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Abstract: Shotgun metagenomics is of great importance in order to understand the composition of
the microbial community associated with a sample and the potential impact it may exert on its host.
For clinical metagenomics, one of the initial challenges is the accurate identification of a pathogen
of interest and ability to single out that pathogen within a complex community of microorganisms.
However, in absence of an accurate identification of those microorganisms, any kind of conclusion or
diagnosis based on misidentification may lead to erroneous conclusions, especially when comparing
distinct groups of individuals. When comparing a shotgun metagenomic sample against a reference
genome sequence database, the classification itself is dependent on the contents of the database.
Focusing on the genus Streptococcus, we built four synthetic metagenomic samples and demonstrated
that shotgun taxonomic profiling using the bacterial core genes as the reference database performed
better in both taxonomic profiling and relative abundance prediction than that based on the marker
gene reference database included in MetaPhlAn2. Additionally, by classifying sputum samples of
patients suffering from chronic obstructive pulmonary disease, we showed that adding genomes of
genomospecies to a reference database offers higher taxonomic resolution for taxonomic profiling.
Finally, we show how our genomospecies database is able to identify correctly a clinical stool sample
from a patient with a streptococcal infection, proving that genomospecies provide better taxonomic
coverage for metagenomic analyses.
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1. Introduction

Taxonomy classification and quantification of each bacterial species within a shotgun metagenomic
sample is a primary goal of most microbiome analyses, which still can be a complicated task. Sequencing
of a given metagenomic sample generates a large number of sequence reads that are then fed to
a bioinformatic process involving searches of each read against the reference sequence database.
The general, albeit important, assumption is that reference-based databases currently available for
shotgun metagenomics contain the reference genome sequences that we are interested in. When those
references are absent, most classifiers (software that can be used to taxonomically profile a shotgun
metagenomic sample), based on sequence identity, will match the reads from the metagenomic sample
to the closest reference available in the database. The user, not knowing precisely which bacterial species
are present in the sample, may assume that the taxonomic identification is accurate. Adding more
references to a database can be a complex task as well; adding new genome sequences to a reference
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database not only will increase the database size, but also will increase the number of comparisons that
the classifier has to perform between the references and each read within the sample. Alternatives
to the use of full genomic sequences, MetaPhlAn2 [1] proposes the use of marker genes, which are
gene sequences that only occur once within a specific taxon, in this case at the species level. However,
this approach assumes that we have a reference genome of every species within a genus, if a new
species is sequenced, all marker genes must be recalculated. To solve this limitation, we propose the
use of UBCG (up-to-date bacterial core gene) sequences [2] as reference for shotgun metagenomics.
UBCG sequences are core genes that are defined as single-copy and homologous sequences; they are
present in almost all bacterial species. At present, a total of 92 core genes are used for the version 3.0
of the UBCG pipeline, and regardless of the assembly level of a genome or its completeness, we can
assume that a reference is complete if all 92 core genes are present in the genome.

To demonstrate the usefulness of these 92 core gene sequences in the use of shotgun metagenomic
profiling, we focus on the genus Streptococcus, a highly diverse taxon in the phylum Firmicutes.
The genus comprises a large number of species with a variety of pathogenic potentials to humans and
animals including opportunistic pathogens like Streptococcus oralis [3], and harmless or even considered
probiotic Streptococcus thermophilus [4]. Streptococcus-caused sepsis is often associated with Streptococcus
pneumoniae and Streptococcus pyogenes [5]. Streptococcus mitis has been associated to several clinical
diseases like viridians group streptococci (VGS) shock syndrome in cancer patients [6]. Streptococcus
pneumoniae is commonly found on sputum samples of patients with community-acquired pneumonia,
so rapid detection in a clinical setting is of high importance [7].

As of November 2019, a total of 88 validly named species and 114 genomospecies of Streptococcus
are recorded in the EzBioCloud reference database [8]; a genomospecies is defined as a tentatively
novel species that is supported by genomic evidence, such as average nucleotide identity (ANI) [9–11].
Most publicly available databases for shotgun metagenomics do not encompass these genomospecies
references since they are not formally described and named.

Here, by extracting all 92 core genes for each species available in the EzBioCloud database,
including 114 genomospecies of Streptococcus, we built two core gene-based databases, one containing
only validly named species (KrakenUBCG-VNS) and a second one containing both validly named
species and genomospecies (KrakenUBCG). By focusing on the genus Streptococcus, using synthetic
and real clinical datasets, we demonstrate how bacterial core genes can be a better alternative as
reference sequence databases for metagenomic taxonomic profiling, and finally we show the impact
that a metagenomic taxonomic profile will have when including or excluding genomospecies from two
core gene-based databases.

