fiber supplementation reduced the increase
in free fatty acid concentration in the blood of gilts caused by
high-energy diet in this study, which may reduce the promotion
of fatty acid on cell apoptosis.

The DEPs on the main effects of energy were enriched in BP,
CC, andMF, including protein metabolic processes, cytoskeleton,
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FIGURE 4 | The functional enrichment of Gene Ontology (GO) annotation of the DEPs. (A) Energy differential protein GO annotation diagram. (B) Fiber differential

protein GO annotation diagram.
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TABLE 4 | Effects of energy and fiber levels on relative mRNA expression in mammary gland.

Items LE HE p-Value

LF HF LF HF Energy Fiber E × F

5-HT1D 1.00 ± 0.12 1.18 ± 0.20 1.41 ± 0.16 1.31 ± 0.12 0.087 0.777 0.367

5-HT2A 1.00 ± 0.61 1.11 ± 0.99 1.93 ± 1.92 1.34 ± 0.97 0.076 0.458 0.277

5-HT2B 1.00 ± 0.13 1.43 ± 0.30 1.59 ± 0.59 1.50 ± 0.51 0.108 0.389 0.214

5-HT7 1.00 ± 0.09b 1.08 ± 0.12b 1.42 ± 0.17a 1.40 ± 0.19a 0.044 0.838 0.765

BAX 1.00 ± 0.06b 1.03 ± 0.09b 1.47 ± 0.26a 1.35 ± 0.19a 0.029 0.801 0.674

BCL-2 1.00 ± 0.12 0.76 ± 0.05 0.91 ± 0.15 0.91 ± 0.13 0.818 0.315 0.322

CAS-3 1.00 ± 0.19b 1.07 ± 0.21b 1.47 ± 0.20a 1.51 ± 0.20a 0.030 0.780 0.941

Values are mean ± SE. n = 8. LE, low energy; HE, high energy; LF, low fiber; HF, high fiber; E × F, energy and fiber interaction; 5-HTR1D, 5-hydroxytryptamine receptor 1D; 5-HTR2A,

5-hydroxytryptamine receptor 2A; 5-HT2B, 5-hydroxytryptamine receptor 2B; 5-HT7, 5-hydroxytryptamine receptor 7; BAX, B-cell lymphoma protein 2–associated X protein; BCL-2,

B-cell leukemia-2; CAS-3, caspase-3.
a,bMeans not sharing identical superscripts in the same row are significantly different (p < 0.05).

structural molecular activity, zinc iron binding, endopeptidase
inhibitor activity, and so on. For the fiber response, proteins
were involved in CC, BP, and MF, including carboxylic
acid biosynthetic process, prostaglandin biosynthetic process,
extracellular region, G-protein–coupled receptor activity, and
so on. Glutaredoxin (Grx) has a variety of biological activities
and plays an important role in regulating redox reaction
and cell growth and inhibiting apoptosis (39). Grx has been
found to inhibit oxidative stress damage in cells by mediating
the neurotransmitter dopamine through the nuclear factor κB
pathway. Moreover, Grx system can prevent and treat ROS-
induced oxidative stress injury. The results of this study showed
that under high energy intake, the expression level of Grx in
the mammary gland of gilts decreased, which indicated that the
antioxidant stress and antiapoptosis ability of mammary cells
decreased. This result was confirmed by the gene expression
result, which showed that the expression of proapoptotic genes
(Bax and caspase-3) increased with high energy intake. It has
been reported that 5-HT7 is involved in the regulation of
breast epithelial tight junctions (40). As 5-HT secreted by
mammary epithelial cells can regulate breast development and
milk synthesis, 5-HT7–mediated 5-HT plays an important role
in breast epithelial cell shedding and cell death (41). The results
of this study showed that high energy intake increased mRNA
expression of 5-HT7 in mammary gland of gilts. Therefore,
the high energy intake weakened the antiapoptotic ability of
the gilts’ mammary gland. Cytochrome C oxidase (COX) is a
terminal complex of electron transport in the mitochondrial
respiratory chain and a key regulatory site of mitochondrial
oxidation capacity (42). Studies have shown that COX is involved
in the regulation of apoptosis by regulating mitochondrial
electron transfer, mitochondrial membrane potential, and energy
synthesis (43). In this study, the proteomic results showed that
the expression of the COX subunit in the gilt breast cells was
down-regulated under high energy intake, indicating an increase
in apoptosis of breast cells. This result may be due to the increase
in oxidative stress caused by high energy, resulting in a decrease
in the number of COX subunits.

Stress-induced phosphorylated protein 1 (STIP1) has a
regulatory effect on a variety of molecular proteins and is
widely involved in cell gene transcription, signal transduction,
and proliferation and division (44, 45). In addition, STIP1 can
regulate cell growth, inhibit cell apoptosis, regulate some active
proteins in the body by regulating many downstream molecular
proteins, and participate in multiple metabolisms by acting as a
molecular chaperone or complex molecular chaperone (46, 47).
In this experiment, it was found that intake of high fiber led
to the down-regulated expression of STIP1 in gilts. Therefore,
we speculated that high fiber may reduce cell proliferation by
reducing STIP1 expression. Adenylate kinase (AK) is mainly
focused on maintaining the balance of energy supply in living
organisms (48). However, a recent study found that AK2 was
associated with apoptosis, during which cytochrome C and AK2
were transferred to the cytoplasm together (49). Further studies
showed that the apoptotic factor Bax could lead to the release
of AK2, and the release amount was positively correlated with
the concentration of Bax (50). In this study, high energy intake
significantly increased mRNA expression of apoptosis-related
genes (Bax and caspase-3) in mammary gland of gilts, and it
was also found that the expression of AK2 was down-regulated
because of high energy and high fiber intake, suggesting that
AK2 may inhibit cell apoptosis after the addition of high fiber
to high energy. It is speculated that the addition of high fiber can
alleviate the apoptosis of breast cells brought by high energy to a
certain extent.

In conclusion, the current results suggest that high
energy intake of gilts increased breast fat deposition,
and mammary proteomics analysis showed that high-
energy diets increased mammary gland cell apoptosis.
Increased fiber intake (inulin and cellulose, ratio 1:4)
in gilts counteracted the breast fat deposition and the
apoptosis of breast cells induced by high energy intake.
The beneficial improvement of mammary gland for gilts may
be due to the regulation of key points in lipid metabolism,
the reduction metabolism, and mitochondrial respiratory
chain system.
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