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Patients with basal ganglia damage show preserved
learning in an economic game
Lusha Zhu 1, Yaomin Jiang 1, Donatella Scabini2, Robert T. Knight2,3 & Ming Hsu 2,4

Both basal ganglia (BG) and orbitofrontal cortex (OFC) have been widely implicated in social

and non-social decision-making. However, unlike OFC damage, BG pathology is not typically

associated with disturbances in social functioning. Here we studied the behavior of patients

with focal lesions to either BG or OFC in a multi-strategy competitive game known to engage

these regions. We find that whereas OFC patients are significantly impaired, BG patients

show intact learning in the economic game. By contrast, when information about the strategic

context is absent, both cohorts are significantly impaired. Computational modeling further

shows a preserved ability in BG patients to learn by anticipating and responding to the

behavior of others using the strategic context. These results suggest that apparently diver-

gent findings on BG contribution to social decision-making may instead reflect a model where

higher-order learning processes are dissociable from trial-and-error learning, and can be

preserved despite BG damage.
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Guided by dopaminergic inputs from the substantia nigra,
the basal ganglia (BG), along with other regions of the
frontostriatal circuits including the orbitofrontal cortex

(OFC), have been widely implicated in value-based decision-
making involving learning and instantiation of behavioral
policies1,2. In recent years, there is growing evidence, primarily
from neuroimaging, suggesting that these regions may in addition
play a crucial role in reward-guided behavior in the social
domain3–5. In particular, studies applying formal computational
models of social decision-making have begun to elucidate cogni-
tive mechanisms underlying putative BG and OFC contributions
to social valuation and learning processes, paralleling their roles in
more basic decisions involving rewards and punishments3,6–9.

Owing to the inherently correlational nature of functional
neuroimaging measures, however, there is substantial uncertainty
regarding the specific causal contribution of BG to social beha-
vior. Unlike in OFC patients where social and emotional dis-
turbances have long been a hallmark of damage10, BG pathology
is not typically associated with social dysfunction11–13. Clinical
reports of focal BG lesion include few observations of social
deficits11. Studies of patients where damage was acquired
through neurodegenerative disorders such as Parkinson’s disease
have likewise yielded mixed results, where social functioning
deficits manifest primarily in late stage patients, when affected
regions likely include prefrontal areas14–16. Indeed, this is

consistent with growing evidence that there exists a multiplicity
of decision-making and learning mechanisms that are supported
by dissociable neural systems, and whose interaction is critical
for understanding their causal contribution to behavioral
outputs6,7,17. Thus, it is possible that social functioning is spared
at least to some extent in BG pathologies owing to compensatory
mechanisms supported by intact regions along the frontostriatal
circuits. Alternatively, it is possible that social deficits were
overlooked or underreported in previous studies owing to more
visible deficits associated with BG pathology, such as those
involving motor functioning11.

Here we sought to test the above hypotheses by comparing the
behavior of patients with focal lesion to either the BG or OFC to
that of healthy compare subjects in a multi-strategy competitive
game, the so-called Patent Race, where the success of players’
actions depend on those of coplayers7,18 (Fig. 1; Methods). Unlike
cortical regions, which can be reached using noninvasive brain
stimulation methods such as transcranial magnetic stimulation
(TMS), patient studies remain one of the few methods available to
human researchers to gain causal insights into the functional role
of BG to cognition and behavior19–24. Specifically, we employed a
stylized but well-characterized setting of a population with many
anonymously interacting agents and low probability of re-
encounter (Methods). This setting provides a natural model for
situations such as commuters in traffic or bargaining in bazaars.
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Fig. 1 Lesion reconstruction and task schematic. a Structural MRI slices illustrating the lesion overlap across the two patient groups. All BG lesions were
shown overlaid on the left hemisphere for comparison purposes (4L; 2R). BG group mean lesion volume was 10.6 cm3. Maximal lesion overlap was in the
putamen and encompassed the head and body of the caudate as well as the globus pallidus in some patients. OFC group mean lesion volume was
113.5 cm3. Maximal lesion overlap was in Brodmann’s areas 10, 11, 13, and 14, centered in the OFC and including portions of areas 12, 25, and 47 in some
patients. b Subjects were presented with the information regarding their endowment, the endowment of the opponent, and the potential prize. In the
particular payoff structure we used, the prize is worth 10 units, and the Strong (Weak) player is endowed with five (4) units at the beginning of each round.
Subjects then inputted the decision (self-paced) by pressing a button mapped to the desired investment amount from the initial endowment. If the
subject’s investment was strictly more than that of the opponent, the subject won the prize; otherwise, the subject lost the prize. In the event of a tie, both
lost the prize. In either case, the subject kept the portion of the endowment not invested. In the non-strategic condition, participants were told to choose an
investment that must exceed a randomly generated hurdle to win the prize, but were not told how the computer generated the random hurdle. The hurdle
followed the same empirical frequency of decisions as in the strategic condition. The experiment consisted of 160 rounds of Patent Race game, alternating
between the strategic and non-strategic conditions over 80 rounds, counterbalanced
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Importantly, in minimizing the role of reputation and higher-
order belief considerations, the population setting using a
random matching protocol is perhaps the most widely studied
experimental setting and has served as a basic building block for
a number of models in evolutionary biology and game
theory7,25–27.

Specifically, in the Patent Race, players of two types, Strong and
Weak, are randomly matched at the beginning of each round and
compete for a prize by choosing an investment (in integer
amounts) from their respective endowments. The player who
invests more wins the prize, and the other loses. In the event of a
tie, both lose the prize. Regardless of the outcome, players lose the
amount that they invested. In the particular payoff structure we
use, the prize is worth 10 units, and the Strong (Weak) player is
endowed with 5 (4) units (Fig. 1b).

Substantial evidence has shown that learning in economic
games including the Patent Race can be parsimoniously explained
using two learning rules across a wide-range of strategic contexts
and experimental conditions: (i) reinforcement-based learning
(RL) through trial and error, and (ii) belief-based learning
through anticipating and responding to actions of others18. In
particular, RL models posit that learning is driven by a prediction
error defined as the difference between expected and received
rewards and have been highly successful in connecting behavior
to the underlying neurobiology28,29. In contrast, belief-based
learning posits that players make use of knowledge of the struc-
ture of the game to update value estimates of available actions and
comes in two computationally equivalent interpretations. One
interpretation assumes the existence of latent beliefs and requires
players to form and update first-order beliefs regarding the
likelihood of future actions of opponents. Specifically, under this
interpretation, the model posits that players select actions stra-
tegically by best responding to their beliefs about future strategies
of opponents and update these beliefs by using some weighted
history of opponents’ choices18,30. Mathematically, players
engaging in belief learning correspond to Bayesian learners who
believe opponent’s play is drawn from a fixed but unknown
distribution and whose prior beliefs take the form of a Dirichlet
distribution18. Under the alternative interpretation, beliefs and
mental models are not assumed and action values are updated
directly by reinforcing all actions proportional to their foregone
(or fictive) rewards31. The equivalence of these two mathematical
interpretations thus makes it clear that belief-based learning does
not necessarily imply the learning of mental, verbalizable beliefs
commonly referred to in the cognitive and social sciences,
because specific beliefs about likely strategies of opponents are
sufficient but not necessary for this type of learning.