2. Results and Discussion

2.1. Building a Core Gene-Based Reference Database

Bacterial genomic sequences on public databases have a diverse range of genomic statistics,
such as reference size, number of contigs, assembly status (complete, chromosome, scaffold, contig),
N50 values among others. For some species, a high-quality assembly may not be available. When using
these references for metagenomic shotgun profiling, this variation may provide a bias for higher
quality and complete genomes, making abundance quantification unreliable, particularly for genomes
that may be considered incomplete. To avoid this, we extracted UBCG sequences [2] (92 core genes)
from full genomic references from the EzBioCloud database [8]. Regardless of the assembly status or
genome length, extracting these core genes will remove any bias based on genome quality. Figure 1a
shows three streptococcal references with variable genome size, number of contigs, and N50 value.
When extracting the UBCG sequences, all the references end up being represented by the same number
of genes (92) and their sequence size is near identical. This shows that regardless of having a complete
genome with one contig, or a contig assembly with 500 contigs, UBCG will provide an unbiased
representation for any bacterial reference regardless of their assembly status, making detection and



Pathogens 2020, 9, 204 3 of 17

abundance estimation more reliable. Figure 1b shows how genomic sequences from a variable length
size for the genus streptococcus can be translated into 92 UBCG sequences with a narrower difference in
sequence length. After extracting all 92 UBCG sequences from the bacterial references, we built two
Kraken [12] based pipelines containing these sequences as references, one with just validly named
bacterial species (KrakenUBCG-VNS) and another one containing also genomospecies references
(KrakenUBCG). Table 1 shows the difference between these two pipelines, highlighting their core
algorithm and the number of bacterial and streptococcal species that their databases represent.
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Table 1. Comparison of taxonomic profiling pipelines used in this study.

Pipeline Algorithm Database Gene Type Included
in the Database

Number of Bacterial
Species

Number of
Streptococcus Species

KrakenUBCG Exact match k-mer EzBioCloud Bacterial Core Genes
(92 UBCG per species)

14,272 species (
9145 validly named+
5127 genomospecies)

201 species
(88 validly named+
113 genomospecies)

KrakenUBCG-VNS Exact match k-mer EzBioCloud Bacterial Core Genes
(92 UBCG per species)

9145 validly named
species

88 validly named
species

MetaPhlAn2 Burrows–Wheeler NCBI Marker Genes
(variable number)

3310 species (
2250 validly named+

1060 unidentified
species)

72 species
(53 validly named+

19 unnamed
genomospecies)

2.2. Evaluation of Pipelines Using Synthetic Metagenomes

To compare the classification accuracies by bacterial core genes as reference sequences, we created
four different synthetic metagenomic datasets containing only species from the genus Streptococcus using
the InSilicoSeq pipeline [13] and proceeded to compare the results with MetaPhlAn2. Supplementary
Table S2 contains the description and accession number of the genomes used on these datasets along
with their true abundances. Figure 2a shows the predicted abundances for all four datasets using the
KrakenUBCG pipeline and MetaPhlAn2, respectively, along with the true abundance of the synthetic
sets. In order to compare some of MetaPhlAn2’s predictions to our pipeline KrakenUBCG, we included
an alternative truth for some sets, since MetaPhlAn2 clusters several Streptococcus species into a
single taxon group. Figure 2b shows the log-modulus difference of abundance prediction made
by MetaPhlAn2 and the KrakenUBCG pipeline. The first synthetic set consists of seven different
species of public assembled genomes from the NCBI database, which were included in both pipelines.
MetaPhlAn2’s prediction was compared against a grouped truth, where all the genomes that belong to
S. mitis and S. oralis are clustered into a single group (S. mitis, S. oralis, and S. pneumoniae; referred as
mitis group hereafter). Both MetaPhlAn2 and KrakenUBCG were able to identify correctly the presence
of all species of Streptococcus contained in the sample, however MetaPhlAn2’s marker gene database
cannot distinguish between the species that are contained in the mitis group. Relative abundance
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predictions were less consistent for MetaPhlAn2, as it seems to be unable to predict correct abundances
for the mitis group. While the expected abundance for S. mitis and S. oralis was expected at 30% and
20% respectively, MetaPhlAn2 only assigned a total abundance of 21.2% (mitis group), much lower
than the expected 50%. KrakenUBCG, on the other hand, accurately predicted 29.9% and 19.3% relative
abundance, respectively. Lower abundance prediction by MetaPhlAn2 for the mitis group indicates
its overprediction of abundance for the remaining species, most notably Streptococcus entericus with a
predicted abundance of 26.3% instead of an expected abundance of 15%, while KrakenUBCG accurately
predicted its abundance at 15.8%.
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Synthetic dataset 2 consists of nine species of Streptococcus that were contained in both databases
while the genome assemblies representing each species were different. Both pipelines predicted
correctly the presence of all the species contained in the sample, and while the KrakenUBCG pipeline
contains different reference assemblies for all nine species, it was able to detect the presence of all nine
species correctly. KrakenUBCG’s abundance predictions were more accurate than MetaPhlAn2’s, for the
20% expected abundance for Streptococcus downei, KrakenUBCG and MetaPhlAn2 predicted 22.2% and
13.19%, respectively, making KrakenUBCG overpredicting the abundance by 2.2% while MetaPhlAn2
underpredicted the abundance by 6.81%. Streptococcus pyogenes had an expected abundance of 15%
with a predicted abundance of 13% and 18.64% for KrakenUBCG and MetaPhlAn2, respectively.
For the remaining species, KrakenUBCG’s worst prediction was for Streptococcus pneumoniae, with a
prediction of 6.72% against an expected abundance of 7.5%, while MetaPhlAn2’s worst prediction
was Streptococcus agalactiae, with a predicted abundance of 6.5% against an expected abundance of 5%.
Overall, both pipelines performed better than expected, however KrakenUBCG performed favorably
over MetaPhlAn’s abundance prediction even though it did not contain the assemblies contained in
the metagenomic sample.

The third set contains the assemblies of nine different genomes from the genus Streptococcus.
Those genomes are annotated as genomospecies in the KrakenUBCG pipeline. MetaPhlAn2 contains
the same assemblies, however, some of them are annotated as the same species under the NCBI
database, so we expect MetaPhlAn2’s prediction to follow that annotation. Those annotations are as
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follows: genomospecies KQ969067_s is annotated at the NCBI database as Streptococcus cristatus; JPFV_s,
LBMT_s, and NCVM_s as Streptococcus mitis; JUNW_s, KQ970764_s, and NCUR_s as Streptococcus
oralis; and finally, CZEF_s and RSDO_s as Streptococcus suis. MetaPhlAn2 is also unable to distinguish
between Streptococcus oralis and Streptococcus mitis, so while the KrakenUBCG prediction is expected to
predict nine different genomospecies (KQ969067_s, JPFV_s, LBMT_s, NCVM_s, JUNW_s, KQ970764_s,
NCUR_s, CZEF_s, and RSDO_s), MetaPhlAn2 is only expected to predict three distinct species
(Streptococcus suis, Streptococcus cristatus, and mitis group), and while it predicted the presence of those
three taxa correctly, it also predicted the presence of two other Streptococcus species (false positives).
KrakenUBCG’s prediction, however, predicted correctly the presence of all nine genomospecies present
in the sample. Abundance predictions for MetaPhlAn2 particularly for the mitis group were low,
with an abundance prediction of 40.93% against an expected abundance of 66%. For Streptococcus suis,
MetaPhlAn2 predicted 30.21% against an expected 14% abundance. KrakenUBCG’s worst abundance
prediction was for the genomospecies KQ970764_s with 11.5% against an expected abundance of 13%.

Finally, set 4 consists of species present on the KrakenUBCG pipeline but absent on the MetaPhlAn2
database. MetaPhlAn2 predicted a single species (Streptococcus infantis) which is not present in the
sample, and while it was expected that MetaPhlAn2 would not be able to predict correctly any of
the species due to their absence in their database, it was not unable to predict the presence of more
than one species. KrakenUBCG predicted all four species present, as for abundance predictions,
each species had an expected abundance of 25% each, and KrakenUBCG predicted 26.4%, 24.2%,
25.3%, 23.9% abundance for Streptococcus timonensis, Streptococcus respiraculi, Streptococcus plurextorum,
and Streptococcus pluranimalium, respectively.

Using four synthetic metagenomic samples containing full genome reads from Streptococcus,
we demonstrated that using core genes as references not only predict accurate species composition,
but also showed little difference when comparing predicted relative abundance versus the absolute
abundance. We also showed that MetaPhlAn2 suffers from lower accuracy in predicting relative
abundance, probably because its marker gene references are uneven in coverage, especially for the
mitis group.

2.3. Chronic Obstructive Pulmonary Disease Samples

Chronic obstructive pulmonary disease (COPD) is an obstructive lung disease where the affected
individual suffers from long-term breathing problems and airflow. Cameron et al. studied the
association between the microbiome and COPD by comparing the metagenomic profiles of two
different groups, patients with COPD and ‘healthy’ smoking controls [14], and showed significant
changes in abundance of bacterial species, particularly in the genus Streptococcus. They also found
the presence of Streptococcus pneumoniae in all the samples. Using KrakenUBCG with 201 different
Streptococcus reference genomes and MetaPhlAn2’s database, we profiled all the samples and compared
the prediction of Streptococcus at genus and species level.