Importantly, previous neuroimaging results have been able to
disaggregate distinct computational signatures of reinforcement-
based learning (RL) and belief learning processes based on trial-
by-trial variation in neural responses along frontostriatal circuits.
Specifically, whereas the medial prefrontal cortex (mPFC) selec-
tively responds to belief learning prediction error signals, activity
in the putamen, a substructure of the BG, is correlated with
prediction errors associated with both RL and belief-based
learning7. Building on these findings, therefore, we sought to
investigate the extent to which putative computational processes
such as RL and belief-based learning would reflect functions of
BG necessary for social and strategic learning.

To this end, we studied behavior of focal lesion patients with
damage in either BG (N= 6) or OFC (N= 6), and a cohort of
healthy comparison (HC) subjects (N= 20; Fig. 1a; Methods;
Supplementary Table 1), which is consistent with sample sizes used
in previous lesion studies in the field of cognitive neuroscience10,32–
35. Following informed consent, subjects were tested in the Patent
Race as well as a matching non-strategic version where we replaced

the human pool players with a computer algorithm. Specifically, in
the non-strategic task, participants were told to choose an invest-
ment that must exceed a randomly generated hurdle to succeed, but
were not told how the computer generated the random hurdle
choices (Methods). Importantly, whereas in strategic learning both
belief and reinforcement components were engaged, our previous
work has shown that learning in the non-strategic environment was
driven primarily by reinforcement learning7. Thus the inclusion of
both strategic and non-strategic conditions makes opposing pre-
dictions about how BG lesion will affect learning in the economic
game. If BG are involved in both trial-and-error learning as well as
social functioning such as strategic learning, damage to BG will
affect performances in both strategic and non-strategic environ-
ments. Alternatively, if, in the strategic environment where multiple
learning processes are engaged, learning inputs originated from
prefrontal areas provide compensatory functions for trial-and-error
deficits resulted from the BG damage, we should expect that
damage to the BG selectively impairs learning capacity in the non-
strategic, reward-reinforcing environment, as opposed to the more
complex, interpersonal, strategic environment.

Consistent with neuroimaging evidence suggesting dissociable
contributions of the BG and prefrontal cortex (PFC) to multiple
learning rules, we found that patients with BG damage performed
similarly as participants in the HC cohort in the strategic con-
dition, where learning was driven by a mixture of reinforcement
and belief learning. In contrast, BG patients were markedly
impaired when information about the strategic context was
removed, such that participants must rely primarily on learning
based on reinforcement. Moreover, these differences were quali-
tatively distinct from those observed in patients with OFC
damage, suggesting that findings related to BG cannot be attrib-
uted to the specific method used in the study or a general deficit
associated with reward circuit damage.

Results
Overall task performance. To characterize overall task perfor-
mance and differences across cohorts in the Patent Race game
(Fig. 1b), we first examined the extent to which participants’
likelihood of changing their choices on a round-by-round basis
was affected by received and foregone payoff in each round
(Fig. 2a). In particular, this analysis captures the idea from pre-
vious theoretical and empirical studies showing that whereas
behavior of pure reinforcement learners should be sensitive only
to received payoffs, belief-based learners will be in addition sen-
sitive to foregone payoffs.

To illustrate this, suppose that the Weak player observes the
Strong players frequently investing five units. She may subse-
quently respond by playing zero to keep her initial endowment.
Upon observing this play, Strong players can exploit the Weak
player’s behavior by investing only one unit to obtain the prize
while keeping four units from the endowment. This behavior
may, in turn, entice the Weak player to move away from investing
zero to win the prize. In contrast, pure RL players will respond to
these changes in behavior of the opponents in a much slower
manner, because they behave by comparing received payoffs from
past investments without consideration for the strategic behavior
of others (Supplementary Figure 1).

We therefore conducted model-free logistic regression of the
probability that HC participants would choose the same strategy
on the received payoff and foregone payoff on a round-by-round
basis. As there were multiple foregone payoffs in a round, we
operationalized foregone payoffs by taking the difference between
maximal foregone payoff and received payoff, which following
previous literature, we refer to as “regret” (Fig. 2a)18,36. Consistent
with previous theoretical and empirical findings, we found that the
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extent to which HC participants would stay (switch) with the same
strategy was associated with having received high (low) payoff or
low (high) regret. Specifically, the probability that HC participants
repeated the same choice in round t as in t−1 was significantly
associated with the size of the payoff (β= 0.86, Bonferroni 95%
confidence interval= (0.56,1.17), P < 0.001, Bonferroni corrected;
all reported p values are two-tailed), and negatively associated with
the size of regret (β=−0.45 (−0.74,−0.15), P < 0.001, Bonferroni
corrected; Fig. 2b, Table 1).

Moreover, to manipulate the relative contribution of these two
learning rules to behavior, we altered the social context by testing
subjects in a matching “non-strategic” condition, where we
replaced human pool opponents in the Patent Race with a
matching computer algorithm (Methods). Previous work has

shown that, whereas participants respond to both received and
foregone payoffs in a strategic environment, in the non-strategic
environment learning is driven primarily by reinforcing actions
associated with the received payoff18,36. In line with previous
findings, HC participants in the non-strategic condition showed
significant sensitivity to the received payoff but not regret (β=
0.42 (0.13,0.72), P < 0.001, and β= 0.20 (−0.09,0.49), P > 0.05,
respectively, Bonferroni corrected), such that actions that were
recently rewarded, regardless of the level of regret, were more
likely to be repeated in the subsequent round (Fig. 2b, Table 1).

Using these measures, we next investigated how lesion to BG or
OFC affected performance across strategic and non-strategic
conditions. We found that, similar to HC participants, BG
patients displayed significant sensitivity to both payoff and regret
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Fig. 2 Overall task performances. a Illustration for the received and forgone payoff. The received payoff reflects the amount of reward obtained through the
action chosen by the subject, whereas the maximal forgone payoff reflects the amount of reward one could have received by choosing the best available
action given the opponent’s decision. For example, if the subject chose 5 and the opponent 0, the maximal forgone payoff was 14, as the optimal action
would have been to invest 1, as opposed to the received payoff 10. Had the opponent chosen 3, however, the received payoff would remain to be 10 but the
maximal payoff would be 11, as choosing 4 would have been the best strategy. Thus, the maximal forgone payoff reflects the variability in opponents’
actions and their effects on possible outcomes. Following previous studies, regret is defined as the distance between the maximal forgone and received
payoff, given the opponent’s decision on a particular trial. b Stay/switch frequency versus received payoff (left) or regret (right). Y-axes represent the
percentage of trials in which subjects chose to stay with the same decision on the next trial (i.e., “stay”), based on median splits on payoffs and regrets for
each cohort and condition (x-axes). Error bars represent S.E.M. *P < 0.05, **P < 0.01, ***P < 0.001, Bonferroni corrected
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in the strategic condition (β= 0.74 (0.18,1.30), P < 0.01, and β=
−1.07 (−1.67,−0.49), P < 0.001, respectively, Bonferroni cor-
rected; Fig. 2b, Table 1). In stark contrast, in the non-strategic
condition where the information about the strategic context was
removed, BG patients were not sensitive to either the payoff or
regret (β= 0.26 (−0.29, 0.82), P > 0.05, and β= 0.10 (−0.45,
0.66), P > 0.05, respectively, Bonferroni corrected; Fig. 2b,
Table 1). Interestingly, decisions of the OFC cohort exhibited
the opposite pattern, displaying little responsiveness to either
payoff or regret in the strategic condition (β= 0.00 (−0.58, 0.59),
P > 0.05, and β= 0.24 (−0.34, 0.82), P > 0.05, respectively,
Bonferroni corrected), but significant sensitivity to the received
payoff in the non-strategic condition (β= 0.75 (0.19, 1.33), P <
0.01, Bonferroni corrected; Fig. 2b, Table 1). All results were
robust to analyses controlling for demographic variables and
neuropsychological assessments, as well as non-parametric
permutation tests sampling null distribution for each cohort
and each condition (Supplementary Table 2 and Supplementary
Figure 2). In addition, as the stay/switch measure does not take
into account the potential difference in switching to more or less-
adaptive strategies, additional analyses were performed to
examine the frequency of choosing optimal actions by each
cohort under each condition, based on model-free measures of
optimal choices (Supplementary Figure 3).

Intact strategic learning capacity following BG damage. The
above results therefore argue in favor of a model where effects of
the BG damage on social functioning were buffered by other

learning processes, but not when the social context was removed.
To more formally test this dissociation, and to connect behavioral
differences to underlying cognitive mechanisms, we applied
a computational approach using the Experience-Weighted
Attraction (EWA) model, which nests reinforcement and belief-
based learning algorithms as special cases and has been highly
successful in connecting these computational components with
neural responses along frontostriatal circuits (Supplementary
Figure 1; see Methods)7,31,37.

We tested the hypothesis that the extent to which BG are
asymmetrically involved in learning in strategic and non-strategic
environments would be reflected by the differential ability of
EWA to explain choice behavior. That is, BG patients should
benefit more when shifting from the non-strategic to strategic
environment, in terms of the EWA model fit either in-sample
(e.g. pseudo-R2) or out-of-sample (e.g., hold-out prediction
accuracy), compared with that of HC subjects. Specifically,
comparing pseudo-R2 values31, we found no significant difference
in how well EWA explained choice behavior under the strategic
condition in BG vs. HC cohorts (BG: mean±standard error of
mean= 0.45 ± 0.02; HC: 0.42 ± 0.01; bootstrapped 95% CI=
(−0.03, 0.09), P > 0.05, Bonferroni corrected; Fig. 3a; Methods).
In contrast, in the non-strategic condition, the BG cohort was
associated with significantly lower pseudo-R2 than that of HC
(BG: 0.26 ± 0.02; HC: 0.36 ± 0.01; bootstrapped 95% CI= (−0.17,
−0.05), P < 0.001, Bonferroni corrected; Fig. 3b).

Moreover, there was a significant cohort (BG vs. HC) by
condition (strategic vs. non-strategic) interaction, such that BG
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Fig. 3 Computational modeling. a Differential ability of EWA in explaining choice behavior. The bar plots depict values of pseudo-R2 derived from the best-
fitting EWA, defined as the difference between the log-likelihood of the EWA model and a random choice model, scaled by log-likelihood of the random
model. Higher pseudo-R2 values indicate better model fit relative to chance level. The means and error bars were constructed using a bootstrap procedure
with 10,000 iterations pooling over cohorts for each condition. b Trial-level EWA model fit based on pseudo-R2 plotted using 15-trial bins. c Bayesian
Information Criterion (BIC) showing significant improvement of the hybrid model fit relative to the baseline RL model, in HC and BG cohorts under the
strategic treatments, calculated using a bootstrap sampling procedure with 10,000 iterations. Error bars indicated bootstrap S.D. and shaded areas indicate
S.E.M. *P < 0.05, **P < 0.01, ***P < 0.001, Bonferroni corrected

Table 1 Logistic regression modeling of effect of received payoff and regret on subsequent stay/switch decisions

Strategic Non-strategic

HC BG OFC HC BG OFC

Payoff 0.86*** 0.74** 0.00 0.42*** 0.26 0.75**

(0.56, 1.17) (0.18, 1.30) (−0.58, 0.59) (0.13, 0.72) (−0.29, 0.82) (0.19, 1.33)
Regret −0.45*** −1.07*** 0.24 0.20 0.10 −0.26

(−0.74, −0.15) (−1.67, −0.49) (−0.34, 0.82) (−0.09, 0.49) (−0.45, 0.66) (−0.84, 0.31)

Significantly positive coefficient for payoff suggests increased likelihood to stay as the received payoff increases, and negative coefficient for regret suggests increased likelihood to stay as the regret
decreases. *P < 0.05, **P < 0.01, ***P < 0.001, Bonferroni corrected. Parentheses contain Bonferroni-corrected 95% confidence interval
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damage was associated with a more pronounced increase in EWA
model fit from the non-strategic to strategic condition compared
with that of HC participants (increase of model fit in BG: 0.20 ±
0.03; HC: 0.06 ± 0.02; bootstrapped 95% CI= (0.05, 0.22), P <
0.001, Bonferroni corrected). Similar results were obtained when
comparing the EWA explanatory power between BG and HC at
either trial- or subject-level (Fig. 3b, Supplementary Figure 4–5).
To address potential concerns regarding overfitting and spurious
cohort differences arising from natural variations in learning
across individuals, we performed additional analyses using out-
of-sample tests and permutation tests shuffling cohort labels.
Both yielded similar results (Supplementary Figure 6–7).