Figure 3 shows the abundance prediction at genus level by both KrakenUBCG and MetaPhlAn2.
While the presence of other genera is variable among the databases, they are outside the scope of
this study and will not be discussed in detail, however, it is important to mention that the number
of classified reads for other genera will also have a direct impact on the predicted abundance of
Streptococcus. As an example, this can be observed on sample copd04, MetaPhlAn2 was unable to
detect the presence of any bacteria, while KrakenUBCG detected the presence of three distinct genera.

Figure 4 shows heatmaps for predictions made by KrakenUBCG and MetaPhlAn2 along with their
respective ANI dendrogram. Only samples that contained any Streptococcus in either of the predictions
were included. References from the MetaPhlAn2 database were matched with the KrakenUBCG
pipeline and aligned on the heatmap accordingly. Predictions with a minimum of 0.5% abundance are
shown, also only the species and genomospecies that were contained in at least one of the samples
were included.
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Figure 4. Species predicted for Streptococcus using the KrakenUBCG and the MetaPhlAn2 pipeline
demonstrates untapped Streptococcus diversity revealed by KrakenUBCG remain obscured by
MetaPhlAn2. An ANI dendrogram can be seen in the middle of the heatmaps. References from
MetaPhlAn2 were matched against the references from KrakenUBCG and aligned accordingly.

One of the major differences between both pipelines is the mitis group on MetaPhlAn2, which is
covered by 21 different species and genomospecies at KrakenUBCG, showing clear differences as
expected. On KrakenUBCG, only 3 samples showed the presence of S. pneumoniae, and another
3 showed presence of S. mitis, but none of the samples showed the presence of both at the same
time; genomospecies CP016207_s, KV802702_s, KB373321_s, JPFY_s, JPFT_s, NCVM_s, CP012646_s,
JUQO_s, JPFU_s, and JUUO_s were predicted only once among the samples, while the remaining
genomospecies were found in two or more of the samples. While MetaPhlAn2 found zero presence
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of bacteria in the mitis group for sample copd02, copd06, scon05, and scon10, KrakenUBCG found
the presence of ASZZ_s and AFUU_s for copd02, and JPFV_s and JVWC_s for copd06. For samples
scon05 and scon10, KrakenUBCG did not find the presence of any species or genomospecies closer to
S. pneumoniae or S. mitis matching MetaPhlAn2’s prediction. Looking at some samples individually we
can observe distinct predictions, for example, MetaPhlAn2 predicted only one species of Streptococcus
(S. salivarius) with a 17.5% abundance, while KrakenUBCG found three distinct species (ALIF_s, JYGT_s
and S. intermedius) with a total abundance of 20.7%. If we analyze each sample individually, we can
observe more differences than coincidences. These differences are the result of the lack of references
on MetaPhlAn2’s database, and the argument can be made that only formally named species should
be added to a reference database. However, if MetaPhlAn2’s authors decide to add genomospecies
references to their database, they would require to recalculate all gene markers to those genus affected
with newly added genomospecies, and even if somehow, these recalculations can be done within
reasonable computational time, we can already observe that these gene markers cannot differentiate
between three already recognized species (S. mitis, S. oralis and S. pneumoniae), so adding any more
references may result in more larger groups of species, just like the mitis group.

Figure 5a shows the taxonomic biomarkers found by LEfSe [15] by KrakenUBCG and MetaPhlAn2.
While the study was not aimed at finding associations between COPD and healthy controls, our analyses
demonstrated that any kind of conclusion driven by the use of distinct databases may lead to different
findings. Both databases found a great diversity of streptococcal species found in the control
samples that were absent in the COPD samples. KrakenUBCG found 24 streptococcal biomarkers
(8 validly named species and 16 genomospecies) contained in the control metagenomic samples while
MetaPhlAn2 detected 6 streptococcal biomarkers, demonstrating the impact that a high species and
genomospecies coverage would have on the biomarker discovery process. Figure 5b shows four
biomarkers found by both pipelines while the remaining biomarkers were exclusive to each pipeline.
These common biomarker predictions done by both pipelines show that regardless of the core algorithm
or database, when a species is predicted accurately, the process for taxonomic biomarker discovery
can reliable. However, it also shows how the absence of streptococcal species on MetaPhlAn2’s
database would miss several biomarkers that were detected by KrakenUBCG (Figure 5a). Absence of
species may also incur on false taxonomic predictions, particularly when a reference species has no
genomically close species. For example, MetaPhlAn2 detected Streptococcus infantis as a biomarker,
however this may be explained by Figure 4, where it can be seen that MetaPhlAn2’s database lacks
reference species genomically close to its genome, while KrakenUBCG detected the presence of
Streptococcus infantis only in two control samples while the rest of the prediction was assigned to
other genomically close genomospecies. This example showcases how an outdated database might
impact metagenomic profiling and biomarker discovery, since the lack of genomic diversity around
the reference of Streptococcus infantis will potentially incur in taxonomic false positives and result in a
false biomarker prediction.