In contrast, the behavior of OFC patients was associated with
significantly lower explainable variances than HC participants in
both strategic (OFC: 0.16 ± 0.02 vs. HC: 0.42 ± 0.01; bootstrapped
95% CI= (−0.31, −0.21), P < 0.001, Bonferroni corrected) and
non-strategic conditions (OFC: 0.23 ± 0.02 vs. HC: 0.36 ± 0.01;
bootstrapped 95% CI= (−0.19, −0.08), P < 0.001, Bonferroni
corrected; Fig. 3a). Interestingly, there was also some evidence for
a significant cohort by condition interaction, such that the OFC
damage was associated with a decrease in pseudo-R2 from the
non-strategic to strategic condition comparing with healthy
participants (increase of model fit in OFC: −0.06 ± 0.02; HC: 0.06
± 0.02; bootstrapped 95% CI= (−0.20, −0.05), P < 0.001, Bon-
ferroni corrected). However, unlike in BG patients, OFC effects
were sensitive to alternative specifications such as the self-tuning
estimation, where some of the EWA parameters were replaced by
functions of experience of OFC patients37 (Supplementary
Figure 8). Model estimates and additional robustness checks are
reported in the Supplement (Supplementary Figure 9, Supple-
mentary Tables 3–4).

Compensatory role of higher-order learning inputs. To more
formally test the hypothesis that BG damage spares the capacity
to engage in belief-based learning, we used the EWA model to
disentangle the relative contributions of different decision rules
across cohorts in strategic and non-strategic conditions. Specifi-
cally, we examined the extent to which EWA improved the
explanatory power above and beyond the basic RL algorithm.
That is, if strategic learning capacity in BG patients was com-
pensated using high-order learning processes, EWA should sig-
nificantly improve the fit relative to the baseline RL
(Supplementary Figure 1). By focusing on model comparison as
opposed to specific parameters calibrated from the behavior (e.g.,
the weight on belief-based learning), this method is less depen-
dent upon the accurate identification of model parameters, which
can be problematic particularly in lesion cohorts associated with
poor model fits. Importantly, this test also serves as a more
stringent test, because choices that were equally explainable by RL
and other learning rules nested within EWA were attributed
solely to the RL algorithm.

Using the Bayesian Information Criterion (BIC) to penalize
for the number of free parameters, we found that in control
subjects, consistent with previous studies, EWA significantly
improved the fit only in the strategic but not the non-strategic
condition (Strategic: 7.36 ± 2.50, bootstrapped 95% CI= (1.71,
14.74), P < 0.01; non-strategic: 1.76 ± 2.16, bootstrapped 95%
CI= (−3.51, 7.70), P > 0.05, Bonferroni corrected; Fig. 3c).
Critically, in the strategic condition, EWA significantly improved
the fit of BG patients relative to the baseline RL (7.62 ± 2.29,
bootstrapped 95% CI= (1.28, 12.63), P < 0.05, Bonferroni
corrected), but not in the non-strategic condition (−1.68 ±
2.24, bootstrapped 95% CI= (−7.11, 4.27), P > 0.05, Bonferroni
corrected). Finally, in the OFC cohort, EWA did not explain the
choice behavior above and beyond the basic RL model in the

strategic condition (−0.61 ± 2.21, bootstrapped 95% CI=
(−5.14, 5.75), P > 0.05, Bonferroni corrected), and in fact was
significantly worse than RL in non-strategic condition after
penalizing for additional parameters (−4.06 ± 1.04, bootstrapped
95% CI= (−6.37, −1.15), P < 0.001, Bonferroni corrected)
(Fig. 3c, Supplementary Figure 5).

Discussion
A wealth of neuroimaging data has implicated the involvement of
the BG, and in particular the striatum, in a striking variety of
goal-directed decisions, including those involving acquiring
rewards for oneself as well as in the social domain where actions
and outcomes depend on rewards of others4,7,24,38. In the former,
these correlational findings have been corroborated with findings
from causal studies using focal lesion patients and those with
neurodegenerative disorders known to affect BG11,19,22–24,39–41.
In contrast, surprisingly little evidence exists, either in support of
or argue against, the causal involvement of BG in social decision
making11,13,16.

Here by connecting the lesion method with neuroeconomic
tools, we show that capacity for strategic learning in the presence
of competitive, intelligent opponents can be preserved in patients
with focal BG damage, despite having deficits in learning in a
non-social, probabilistic environment. Model comparisons fur-
ther show that damage to BG spares strategic learning capacity
possibly through compensatory processes such as belief-based
learning when the social context is available for anticipating
future actions of others.

Owing to variation in lesion location and extent across
patients, it is possible that our findings were driven by damage to
specific BG nuclei or adjacent regions outside of BG. The max-
imal lesion overlap in our sample of BG patients is in the ventral
rostral putamen (6/6), as well as in the globus pallidus (4/6) and
caudate (2/6) (Fig. 1a). In particular, the putamen and caudate
nucleus have been previously implicated in learning about actions
and their reward consequences in action-contingent learning42–45

and in social exchanges involving trust and reputation that
requires learning about social agents based on their previous
actions4. Across analyses, however, there is no association of
performance with lesion extent or their location along the dorsal/
ventral axis, and findings are robust to exclusion of patients with
caudate lesions (Supplementary Tables 5–6). Similarly, damage
extending to the insular cortex, which was observed in three of six
patients in the BG lesion cohort, was not associated with per-
formance (Supplementary Table 5). In contrast, behavior in
patients with damage to the OFC, another critical node within the
reward circuit, shows a qualitatively distinct pattern, suggesting
that findings related to BG cannot be attributed to the specific
method used in the study or considered as a general property
associated with the reward circuit.

Together with prior neuroimaging findings, our data provide
insights into the computational underpinnings of social decision
making and the apparently contradictory findings from past
neuroimaging and lesion studies. Specifically, both set of findings
are consistent with a model of BG functioning in receiving
higher-order learning signals broadcasted from other regions
involved in social cognition to the striatal input areas. In line with
this model, BG activations identified in prior fMRI studies of
social decision-making were typically accompanied by concurrent
activations in other brain regions involved in social cognitive
processing, including the rostral anterior cingulate cortex
(ACC)46, mPFC7,47, and temporoparietal junction (TPJ)48,49.
Within the Patent Race itself, BOLD responses in the putamen
were found to be associated with prediction errors arising from
both belief-based and reinforcement learning, whereas activity in
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the medial PFC is correlated with belief-based learning prediction
errors7.

Our results are consistent with past studies in BG disorders,
suggesting the presence of compensatory processes when the task
can be solved through multiple learning strategies. For example,
although BG damage is associated with impaired learning in
changing, probabilistic environments19,23,39, there is some evi-
dence that learning capacity is intact when patients are able to
engage in declarative learning strategies which do not depend on
the integrity of BG39. Results of these studies thus raise intriguing
questions regarding whether the asymmetrical functions of BG
are specific to strategic vs. non-strategic comparison, or hold in
more general settings of social decision-making where multiple
cognitive processes are supported by dissociable neural systems.
For example, in observational learning where individuals can
learn from either the actions or choice outcomes of others in a
non-strategic manner, it remains unclear whether the putative
contribution of BG in the processing of outcome-based learning
signals is necessary for learning from observations, or can be
compensated by action-based learning that depends on the dor-
solateral PFC6.

An alternative possible explanation is that the preserved stra-
tegic learning capacity reflects the compensatory role of the intact
contralateral BG. Indeed, owing to the rarity and often devas-
tating motor deficits of bilateral BG damage11, our BG cohort
consisted only of those with unilateral lesion. As a result, it is
possible that the intact hemisphere alone is sufficient for learning
in social settings, but not in non-social environment. More
broadly, it suggests the possibility where social learning capacity
following BG damage may crucially depend on intact functional
coupling between preserved portions of the BG and cortical
regions involved in social cognitive processes. This is consistent
with existing causal evidence from both lesion and TMS studies,
demonstrating the causal involvement of cortical regions,
including the ACC50–52, mPFC10,51,53, and right TPJ54,55, in
social decision-making in humans and non-human primates.
Future studies comparing the functional connectivity of these
regions in patient vs. healthy populations would be valuable in
understanding how socially relevant information are integrated
during such decision processes3–5.

Interestingly, although pseudo-R2 values were fairly consistent
over time in the strategic condition, they were more variable in
the non-strategic condition. This is particularly true for the BG
patients during rounds 15–35, where pseudo-R2 dropped sharply
following a rise at the start of the experiment. This may reflect the
engagement, albeit less successfully than in the strategic condi-
tion, of compensatory mechanisms in BG patients in the non-
strategic condition, for example, through relying on working
memory (WM) systems. Indeed, past studies of reward learning
suggest that prediction errors produced by RL systems include
significant contribution from WM systems, especially during
early learning56,57. Future studies are needed to more firmly
establish this effect and the underlying neural mechanisms.

Our findings also contribute to the understanding of social
deficits associated with OFC lesions. Deficits observed in our
OFC patients were particularly marked in the strategic condi-
tion, hinting at a more pronounced impairment during
decision-making in social contexts. This is consistent with the
wealth of neuropsychological findings documenting profound
changes in social behavior following the OFC damage, includ-
ing impaired capability in perspective taking and inferring
mental states of others10. The OFC effects observed in our
experiment, however, were more heterogeneous and sensitive to
the specific analytic choices. One candidate explanation is that
this reflects the greater variation in the damage extent in our
OFC cohort, which in some cases extended into the lateral and

dorsal regions. Previous literature suggests lateral and medial
OFC differentially contribute to processes entailing, respec-
tively, learning and updating versus those involved in value
comparisons especially in decisions among three or more
options58–60. Moreover, owing to the presence of white matter
damage and in some cases adjacent regions including the lateral
OFC, we cannot completely rule out the contribution from non-
mOFC based processes61. Future experiments with larger
sample sizes in combination with lesion mapping techniques
will be needed to test these possibilities.

A more general concern with our model-based approach is
the possibility of model misspecification due to participants
engaging in decision rules beyond the EWA model space62.
This is particularly the case with lesion cohort behavior, as
model-based approaches such as RL or EWA inherently make
strong assumptions regarding how past experiences are inte-
grated over the course of learning. Our study addressed this in
two ways. First, we focused on cross-cohort comparisons using
goodness-of-fit measures, rather than specific parameters cali-
brated from behavior (e.g., the weight on belief-based learning).
In particular, comparisons based on individual parameters
provide meaningful insights into cognitive components if
cohorts behave in accordance to model assumptions. For
example, using comparison between HC strategic and non-
strategic conditions, the belief learning parameter provided a
good indication that HC relied less on belief learning in the
non-strategic condition. On the other hand, a poor model fit
raises the possibility that one or more model assumptions are
violated. This misspecification issue is equally true for both
frequentist and Bayesian approaches. More importantly, such
model misspecification can result in either upward or down-
ward biases in parameter estimates. This makes it difficult, even
in the presence of significant differences in parameter estimates,
to draw firm conclusions regarding differences in cognitive
mechanisms between cohorts or conditions.

Second, consistent with other neuroeconomic studies using the
lesion method (e.g.,33,34,58,63,64), we used model-free analyses
whenever possible to characterize behavioral deficits and support
conclusions derived from model-based methods. Specifically, this
involved examining the extent to which participants’ choice
behavior was sensitive to various different notions of learning
signals without restricting the specific functional form that
weights on these signals may take (Supplementary Figure 10). A
more thorough investigation using data-driven approaches will be
needed to further assess and compare choice predictability of
lesion patients vs. control subjects, removing assumptions
regarding which and how external stimuli drive the learning
process.

Issues of whether, and under what circumstances, cognitive
processes supported by BG reflect the computational properties
necessary for social behavior have important implications for
understanding the interaction between parallel cognitive pro-
cesses, as well as the neural mechanisms necessary for arbi-
trating between such processes. The present study thus
demonstrates the utility of combining the lesion method with
formal models of behavior in addressing these questions. At the
same time, an important limitation of our study concerns the
limited sample size of patient cohorts, particularly given the
inherent rarity of focal BG lesion. Future studies can address
this issue by using lesion analytical methods, such as model-
based lesion symptom mapping, to identify the distributed
patterns of brain areas within BG that subserve social functions.
In addition, future studies also need to address whether our
findings generalize to other types of social decisions, including
those involving prosocial motivations47,65,66, reciprocity67, and
social dominance53.
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Methods
Subjects. Patients with focal brain lesions to the BG (n= 6) and OFC (n= 6) were
included in the experiment. HC participants (n= 20) were recruited from San
Francisco Bay Area, CA. All subjects provided informed consent and the study was
approved by the Committee for Protection of Human Subjects at the University of
California, Berkeley, CA. See Supplementary Table 1 for demographic information
and neuropsychological background of lesion patients.

Lesion reconstruction. Software reconstructions were performed using MRI-
cron68. For both patient groups, testing took place at least 6 months after the date
of the stroke/accident. A neurologist (R.T.K.) inspected patient MRIs to ensure that
no white matter hyperintensities outside the lesioned area were observed in either
patient group. All TBI patients had low impact force injuries with no clinical or
MRI evidence of axonal shear.

Procedure. Following task instructions and a comprehension quiz, participants
were administered two blocks of strategic and non-strategic condition trials, each
containing 80 rounds. All choices were conducted using hypothetical payoffs and
no feedback, with order of the strategic and non-strategic blocks counterbalanced
across participants within each cohort. We first conducted a behavioral session
where 16 healthy subjects played the Patent Race for two sessions of 80 rounds
each using a random matching protocol. We will refer to these subjects as “pool
players”. Players switched Strong and Weak roles at the end of the first 80 rounds.