Here, by comparing classification results using samples from COPD patients with our
genomospecies database KrakenUBCG, we found the presence of thirty-three different genomospecies
and nineteen species across the samples. On the other hand, MetaPhlAn2 only found the presence of
seventeen species of Streptococcus, demonstrating the importance of keeping a database up to date
(Figure 4). This finding indicates that lack of all species and genomospecies in the database being
used and their taxonomies inconsistencies can exert a dramatic impact on the discovery of reliable
biomarkers and biodiversity estimates. While MetaPhlAn2’s algorithmic predictions may not be
incorrect, their use of an outdated database with an incorrect taxonomy annotation may have an impact
on their prediction performance, specifically since they rely on that taxonomy structure in order to
generate their reference marker genes. Additionally, the use of marker genes as reference sequences
makes the process of updating their database difficult. While generating those marker genes itself
requires substantial time and efforts, the process is further complicated by the fact that every time
when a new species is added, all the marker genes have to be recalculated. To this end, using UBCG
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as a reference appears to be more convenient, as once these core genes have been extracted, if a new
species needed to be added to the database, only the core genes for that species have to be calculated.Pathogens 2020, 9, 204 8 of 18 
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Evaluating the Value of Genomospecies References in a Metagenomic Database

To assess the effects of adding genomospecies to the reference database, we classified the
same samples with two custom pipelines, one with only valid named Streptococcus species
(KrakenUBCG-VNS), and a second one with species and genomospecies (KrakenUBCG), the rest of the
bacterial references are identical, as described in Table 1. Additionally, we also ran the classifications
using different cutoff values for Kraken. These cutoff values represent the k-mer coverage required
for a read to be considered classified. A cutoff value of 0 means that only one k-mer is required for
the read to be classified, while a cutoff value of 1 requires that the entirety of the read needs to be
covered by N number of k-mers belonging to the database, where N = read size – k + 1, in other words,
an exact match.

Figure 6a shows the fold change of classified reads for each sample at each cutoff value. The fold
change represents the ratio of number of reads classified by KrakenUBCG against the number of reads
classified by KrakenUBCG-VNS. At a cutoff value of 0 (no filter), the fold change of classified reads is
closer to 1 (median value of 1.04), meaning that either pipeline (with or without genomospecies) will
classify almost the same number of reads at the genus level, however at higher cutoff values, the fold
change of classified reads will increase greatly when using the genomospecies database KrakenUBCG.
Just with a cutoff value of 0.3, the median fold change is 1.227, this means that having genomospecies
references present in the reference database will classify more than 22% additional reads. A stricter cut
off value of 0.7 will have a median fold change of 1.935, resulting in 93% additional classified reads
when comparing with the database without genomospecies KrakenUBCG-VNS. As expected, including
genomospecies references not only increased the number of reads classified for the genus Streptococcus,
but also by increasing the cutoff value of Kraken allowed us to see how closer the references are to
the reads in the samples. The argument can be made that, inclusion of additional references to any
database would incur in a higher number of classified reads, however, when comparing the fold
change for each sample, we can see that this is not always the case. As seen previously in Figure 4,
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sample copd01 only contains the valid named species Streptococcus pneumoniae and Streptococcus peroris,
and this prediction can be confirmed by the low fold change (Figure 7a) between pipelines (with or
without genomospecies) and their different cutoff values (median fold change of 1.076). The rest of the
samples showed the presence of at least one genomospecies, explaining the median fold difference
between classifications (median range between 1.37 and 1.89). Sample copd07 showed the highest
median fold change among all samples (median of 1.89), this is explained by Figure 4, showing that this
sample contains 5 genomospecies without containing a single validly named species of Streptococcus.
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assigned to valid species and genomospecies from Streptococcus (genus).
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These observed fold changes between classifications and distinct cut off values can only be
explained if these samples indeed contain one or more genomospecies in their sample. Not including
these genomospecies will result in the loss of classified reads and misidentification at species level.
Samples that do not contain any genomospecies showed no significant change between databases and
cutoff values. In addition, by using the same 92 core genes as our reference for every species, it allows
us to discard any potential contamination or bias in our analysis based on genome length, assembly
status, or incompleteness of the genome. All species and genomospecies are represented equally in our
databases (92 core genes per reference, one reference per species), so any additional classified reads
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can only be explained by the presence or absence of the reference that matches closely with the reads
within the samples.