In the strategic condition, lesion patients and healthy control subjects played
against these pool players. Importantly, they played in the same sequence as pool
players. For example, if the patient was on round 60, the opponent’s choice would
be drawn randomly from round 60 of one of the pool players. We used the random
matching protocol in the strategic condition for two reasons. First, this protocol
requires a reasonable number of subjects to ensure that the probability of repeated
interaction is small. Otherwise, subjects may be able to develop hierarchical mental
models in order to collude with or trick the paired opponents. Second, it helps to
preserve the dynamics of the evolution of play in the experiment, and control for
the inter-group variation that would arise if we used more than one group of pool
subjects.

In the non-strategic condition, we replaced the human pool players with a
matching computer algorithm. Participants were told to choose an investment that
must exceed a randomly generated hurdle to succeed, and were not told how the
computer generated the hurdle. In behavioral pilots, we generated randomness
using two different methods. The first is a stationary distribution using the
proportion of strategies chosen in the human population. The second method
essentially replicates the human treatment, in that we sampled trial-by-trial from
the empirical time series of the population play from the human pool players. We
found that learning in both non-strategic treatments was driven by reinforcement
rather than belief learning. Here we used the second method to precisely match the
sequence of stimuli across social and non-social conditions.

Computational modeling. To quantitatively characterize relative contribution of
reinforcement and belief-based inputs to behavior, we used the well-established
hybrid model of experience-weighted attraction (EWA) first introduced by
Camerer and Ho31. According to this model, player i updates the expected value of
each strategy k at trial t (denoted by Vk(t)) according to the following rule:

Vk
i ðtÞ ¼

ϕ�N t�1ð Þ�Vk
i t�1ð Þþπi ski ;s�i tð Þð Þ

NðtÞ ; if ski ¼ si tð Þ;
ϕ�N t�1ð Þ�Vk

i t�1ð Þþδ�πi ski ;s�i tð Þð Þ
NðtÞ ; if ski ≠si tð Þ;

8
><

>:
ð1Þ

where N tð Þ ¼ ρ � N t � 1ð Þ þ 1.
Here, player i’s strategy of investing k at trial t is denoted as ski ðtÞ, and the

strategy chosen by i’s opponent is denoted as s�iðtÞ. Variable πiðski ; s�iðtÞÞ thus
represents the payoff player i will receive if he/she invests k in trial t, given his/her
opponent’s choice s�iðtÞ. The key insight of the EWA is that it allows a player
updating both the expected value of the chosen option based on the received
payoff, and the value of unchosen options based on foregone payoffs given the
opponent’s decision at a particular trial. The former corresponds to the standard
RL algorithm, and the latter is equivalent to the belief-based learning rule. The
parameter δ controls the extent to which the player weights foregone payoffs
relative to the received payoff. Parameter ϕ is a discount factor that depreciates
previous subjective values. Function N(t) captures the importance of the pre-game
experience in updating the expected value of a choice option based on experiences
gained within the game. Parameter ρ controls how fast N(t) decays. When δ= 0, N
(0)= 1, and ρ= 0, the EWA model reduces to a basic RL model:

Vk
i ðtÞ ¼

ϕ � Vk
i t � 1ð Þ þ πi s

k
i ; s�i tð Þ

� �
; if ski ¼ si tð Þ;

ϕ � Vk
i t � 1ð Þ; if ski ≠si tð Þ:

(

ð2Þ

Behavioral data analysis. To calibrate EWA and RL models given subjects’
behavior in the experiment, we estimated the parameters of each model by

maximizing the log-likelihood of model predictions for each cohort and each
condition separately. Expected values were then converted into choice probability
through the well-established softmax function:

pki t þ 1ð Þ ¼ eλ�V
k
i tð Þ

PL
l¼1 e

λ�Vl
i tð Þ ; ð3Þ

where pki t þ 1ð Þ is the probability of investing k at trial t+ 1 for player i, and λ is
the inverse temperature. Based on these choice probabilities, we maximized
P

i

P

t
log psi tð Þi tð Þ

� �
, the sum of log probability of each subject’s observed choice at

each trial. Different combinations of initial values of key parameters were used for
searching, as the likelihood function might not be globally concave.

Pseudo-R2 was derived based on the best-fitting EWA model as an indicator of
model performance. It is defined as the difference between the log-likelihood of
EWA for the given cohort and the log-likelihood of a random choice model, scaled
by log-likelihood of the random model31. The higher the pseudo-R2, the better
EWA in predicting decisions over the chance level. The means and error bars of the
pseudo-R2 were constructed using a bootstrap procedure pooling over cohorts for
each condition. Specifically, on each iteration, we constructed a pseudo-sample of a
specific cohort and condition by resampling, with replacement, the pseudo-R2 of all
trials across all subjects within that cohort. To account for the potential issue of
EWA model overfitting, we also performed an out-of-sample prediction validation
by estimating the hybrid EWA model using the first 60 trials of each subject and
tested on the last 20 trials to obtain the prediction accuracy31,48.

BIC was calculated by pooling over participants in each cohort, and dividing by
the sample size of the cohort to account for differences in number of participants in
each cohort. BIC error bars were calculated using a bootstrap procedure pooling
over cohorts across conditions. Specifically, on each iteration, we constructed a
pseudo-sample of a specific cohort and condition by resampling, with replacement,
the log-likelihood values of all trials across all subjects within that cohort, and
penalizing the additional number of parameters to derive the BIC.

Power analyses. Our choice of sample size was guided by previous lesion studies
in the field of cognitive neuroscience31–35, supplemented by power calculations that
evaluated the sensitivity of our design using a model-based simulation approach.
Specifically, we evaluated the power of detecting a difference in pseudo-R2 of EWA
model fit between HC and lesion patients who were assumed to behave randomly.
Because our pilot HC data indicated that values of pseudo-R2 for the best-fitting
EWA were 0.43 and 0.45 in the strategic and non-strategic condition, respectively,
with standard deviation of 0.2 for both, we conducted our power analysis using the
same mean estimates for HC and 0 (pseudo-R2 for random choice model) for
patients, assuming the same estimates of 0.2 as standard deviation for both cohorts.
Our computation, under alpha level 0.05 and power (1− β)= 0.8, indicated a
sample size of four patients is adequate to detect the difference in model fit where
they exist.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data and code that support the findings in this article are available at Open Science
Framework: https://osf.io/4x3nf/.

Received: 26 June 2018 Accepted: 24 January 2019

References
1. Rangel, A., Camerer, C. & Montague, P. R. A framework for studying the

neurobiology of value-based decision making. Nat. Rev. Neurosci. 9, 545–556
(2008).

2. Montague, P. R., Hyman, S. E. & Cohen, J. D. Computational roles for
dopamine in behavioural control. Nature 431, 760–767 (2004).