Figure 7b shows the fold difference between the total number of reads classified between the
KrakenUBCG and KrakenUBCG-VNS. When the classification thresholds are removed (no filter),
both pipelines are able to classify almost the same number of reads, since only one k-mer match is
necessary to label a read as classified. When this identity threshold is increased gradually, the number of
reads classified with KrakenUBCG-VNS decrease at a higher rate when comparing with KrakenUBCG,
concluding that a majority of the reads have higher coverage with most of these genomospecies
references. At an identity threshold of 0.8, KrakenUBCG is able to classify more than 2-fold the amount
of reads.

2.4. Identifying Accurately a Streptococcal Infection Using Clinical Data

Tracing the origin of pathogenic bacteria in bloodstream infections can be a challenge.
Tamburini et al. [16] proposed that the source of infection on some patients is the human gut.
They isolated and sequenced pathogenic bacteria present in the bloodstream of patients at Stanford
University Hospital and performed shotgun metagenomics on stool samples for those same patients.
For this research, we will focus on patient 22, whereby using his blood isolate and stool sample,
the authors were able to match the genome assembled from the bloodstream isolate with the
metagenomic assembly generated form the stool sample and classified it as Streptococcus mitis.

We analyzed the streptococcal bacterial isolate from this patient (Sample id: SRR7407865) using
the TrueBac ID system [17], which utilizes the exact same species and genomospecies references from
the EzBioCloud database included in our KrakenUBCG pipeline. Table 2 shows the results of TrueBac
ID when comparing the isolate with the EzBioCloud database. Our analysis indicates that the closest
reference to the isolate is actually streptococcal genomospecies JPFV_s (not Streptococcus mitis) with
an ANI identity value of 94.61% with a coverage of 86.9%. Since the ANI identity value is below the
species threshold (95%) [18], we will assume that this isolate belongs to a tentative new genomospecies
and does not belong to Streptococcus mitis.

Table 2. TrueBac ID analysis of the Streptococcus isolate from the bloodstream of patient 22.

No. Hit Taxon ANI (%) ANI Coverage (%) 16S (%) recA (%) rplC (%)

1 JPFV_s 94.61 86.9 99.93 94.86 99.36
2 JVMO_s 94.34 85.8 99.59 95.72 98.88
3 JPFU_s 93.06 74.9 99.59 94.55 99.20
4 JUUO_s 93.44 78.5 99.39 94.60 99.68
5 JYGP_s 93.40 75.3 99.18 94.77 99.20

To further illustrates the utility of broader species coverage and need to update the reference
databases frequently, we built a third metagenomic reference database (KrakenUBCG+ SRR7407865)
with the addition of this tentative new genomospecies by assembling the genome and extracting the
92 core genes using the UBCG pipeline and simply adding them to the KrakenUBCG database. We then
perform a metagenome classification analysis using all three databases.

Figure 8 shows the classification results for all the available pipelines. Relative abundance at the
genus level for Streptococcus yields an increase of 0.07% after classifying with KrakenUBCG, while it only
showed an increase of 0.002% when adding the bloodstream isolate from the sample (KrakenUBCG+

SRR7407865). However, at the species level, the classifications for all three databases showed big
differences. For the classification with only valid named species (KrakenUBCG-VNS), the highest,
most abundant species of Streptococcus is Streptococcus mitis, however by using KrakenUBCG, the most
abundant species is JPFV_s. By observing those two different classifications using the ANI tree shown
in Figure 9, we can observe that they are both correct, with the absence of references from streptococcal
genomospecies, the classification should go to the closest reference, in this case, Streptococcus mitis.
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This is also consistent with the initial classification of the isolate in the original paper as Streptococcus
mitis [16].Pathogens 2020, 9, 204 12 of 18 
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Finally, the third classification using KrakenUBCG+ SRR7407865, showed that by comparing the
stool sample with an updated database that contains a bloodstream isolate, will successfully assign the
top streptococcal species as this tentative novel genomospecies.

While for this case, we had access to the bacterial blood isolate, the majority of the time, the user
will have to rely on precompiled databases, and in this specific case, if we were to use our genomospecies
database, the classification for this streptococcal species would be assigned to the closest reference
available in the database, in this case, the genomospecies JPFV_s. We also show that in the absence
of any genomospecies in the reference database, this streptococcal strain would be classified as
Streptococcus mitis. This demonstrates the importance of updating reference databases frequently,
even if those references have not been published or named formally.
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2.5. Effects of Different ANI Thresholds on the Classificwtion of Genomospecies

The ANI threshold for genomospecies identification proposed by Chun et al. [18] is 95%, and this
threshold is applied at the EzBioCloud database. As the authors mention in their article, these are
minimal standards, which means that in some cases, a different ANI threshold could be applied
in order to set species boundaries for a specific taxon. Similarly, the Genome Taxonomic Database
(GTDB) [19] also proposes a 95% ANI threshold for these novel species using FastANI [20], although
using a different nomenclature for these genomospecies, supporting this ANI threshold as a consensus
in the prokaryote taxonomic community. In the previous example shown in Figure 8, the blood isolate
from patient 22 was recognized as a potential new species because the ANI value between the isolate
and the closest genomospecies JPFV_s is 94.24%, which is below the proposed species boundary.
However, if a different ANI threshold was set, for example 94%, this blood isolate would be considered
as a part of the genomospecies JPFV. With this in mind, we decided to change the ANI threshold for
genomospecies for the case of patient 22 in order to see the effects that a different ANI threshold would
have on the classification of streptococcal bacteria present in the stool sample. Figure 9 shows the ANI
dendrogram marked with the different ANI thresholds used in this analysis.