3. Behrens, T. E. J., Hunt, L. T. & Rushworth, M. F. S. The computation of social
behavior. Science 324, 1160–1164 (2009).

4. Báez-Mendoza, R. & Schultz, W. The role of the striatum in social behavior.
Front. Neurosci. 7, 1–14 (2013).

5. Ruff, C. C. & Fehr, E. The neurobiology of rewards and values in social
decision making. Nat. Rev. Neurosci. 15, 549–562 (2014).

6. Dunne, S. & O’Doherty, J. P. Insights from the application of computational
neuroimaging to social neuroscience. Curr. Opin. Neurobiol. 23, 1–6
(2013).

7. Zhu, L., Mathewson, K. E. & Hsu, M. Dissociable neural representations of
reinforcement and belief prediction errors underlie strategic learning. Proc.
Natl Acad. Sci. USA 109, 1419–1424 (2012).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08766-1

8 NATURE COMMUNICATIONS |          (2019) 10:802 | https://doi.org/10.1038/s41467-019-08766-1 | www.nature.com/naturecommunications

https://osf.io/4x3nf/
www.nature.com/naturecommunications


8. Seo, H. & Lee, D. Neural basis of learning and preference during social
decision-making. Curr. Opin. Neurobiol. 22, 990–995 (2012).

9. Sanfey, A. G. Social decision-making: insights from game theory and
neuroscience. Science 318, 598–602 (2007).

10. Szczepanski, S. M. & Knight, R. T. Insights into human behaviorfrom lesions
to the prefrontal cortex. Neuron 83, 1002–1018 (2014).

11. Bhatia, K. P. & Marsden, C. D. The behavioural and motor consequences of
focal lesions of the basal ganglia in man. Brain 117, 859–876 (1994).

12. Tekin, S. & Cummings, J. L. Frontal–subcortical neuronal circuits and clinical
neuropsychiatry: an update. J. Psychosom. Res. 53, 647–654 (2002).

13. Albin, R. L., Young, A. B. & Penney, J. B. The functional anatomy of basal
ganglia disorders. Trends Neurosci. 12, 366–375 (1989).

14. Poletti, M., Enrici, I., Bonuccelli, U. & Adenzato, M. Theory of mind in
Parkinson's disease. Behav. Brain Res. 219, 342–350 (2011).

15. Snowden, J. S. et al. Social cognition in frontotemporal dementia and
Huntington’s disease. Neuropsychology 41, 688–701 (2003).

16. Middleton, F. A. & Strick, P. L. Basal ganglia output and cognition: evidence
from anatomical, behavioral, and clinical studies. Brain Cogn. 42, 183–200
(2000).

17. Lee, D. & Seo, H. Neural basis of strategic decision making. Trends Neurosci.
39, 1–9 (2015).

18. Camerer, C. F. Behavioral Game Theory. (Princeton University Press, 2011).
19. Costa, V. D., Monte, O. D., Lucas, D. R., Murray, E. A. & Averbeck, B. B.

Amygdala and ventral striatum make distinct contributions to reinforcement
learning. Neuron 92, 1–14 (2016).

20. Voytek, B. & Knight, R. T. Prefrontal cortex and basal ganglia contributions to
visual working memory. Proc. Natl Acad. Sci. USA 107, 18167–18172 (2010).

21. Vo, K., Rutledge, R. B., Chatterjee, A. & Kable, J. W. Dorsal striatum is
necessary for stimulus-value but not action-value learning in humans. Brain
137, 3129–3135 (2014).

22. Palminteri, S. et al. Critical roles for anterior insula and dorsal striatum in
punishment-based avoidance learning. Neuron 76, 998–1009 (2012).

23. Clarke, H. F., Robbins, T. W. & Roberts, A. C. Lesions of the medial striatum
in monkeys produce perseverative impairments during reversal learning
similar to those produced by lesions of the orbitofrontal cortex. J. Neurosci. 28,
10972–10982 (2008).

24. Redgrave, P. et al. Goal-directed and habitual control in the basal ganglia:
implications for Parkinson's disease. Nat. Rev. Neurosci. 11, 760–772 (2010).

25. Zhu, L., Walsh, D. & Hsu, M. Neuroeconomic measures of social decision-
making across the lifespan. Front. Neurosci. 6, 128 (2012).

26. Set, E. et al. Dissociable contribution of prefrontal and striatal dopaminergic
genes to learning in economic games. Proc. Natl Acad. Sci. USA 111,
9615–9620 (2014).

27. Rapoport, A. & Amaldoss, W. Mixed strategies and iterative elimination of
strongly dominated strategies: an experimental investigation of states of
knowledge. J. Econ. Behav. Organ. 42, 483–521 (2000).

28. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and
reward. Science 275, 1593–1599 (1997).

29. Glimcher, P. W. Understanding dopamine and reinforcement learning: the
dopamine reward prediction error hypothesis. Proc. Natl Acad. Sci. USA 108,
15647–15654 (2011).

30. Fudenberg, D. & Levine, D. K. The Theory of Learning in Games. (MIT Press,
1998).

31. Camerer, C. & Hua, Ho,T. Experience-weighted attraction learning in normal
form games. Econometrica 67, 827–874 (1999).

32. Koenigs, M. et al. Damage to the prefrontal cortex increases utilitarian moral
judgements. Nature 446, 908–911 (2007).

33. Zhu, L. et al. Damage to dorsolateral prefrontal cortex affects tradeoffs
between honesty and self-interest. Nat. Neurosci. 17, 1–5 (2014).

34. Gu, X. et al. Necessary, yet dissociable contributions of the insular and
ventromedial prefrontal cortices to norm adaptation: computational and
lesion evidence in humans. J. Neurosci. 35, 467–473 (2015).

35. Feinberg, T. E. & Farah, M. J. Patient-based Approaches to Cognitive
Neuroscience. (MIT Press, 2000).

36. Camerer, C. F., Loewenstein, G. & Rabin, M. Advances in Behavioral
Economics. (Princeton University Press, 2004).

37. Ho, T. H., Camerer, C. F. & Chong, J.-K. Self-tuning experience weighted
attraction learning in games. J. Econ. Theory 133, 177–198 (2007).

38. Balleine, B., Delgado, M. R. & Hikosaka, O. The role of the dorsal striatum in
reward and decision-making. J. Neurosci. 27, 8161–8165 (2007).

39. Bellebaum, C., Koch, B., Schwarz, M. & Daum, I. Focal basal ganglia lesions
are associated with impairments in reward-based reversal learning. Brain 131,
829–841 (2008).

40. Yin, H. H. & Knowlton, B. J. The role of the basal ganglia in habit formation.
Nat. Rev. Neurosci. 7, 464–476 (2006).

41. Yehene, E., Meiran, N. & Soroker, N. Basal ganglia play a unique role in task
switching within the frontal-subcortical circuits: evidence from patients with
focal lesions. J. Cogn. Neurosci. 20, 1079–1093 (2008).

42. Haruno, M. & Kawato, M. Different neural correlates of reward expectation
and reward expectation error in the putamen and caudate nucleus during
stimulus-action-reward association learning. J. Neurophysiol. 95, 948–959
(2006).

43. O'Doherty, J. P. et al. Dissociable roles of ventral and dorsal striatum in
instrumental conditioning. Science 304, 452–454 (2004).

44. O’Doherty, J. P. Reward representations and reward-related learning in the
human brain: insights from neuroimaging. Curr. Opin. Neurobiol. 14, 769–776
(2004).

45. Kable, J. W. & Glimcher, P. W. The neurobiology of decision: consensus and
controversy. Neuron 63, 733–745 (2009).

46. Jones, R. M. et al. Behavioral and neural properties of social reinforcement
learning. J. Neurosci. 31, 13039–13045 (2011).

47. Tricomi, E., Rangel, A., Camerer, C. F. & O’Doherty, J. P. Neural evidence for
inequality-averse social preferences. Nature 463, 1089–1091 (2010).

48. Hampton, A. N. et al. Neural correlates of mentalizing-related computations
during strategic interactions in humans. Proc. Natl Acad. Sci. USA 105,
6741–6746 (2008).

49. van den Bos, W., Talwar, A. & McClure, S. M. Neural correlates of
reinforcement learning and social preferences in competitive bidding. J.
Neurosci. 33, 2137–2146 (2013).

50. Rudebeck, P. H., Buckley, M. J., Walton, M. E. & Rushworth, M. F. S. A role
for the macaque anterior cingulate gyrus in social valuation. Science 313,
1310–1312 (2006).

51. Hornak, J. et al. Changes in emotion after circumscribed surgical lesions of the
orbitofrontal and cingulate cortices. Brain 126, 1691–1712 (2003).

52. Hadland, K. A., Rushworth, M. F. S., Gaffan, D. & Passingham, R. E. The
effect of cingulate lesions on social behaviour and emotion. Neuropsychology
41, 919–931 (2003).

53. Ligneul, R., Obeso, I., Ruff, C. C. & Dreher, J.-C. Dynamical representation of
dominance relationships in the human rostromedial prefrontal cortex. Curr.
Biol. 26, 1–9 (2016).

54. Hill, C. A. et al. A causal account of the brain network computations
underlying strategic social behavior. Nat. Neurosci. 23, 1–27 (2017).

55. Young, L., Camprodon, J. A., Hauser, M., Pascual-Leone, A. & Saxe, R.
Disruption of the right temporoparietal junction with transcranial magnetic
stimulation reduces the role of beliefs in moral judgments. Proc. Natl Acad.
Sci. USA 107, 6753–6758 (2010).

56. Collins, A. G. E. & Frank, M. J. How much of reinforcement learning is
working memory, not reinforcement learning? A behavioral, computational,
and neurogenetic analysis. Eur. J. Neurosci. 35, 1024–1035 (2012).

57. O'Reilly, R. C. & Frank, M. J. Making working memory work: a computational
model of learning in the prefrontal cortex and basal ganglia. Neural Comput.
18, 283–328 (2006).

58. Noonan, M. P., Chau, B. K. H., Rushworth, M. F. S. & Fellows, L. K.
Contrasting effects of medial and lateral orbitofrontal cortex lesions on credit
assignment and decision-making in humans. J. Neurosci. 37, 7023–7035
(2017).

59. Noonan, M. P. et al. Separate value comparison and learning mechanisms in
macaque medial and lateral orbitofrontal cortex. Proc. Natl Acad. Sci. USA
107, 20547–20552 (2010).

60. Gardner, M. P. H., Conroy, J. S., Shaham, M. H., Styer, C. V. & Schoenbaum,
G. Lateral orbitofrontal inactivation dissociates devaluation-sensitive behavior
and economic choice. Neuron 96, 1–12 (2017).

61. Rudebeck, P. H. & Murray, E. A. The orbitofrontal oracle: cortical
mechanisms for the prediction and evaluation of specific behavioral outcomes.
Neuron 84, 1143–1156 (2014).

62. Sutton, R. S. & Barto, A. G. Reinforcement Learning. (MIT Press, 1998).
63. Peters, J. & D’Esposito, M. Effects of medial orbitofrontal cortex lesions on

self-control in intertemporal choice. Curr. Biol. 26, 2625–2628 (2016).
64. Kovach, C. K. et al. Anterior prefrontal cortex contributes to action selection

through tracking of recent reward trends. J. Neurosci. 32, 8434–8442 (2012).
65. Hsu, M., Anen, C. & Quartz, S. R. The right and the good: distributive justice

and neural encoding of equity and efficiency. Science 320, 1092–1095 (2008).
66. Harbaugh, W. T., Mayr, U. & Burghart, D. R. Neural responses to taxation

and voluntary giving reveal motives for charitable donations. Science 316,
1622–1625 (2007).

67. King-Casas, B. et al. Getting to know you: reputation and trust in a two-
person economic exchange. Science 308, 78–83 (2005).

68. Rorden, C. & Brett, M. Stereotaxic display of brain lesions. Behav. Neurol. 12,
191–200 (2000).

Acknowledgements
We thank D. Walsh and C. Clayworth for assistance with data collection, analyses, and
lesion reconstruction. This research was supported by NSFC (31671171 and 31630034 to
L.Z.) and the National Institutes of Health (MH098023 and DA043196 to M.H.).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08766-1 ARTICLE

NATURE COMMUNICATIONS |          (2019) 10:802 | https://doi.org/10.1038/s41467-019-08766-1 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Author contributions
L.Z. and M.H. designed research; L.Z. and D.S. performed research; L.Z., Y.J., R.T.K. and
M.H. carried out statistical analyses; and all authors wrote the paper.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-08766-1.

Competing interests: The authors declare no competing interests..

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Journal Peer Review Information: Nature Communications thanks the anonymous
reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports
are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08766-1

10 NATURE COMMUNICATIONS |          (2019) 10:802 | https://doi.org/10.1038/s41467-019-08766-1 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-019-08766-1
https://doi.org/10.1038/s41467-019-08766-1
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Patients with basal ganglia damage show preserved learning in an economic game
	Results
	Overall task performance
	Intact strategic learning capacity following BG damage
	Compensatory role of higher-order learning inputs

	Discussion
	Methods
	Subjects
	Lesion reconstruction
	Procedure
	Computational modeling
	Behavioral data analysis
	Power analyses
	Reporting summary

	References
	References
	Acknowledgements
	ACKNOWLEDGEMENTS
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