For this experiment, we built three additional databases, each one containing a different number of
streptococcal genomospecies depending on the ANI threshold set for each database. When setting a new
ANI threshold, only one reference would be used as a reference for that genomospecies. For example,
at an ANI threshold of 94%, the genomospecies JUQO_s and LBMT_s would be considered as a
single genomospecies, so in order to select which reference would be used to represent this new
genomospecies, we selected the genome with the highest N50 value. After building these three
additional databases, we profiled the stool sample of patient 22 and generated heatmaps with their
respective ANI dendrogram as shown in Figure 10. With a 94% ANI cutoff, the blood isolate from
patient 22 is now considered as the JPFV_s genomospecies, at the same time, JUPI_s now is considered
a strain of GL732452_s; despite these changes, the main streptococcal species found on the sample is
JPFV_s, which is the genomospecies that now represents the blood isolate from the patient. A small
abundance is also detected for the genomospecies NCUW_s. Lowering the ANI threshold to 93%,
decreases the number of genomospecies present in this tree, with CP014326_s now representing a
vast majority of genomospecies from the 95% ANI tree, including ASZZ_s, JUPG_s, JVMO_s, JPFV_s,
and the blood isolate SRR7407865. In this case, CP014326_s is classified as the main streptococcal
species with NCUW_s also being found present with a low abundance. Lastly, with an ANI threshold
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of 92%, only six species remain, this time, the genomospecies CP014326_s maintains its predominant
presence of streptococcal abundance, with a slight abundance increment, and this could be mainly due
to the absence of NCUW_s, now being represented by JH378877_s.
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The example shown in Figure 10, demonstrated that regardless of the ANI threshold set for
genomospecies, the detection of a specific species can be achieved if a representative species close to the
one of interest is present in the database. With an ANI threshold of 92%, genomospecies CP014326_s
represents our blood isolate SRR7407865, and with an ANI distance between these two of 93.591%,
it can be seen that with a small sacrifice of abundance detection, the presence of either genomospecies
can be achieved regardless of the ANI threshold set by the user.

Here, we showed that even with different ANI thresholds, the classification of the streptococcal
strain was consistent with the location of the blood isolate within the original ANI dendrogram.
However, a loss of abundance was seen mainly because of the higher ANI distance between the
species present in the stool sample and the reference used to represent the genomospecies on each
of the examples. While the ANI threshold for setting boundaries for new species can be debatable,
when using a computational method that is based on sequence similarity, we believe that a fixed
sequence similarity ANI threshold should be implemented, regardless of the taxonomic rank we set to
given a taxon node (species, genomospecies, or even strain).

3. Materials and Methods

3.1. Selecting the Reference Genomes

We used the EzBioCloud database [8] as a source for our reference genomes and selected one
reference per species with a total of 9145 bacterial species, including 201 species (88 validly named species
and 113 genomospecies) in the genus Streptococcus. Supplementary Table S1 shows the list of references
used, with their respective EzBioCloud and NCBI accession numbers. Supplementary Figure S1
shows the ANI dendrogram of all the streptococcal references used in this study. For Section 2.4,
we merged taxonomic nodes depending on the new ANI threshold set by selecting only one reference
with the highest N50 value for their assembly; N50 is defined as the length of the shortest contig that
accumulatively show 50% or more of the genome size [18].
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The genome sequence of a blood isolate from patient 22 (NCBI accession SRR7407865) was
incorporated to the database for Section 2.3. The raw data was downloaded from NCBI and assembled
using the pipeline SPAdes [21] with the default parameters.

3.2. Average Nuclodetide Identity and Hierarchical Clustering

OrthoANIu [22] was used to calculate ANI. Hierarchical clustering was carried out from the ANI
matrix by applying the UPGMA (unweighted pair group method with arithmetic mean) algorithm
using the R library phangorn [23].

3.3. Synthetic and Real Metagenomic Samples

The four simulated datasets used to compare our pipeline with MetaPhlAn2 were generated with
InSilicoSeq [13] using the MiSeq model provided. These datasets are available at https://bitbucket.org/

streptosynth/metagenome/downloads/. Supplementary Table S2 shows the genomes used for these
sets. The chronic obstructive pulmonary disease metagenomic samples [14] were downloaded from
https://www.ncbi.nlm.nih.gov/bioproject/PRJEB9034/, while the metagenome and isolate samples of
the patient 22 [16] was from https://www.ncbi.nlm.nih.gov/bioproject/PRJNA477326/.

3.4. Extracting the Core Genes

The 92 genes that are defined as up-to-date bacterial core gene (UBCG) were extracted for all
species from EzBioCloud databases, including those belonging to the genus Streptococcus as described
earlier [2]. Figure 11 shows the distribution and location of all 92 UBCG of the Streptococcus suis
reference genome (NCBI accession GCA_900143575.1). All 92 UBCGs were also extracted from the
genome assembly of a blood isolate (NCBI SRA accession SRR7407865).Pathogens 2020, 9, 204 15 of 18 
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3.5. Taxonomic Profiling

The publicly available software Kraken was used to build the UBCG k-mer database. Kraken is a
k-mer based metagenomic taxonomic classifier that utilizes a modified HashMap created by Jellyfish [24]
in order to classify sequences with higher speeds and accuracy. First, using EzBioCloud’s taxonomy,
we created a taxonomic structure compatible with Kraken and then we converted all the UBCG
references to fasta format. Once the references were added, we compiled the database with a k-mer
size of 26 bp. A normalization database using Bracken [25] was also generated for different read
lengths (100, 200, 250). Bracken distributes reads classified at higher taxonomic levels to a species
level classification.

In this study, a total of 5 databases using UBCGs were built, one containing just validly named
species (KrakenUBCG-VNS), a second one containing the same valid named species with the addition
of genomospecies references (KrakenUBCG) defined by the ANI threshold of 95% proposed by
Chun et al. [18]. Lastly, three databases were build using different ANI thresholds (94%, 93%, and 92%).
For each of these databases, we maintained the ‘one reference per taxon’ approach, and the method of
selecting the representative genome for these databases can be found in Section 4.

To classify the metagenomes using Kraken, all samples were classified with a Kraken filter
threshold of 0.1 with the exception of Section 2.2 where different thresholds were used to demonstrate
closeness of the reference with the metagenomic reads. Kraken’s threshold per read is calculated
as the fraction C/Q, where C is the number of k-mers mapped to the lowest common ancestor
values in the clade rooted at the label, and Q is the number of k-mers in the sequence that lack an
ambiguous nucleotide.

After the classification by Kraken and the normalization step by Bracken, all metagenomic
abundances predicted with our UBCG database were normalized using the total length of all the UBCG
belonging to a single species.

To compare our results, we also predicted the abundances at species level using MetaPhlAn2 [1]
with the v20 version of database and default parameters. In order to compare fairly our predictions
with MetaPhlAn2, we matched their reference markers using the NCBI accession number provided
in their database and EzBioCloud’s NCBI’s accession numbers and matched them when present in
their database as seen in Figure 4. Abundance accuracy for the synthetic datasets was measured
using the log-modulus difference between the truth and predicted abundances of both pipelines [26].
The log-modulus was calculated as:

y’ = sign(y) × log10(1 + |y|), (1)

to preserve the sign of the difference between estimated and expected abundance, y.

3.6. Biomarker Discovery

Biomarker discovery shown in Figure 5 was calculated using LEfSe [15], which utilizes
a linear discriminant analysis (LDA) effect size method to support high-dimensional class
comparisons. LEfSe’s biomarkers were found using a P-value <0.05 (Kruskal–Wallis test) and
an LDA score (log 10) > 2.0.

4. Conclusions

In this study, we demonstrated that UBCG sequences can be used as references for metagenomic
classification, showing that they are easy to extract from genome sequences and accurate when
predicting relative abundance. However, UBCG sequences can only represent bacterial organisms,
so in order to represent other type of organisms, a different set of core genes needs to be used. We also
demonstrated that inclusion of the genomospecies in the reference databases significantly improve
the classification accuracy of bacterial species within a metagenomic sample. Furthermore, our
study implicated that, regardless of the ANI threshold used for species/genomospecies boundaries,
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if the genomic reference sequence does not change, only the name for the given species will be
different. Finally, we showed that while publicly available pipelines and databases are easily accessible,
for accurate and reliable taxonomic classification, an updated database with proper taxonomic and
genomic curation must be used.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0817/9/3/204/s1,
Figure S1: ANI phylogenetic tree of all the streptococcal references used in this study, Table S1: Table containing
the names and accession numbers for every streptococcal genomic reference used in this study, Table S2: Table
containing the references used on the synthetic datasets, containing also the true abundances for each sample,
Table S3: Table containing the streptococcal references contained on MetaPhlAn2.
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